Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
21e73812
Unverified
Commit
21e73812
authored
Jan 16, 2019
by
Adam Procter
Committed by
GitHub
Jan 16, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into krovatkin/ml_reuse_debug
parents
1f0c8d31
ec86e1a8
Hide whitespace changes
Inline
Side-by-side
Showing
19 changed files
with
416 additions
and
204 deletions
+416
-204
CODEOWNERS
CODEOWNERS
+5
-5
CMakeLists.txt
python/CMakeLists.txt
+4
-0
__init__.py
python/ngraph/__init__.py
+6
-2
setup.py
python/setup.py
+4
-0
onnx.cpp
src/ngraph/frontend/onnx_import/onnx.cpp
+8
-0
onnx.hpp
src/ngraph/frontend/onnx_import/onnx.hpp
+12
-0
ops_bridge.cpp
src/ngraph/frontend/onnx_import/ops_bridge.cpp
+46
-8
ops_bridge.hpp
src/ngraph/frontend/onnx_import/ops_bridge.hpp
+12
-0
reshape_sinking.cpp
src/ngraph/pass/reshape_sinking.cpp
+78
-18
reshape_sinking.hpp
src/ngraph/pass/reshape_sinking.hpp
+15
-0
cpu_backend.cpp
src/ngraph/runtime/cpu/cpu_backend.cpp
+5
-0
cpu_backend.hpp
src/ngraph/runtime/cpu/cpu_backend.hpp
+2
-0
cpu_external_function.cpp
src/ngraph/runtime/cpu/cpu_external_function.cpp
+2
-2
hybrid_backend.cpp
src/ngraph/runtime/hybrid/hybrid_backend.cpp
+0
-29
hybrid_backend.hpp
src/ngraph/runtime/hybrid/hybrid_backend.hpp
+0
-2
util.cpp
src/ngraph/util.cpp
+4
-0
CMakeLists.txt
test/CMakeLists.txt
+9
-7
onnx_import.in.cpp
test/onnx_import.in.cpp
+164
-131
reshape_sinking.cpp
test/reshape_sinking.cpp
+40
-0
No files found.
CODEOWNERS
View file @
21e73812
...
...
@@ -6,11 +6,11 @@
/cmake/ @rkimballn1 @silee2
/.ci/ @aslepko
@crlishka
/.ci/travis/ @postrational
/.ci/onnx/ @postrational
/contrib/docker/ @aslepko
@crlishka
/.travis.yml @postrational
/.ci/ @aslepko
/.ci/travis/ @
aslepko @
postrational
/.ci/onnx/ @
aslepko @
postrational
/contrib/docker/ @aslepko
/.travis.yml @
aslepko @
postrational
/.clang-format @rkimballn1
/.gitattributes @rkimballn1
...
...
python/CMakeLists.txt
View file @
21e73812
...
...
@@ -42,3 +42,7 @@ add_custom_command(
)
add_custom_target
(
python_wheel DEPENDS ngraph
${
CMAKE_BINARY_DIR
}
/python/dist/
)
if
(
NGRAPH_CPU_ENABLE
)
add_dependencies
(
python_wheel ext_mkldnn
)
endif
()
python/ngraph/__init__.py
View file @
21e73812
...
...
@@ -15,8 +15,12 @@
# ******************************************************************************
"""ngraph module namespace, exposing factory functions for all ops and other classes."""
from
pkg_resources
import
get_distribution
__version__
=
get_distribution
(
'ngraph-core'
)
.
version
from
pkg_resources
import
get_distribution
,
DistributionNotFound
try
:
__version__
=
get_distribution
(
'ngraph-core'
)
.
version
except
DistributionNotFound
:
__version__
=
'0.0.0-dev'
from
ngraph.ops
import
absolute
from
ngraph.ops
import
absolute
as
abs
...
...
python/setup.py
View file @
21e73812
...
...
@@ -374,6 +374,10 @@ class BuildExt(build_ext):
build_ext
.
build_extensions
(
self
)
if
sys
.
platform
==
'darwin'
:
# This turns out to be needed when building using Anaconda python on macOS.
os
.
environ
[
'MACOSX_DEPLOYMENT_TARGET'
]
=
'10.9'
with
open
(
os
.
path
.
join
(
PYNGRAPH_ROOT_DIR
,
'requirements.txt'
))
as
req
:
requirements
=
req
.
read
()
.
splitlines
()
...
...
src/ngraph/frontend/onnx_import/onnx.cpp
View file @
21e73812
...
...
@@ -99,6 +99,14 @@ namespace ngraph
return
op_list
;
}
bool
is_operator_supported
(
const
std
::
string
&
op_name
,
std
::
int64_t
version
,
const
std
::
string
&
domain
)
{
return
OperatorsBridge
::
is_operator_registered
(
op_name
,
version
,
domain
==
"ai.onnx"
?
""
:
domain
);
}
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/onnx.hpp
View file @
21e73812
...
...
@@ -52,6 +52,18 @@ namespace ngraph
std
::
set
<
std
::
string
>
get_supported_operators
(
std
::
int64_t
version
,
const
std
::
string
&
domain
);
/// \brief Determines whether ONNX operator is supported.
///
/// \param[in] op_name The ONNX operator name.
/// \param[in] version The ONNX operator set version.
/// \param[in] domain The domain the ONNX operator is registered to.
///
/// \return True if operator is supported, False otherwise.
///
bool
is_operator_supported
(
const
std
::
string
&
op_name
,
std
::
int64_t
version
,
const
std
::
string
&
domain
=
"ai.onnx"
);
/// \brief Convert an ONNX model to nGraph function
/// The function translated serialized ONNX model to nGraph function. The serialized
/// ONNX model is read from input stream.
...
...
src/ngraph/frontend/onnx_import/ops_bridge.cpp
View file @
21e73812
...
...
@@ -21,6 +21,7 @@
#include <unordered_map>
#include "core/attribute.hpp"
#include "ngraph/log.hpp"
#include "op/abs.hpp"
#include "op/acos.hpp"
#include "op/add.hpp"
...
...
@@ -102,20 +103,19 @@ namespace ngraph
{
namespace
detail
{
const
Operator
&
find
(
const
std
::
string
&
name
,
std
::
int64_t
version
,
const
std
::
string
&
domain
,
const
std
::
map
<
std
::
int64_t
,
Operator
>&
map
)
const
std
::
map
<
std
::
int64_t
,
Operator
>::
const_iterator
find
(
std
::
int64_t
version
,
const
std
::
map
<
std
::
int64_t
,
Operator
>&
map
)
{
std
::
map
<
std
::
int64_t
,
Operator
>::
const_iterator
it
{};
while
(
version
>
0
)
{
const
auto
it
=
map
.
find
(
version
--
);
it
=
map
.
find
(
version
--
);
if
(
it
!=
std
::
end
(
map
))
{
return
it
->
second
;
return
it
;
}
}
throw
error
::
UnsupportedVersion
{
name
,
version
,
domain
}
;
return
it
;
}
}
...
...
@@ -136,13 +136,51 @@ namespace ngraph
{
throw
error
::
UnknownDomain
{
domain
};
}
if
(
version
>
OperatorsBridge
::
LATEST_SUPPORTED_OPSET_VERSION
)
{
NGRAPH_WARN
<<
"Currently operator set version: "
<<
version
<<
" is unsupported."
<<
" Falling back to: "
<<
OperatorsBridge
::
LATEST_SUPPORTED_OPSET_VERSION
;
}
for
(
const
auto
&
op
:
dm
->
second
)
{
result
.
emplace
(
op
.
first
,
detail
::
find
(
op
.
first
,
version
,
domain
,
op
.
second
));
const
auto
&
it
=
detail
::
find
(
version
,
op
.
second
);
if
(
it
==
std
::
end
(
op
.
second
))
{
throw
error
::
UnsupportedVersion
{
op
.
first
,
version
,
domain
};
}
result
.
emplace
(
op
.
first
,
it
->
second
);
}
return
result
;
}
bool
OperatorsBridge
::
_is_operator_registered
(
const
std
::
string
&
name
,
std
::
int64_t
version
,
const
std
::
string
&
domain
)
{
// search for domain
auto
dm_map
=
m_map
.
find
(
domain
);
if
(
dm_map
==
std
::
end
(
m_map
))
{
return
false
;
}
// search for name
auto
op_map
=
dm_map
->
second
.
find
(
name
);
if
(
op_map
==
std
::
end
(
dm_map
->
second
))
{
return
false
;
}
if
(
detail
::
find
(
version
,
op_map
->
second
)
!=
std
::
end
(
op_map
->
second
))
{
return
true
;
}
else
{
return
false
;
}
}
#define REGISTER_OPERATOR(name_, ver_, fn_) \
m_map[""][name_].emplace(ver_, std::bind(op::set_##ver_::fn_, std::placeholders::_1))
...
...
src/ngraph/frontend/onnx_import/ops_bridge.hpp
View file @
21e73812
...
...
@@ -62,6 +62,8 @@ namespace ngraph
class
OperatorsBridge
{
public
:
static
constexpr
const
int
LATEST_SUPPORTED_OPSET_VERSION
=
ONNX_OPSET_VERSION
;
OperatorsBridge
(
const
OperatorsBridge
&
)
=
delete
;
OperatorsBridge
&
operator
=
(
const
OperatorsBridge
&
)
=
delete
;
OperatorsBridge
(
OperatorsBridge
&&
)
=
delete
;
...
...
@@ -80,6 +82,13 @@ namespace ngraph
instance
().
_register_operator
(
name
,
version
,
domain
,
std
::
move
(
fn
));
}
static
bool
is_operator_registered
(
const
std
::
string
&
name
,
std
::
int64_t
version
,
const
std
::
string
&
domain
)
{
return
instance
().
_is_operator_registered
(
name
,
version
,
domain
);
}
private
:
std
::
unordered_map
<
std
::
string
,
std
::
unordered_map
<
std
::
string
,
std
::
map
<
std
::
int64_t
,
Operator
>>>
...
...
@@ -98,6 +107,9 @@ namespace ngraph
const
std
::
string
&
domain
,
Operator
fn
);
OperatorSet
_get_operator_set
(
std
::
int64_t
version
,
const
std
::
string
&
domain
);
bool
_is_operator_registered
(
const
std
::
string
&
name
,
std
::
int64_t
version
,
const
std
::
string
&
domain
);
};
}
// namespace onnx_import
...
...
src/ngraph/pass/reshape_sinking.cpp
View file @
21e73812
...
...
@@ -29,22 +29,30 @@
#include "ngraph/op/convolution.hpp"
#include "ngraph/op/dequantize.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/pad.hpp"
#include "ngraph/op/quantize.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/slice.hpp"
#include "ngraph/op/util/binary_elementwise_arithmetic.hpp"
#include "ngraph/op/util/unary_elementwise_arithmetic.hpp"
#include "ngraph/pattern/op/label.hpp"
#include "ngraph/util.hpp"
using
namespace
ngraph
;
extern
template
ngraph
::
AxisVector
ngraph
::
apply_permutation
<
ngraph
::
AxisVector
>
(
ngraph
::
AxisVector
input
,
ngraph
::
AxisVector
order
);
using
ReshapeMap
=
std
::
unordered_map
<
std
::
shared_ptr
<
Node
>
,
std
::
shared_ptr
<
op
::
Reshape
>>
;
extern
template
ngraph
::
Shape
ngraph
::
apply_permutation
<
ngraph
::
Shape
>
(
ngraph
::
Shape
input
,
ngraph
::
AxisVector
order
);
static
std
::
string
describe_reshape
(
std
::
shared_ptr
<
Node
>
node
)
{
std
::
stringstream
ss
;
auto
reshape
=
std
::
dynamic_pointer_cast
<
op
::
Reshape
>
(
node
);
ss
<<
reshape
->
get_name
()
<<
" ( axis order = "
<<
ngraph
::
vector_to_string
(
reshape
->
get_input_order
())
<<
" , shape = "
<<
vector_to_string
(
reshape
->
get_shape
())
<<
" ) "
<<
" , child = "
<<
reshape
->
get_argument
(
0
)
->
get_name
();
using
ReshapeMap
=
std
::
unordered_map
<
std
::
shared_ptr
<
Node
>
,
std
::
shared_ptr
<
op
::
Reshape
>>
;
return
ss
.
str
();
}
static
std
::
shared_ptr
<
op
::
Reshape
>
combine_reshapes
(
std
::
shared_ptr
<
op
::
Reshape
>
r1
,
std
::
shared_ptr
<
op
::
Reshape
>
r2
)
...
...
@@ -64,18 +72,6 @@ static void
target
->
get_inputs
().
at
(
input_index
).
replace_output
(
new_reshape
->
get_outputs
().
at
(
0
));
}
std
::
string
describe_reshape
(
std
::
shared_ptr
<
Node
>
node
)
{
std
::
stringstream
ss
;
auto
reshape
=
std
::
dynamic_pointer_cast
<
op
::
Reshape
>
(
node
);
ss
<<
reshape
->
get_name
()
<<
" ( axis order = "
<<
ngraph
::
vector_to_string
(
reshape
->
get_input_order
())
<<
" , shape = "
<<
vector_to_string
(
reshape
->
get_shape
())
<<
" ) "
<<
" , child = "
<<
reshape
->
get_argument
(
0
)
->
get_name
();
return
ss
.
str
();
}
static
void
delete_reshape
(
std
::
shared_ptr
<
Node
>
reshape
)
{
NGRAPH_DEBUG
<<
"Removing reshape "
<<
reshape
->
get_name
();
...
...
@@ -256,6 +252,7 @@ static void sink_reshape(std::shared_ptr<op::Reshape> reshape,
mark_reshape_for_deletion
(
orig_reshape
,
reshapes_to_delete
);
//replace reshape with combined one
ngraph
::
replace_node
(
reshape
,
new_reshape
);
mark_reshape_for_deletion
(
new_reshape
,
reshapes_to_delete
);
reorders
[
new_reshape
]
=
new_reshape
;
NGRAPH_DEBUG
<<
"Combining "
<<
describe_reshape
(
orig_reshape
)
<<
" and"
<<
describe_reshape
(
reshape
)
<<
" into "
<<
describe_reshape
(
new_reshape
);
...
...
@@ -309,6 +306,61 @@ static void sink_binary(std::shared_ptr<op::util::BinaryElementwiseArithmetic> b
}
}
static
void
sink_slice
(
std
::
shared_ptr
<
op
::
Slice
>
n
,
ReshapeMap
&
reorders
,
std
::
set
<
std
::
shared_ptr
<
Node
>>&
reshapes_to_delete
)
{
auto
arg_reshape
=
reorders
.
at
(
n
->
get_argument
(
0
));
auto
order
=
arg_reshape
->
get_input_order
();
// we need the correct input shape to produce the right output shape
// we are going to create a label of the right input shape,
// so a new slice will have the right shape
auto
def_order
=
ngraph
::
get_permutation_to_default_order
(
order
);
auto
input_shape
=
ngraph
::
apply_permutation
(
arg_reshape
->
get_shape
(),
def_order
);
auto
dummy_correct_shape
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
arg_reshape
->
get_element_type
(),
input_shape
);
auto
new_lower
=
ngraph
::
apply_permutation
(
n
->
get_lower_bounds
(),
def_order
);
auto
new_upper
=
ngraph
::
apply_permutation
(
n
->
get_upper_bounds
(),
def_order
);
auto
new_strides
=
ngraph
::
apply_permutation
(
n
->
get_strides
(),
def_order
);
auto
new_slice
=
std
::
make_shared
<
op
::
Slice
>
(
dummy_correct_shape
,
new_lower
,
new_upper
,
new_strides
);
ngraph
::
replace_node
(
dummy_correct_shape
,
n
->
get_argument
(
0
));
NGRAPH_DEBUG
<<
"Replacing "
<<
n
->
get_name
()
<<
" with "
<<
new_slice
->
get_name
();
ngraph
::
replace_node
(
n
,
new_slice
);
auto
new_reshape
=
std
::
make_shared
<
op
::
Reshape
>
(
new_slice
,
order
,
n
->
get_shape
());
NGRAPH_DEBUG
<<
"Propagating "
<<
describe_reshape
(
new_reshape
)
<<
" for "
<<
n
->
get_name
();
reorders
[
new_slice
]
=
new_reshape
;
}
static
void
sink_pad
(
std
::
shared_ptr
<
op
::
Pad
>
n
,
ReshapeMap
&
reorders
,
std
::
set
<
std
::
shared_ptr
<
Node
>>&
reshapes_to_delete
)
{
auto
arg_reshape
=
reorders
.
at
(
n
->
get_argument
(
0
));
auto
order
=
arg_reshape
->
get_input_order
();
// we need the correct input shape to produce the right output shape
// we are going to create a label of the right input shape,
// so a new pad will have the right shape
auto
def_order
=
ngraph
::
get_permutation_to_default_order
(
order
);
auto
input_shape
=
ngraph
::
apply_permutation
(
arg_reshape
->
get_shape
(),
def_order
);
auto
dummy_correct_shape
=
std
::
make_shared
<
pattern
::
op
::
Label
>
(
arg_reshape
->
get_element_type
(),
input_shape
);
auto
new_lower
=
ngraph
::
apply_permutation
(
n
->
get_padding_below
(),
def_order
);
auto
new_upper
=
ngraph
::
apply_permutation
(
n
->
get_padding_above
(),
def_order
);
auto
new_interior
=
ngraph
::
apply_permutation
(
n
->
get_padding_interior
(),
def_order
);
auto
new_pad
=
std
::
make_shared
<
op
::
Pad
>
(
dummy_correct_shape
,
n
->
get_argument
(
1
),
new_lower
,
new_upper
,
new_interior
);
ngraph
::
replace_node
(
dummy_correct_shape
,
n
->
get_argument
(
0
));
NGRAPH_DEBUG
<<
"Replacing "
<<
n
->
get_name
()
<<
" with "
<<
new_pad
->
get_name
();
ngraph
::
replace_node
(
n
,
new_pad
);
auto
new_reshape
=
std
::
make_shared
<
op
::
Reshape
>
(
new_pad
,
order
,
n
->
get_shape
());
NGRAPH_DEBUG
<<
"Propagating "
<<
describe_reshape
(
new_reshape
)
<<
" for "
<<
n
->
get_name
();
reorders
[
new_pad
]
=
new_reshape
;
}
static
void
sink_quantize
(
std
::
shared_ptr
<
op
::
Quantize
>
quantize
,
ReshapeMap
&
reorders
,
std
::
set
<
std
::
shared_ptr
<
Node
>>&
reshapes_to_delete
)
...
...
@@ -419,6 +471,14 @@ bool ngraph::pass::ReshapeSinking::run_on_function(std::shared_ptr<ngraph::Funct
{
sink_dequantize
(
dequantize
,
reorders
,
reshapes_to_delete
);
}
else
if
(
auto
slice
=
std
::
dynamic_pointer_cast
<
op
::
Slice
>
(
n
))
{
sink_slice
(
slice
,
reorders
,
reshapes_to_delete
);
}
else
if
(
auto
pad
=
std
::
dynamic_pointer_cast
<
op
::
Pad
>
(
n
))
{
sink_pad
(
pad
,
reorders
,
reshapes_to_delete
);
}
else
{
materialize_shapes
(
n
,
reorders
,
reshapes_to_delete
);
...
...
src/ngraph/pass/reshape_sinking.hpp
View file @
21e73812
...
...
@@ -17,6 +17,7 @@
#pragma once
#include "ngraph/pass/pass.hpp"
#include "ngraph/util.hpp"
namespace
ngraph
{
...
...
@@ -29,3 +30,17 @@ namespace ngraph
};
}
}
extern
template
ngraph
::
AxisVector
ngraph
::
apply_permutation
<
ngraph
::
AxisVector
>
(
ngraph
::
AxisVector
input
,
ngraph
::
AxisVector
order
);
extern
template
ngraph
::
Coordinate
ngraph
::
apply_permutation
<
ngraph
::
Coordinate
>
(
ngraph
::
Coordinate
input
,
ngraph
::
AxisVector
order
);
extern
template
ngraph
::
Strides
ngraph
::
apply_permutation
<
ngraph
::
Strides
>
(
ngraph
::
Strides
input
,
ngraph
::
AxisVector
order
);
extern
template
ngraph
::
Shape
ngraph
::
apply_permutation
<
ngraph
::
Shape
>
(
ngraph
::
Shape
input
,
ngraph
::
AxisVector
order
);
src/ngraph/runtime/cpu/cpu_backend.cpp
View file @
21e73812
...
...
@@ -145,3 +145,8 @@ vector<runtime::PerformanceCounter>
}
return
rc
;
}
bool
runtime
::
cpu
::
CPU_Backend
::
is_supported
(
const
Node
&
op
)
const
{
return
true
;
}
src/ngraph/runtime/cpu/cpu_backend.hpp
View file @
21e73812
...
...
@@ -58,6 +58,8 @@ namespace ngraph
std
::
vector
<
PerformanceCounter
>
get_performance_data
(
std
::
shared_ptr
<
Function
>
func
)
const
override
;
bool
is_supported
(
const
Node
&
node
)
const
override
;
private
:
class
FunctionInstance
{
...
...
src/ngraph/runtime/cpu/cpu_external_function.cpp
View file @
21e73812
...
...
@@ -1982,10 +1982,10 @@ void runtime::cpu::CPU_ExternalFunction::build()
file_util
::
path_join
(
s_debug_dir
,
m_function_name
+
"_debug.txt"
);
std
::
stringstream
ss
;
ss
<<
"EXECUTION PLAN:
\n
"
;
ss
<<
"
\n
EXECUTION PLAN:
\n
"
;
for
(
size_t
i
=
0
;
i
<
functors
.
size
();
i
++
)
{
ss
<<
op_names
.
at
(
i
)
<<
"will be executed with the following inputs:
\n
"
;
ss
<<
op_names
.
at
(
i
)
<<
"
will be executed with the following inputs:
\n
"
;
for
(
auto
is
:
this
->
m_op_attrs
.
at
(
i
).
Inputs
)
{
ss
<<
"
\t
"
<<
is
<<
" = "
<<
this
->
get_tensor_data
(
is
)
<<
std
::
endl
;
...
...
src/ngraph/runtime/hybrid/hybrid_backend.cpp
View file @
21e73812
...
...
@@ -18,13 +18,10 @@
#include "ngraph/graph_util.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/visualize_tree.hpp"
#include "ngraph/runtime/gpu/gpu_backend.hpp"
#include "ngraph/runtime/gpu/gpu_tensor.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/hybrid/hybrid_util.hpp"
#include "ngraph/runtime/hybrid/pass/assign_placement.hpp"
#include "ngraph/runtime/hybrid/pass/fix_get_output_element.hpp"
#include "ngraph/runtime/interpreter/int_backend.hpp"
#include "ngraph/runtime/tensor.hpp"
using
namespace
ngraph
;
...
...
@@ -205,32 +202,6 @@ bool runtime::hybrid::HybridBackend::is_supported(const Node& node) const
return
true
;
}
string
runtime
::
hybrid
::
HybridBackend
::
get_placement_name
(
const
runtime
::
Tensor
*
t
)
{
string
rc
;
if
(
dynamic_cast
<
const
runtime
::
HostTensor
*>
(
t
)
!=
nullptr
)
{
rc
=
"HostTensor"
;
}
else
if
(
dynamic_cast
<
const
runtime
::
gpu
::
GPUTensor
*>
(
t
)
!=
nullptr
)
{
rc
=
"GPUTensor"
;
}
return
rc
;
}
string
runtime
::
hybrid
::
HybridBackend
::
get_placement_name
(
const
runtime
::
Backend
*
t
)
{
string
rc
;
if
(
dynamic_cast
<
const
runtime
::
interpreter
::
INTBackend
*>
(
t
)
!=
nullptr
)
{
rc
=
"INTBackend"
;
}
else
if
(
dynamic_cast
<
const
runtime
::
gpu
::
GPU_Backend
*>
(
t
)
!=
nullptr
)
{
rc
=
"GPU_Backend"
;
}
return
rc
;
}
size_t
runtime
::
hybrid
::
HybridBackend
::
get_placement
(
const
runtime
::
Tensor
*
t
)
{
size_t
index
=
0
;
...
...
src/ngraph/runtime/hybrid/hybrid_backend.hpp
View file @
21e73812
...
...
@@ -70,7 +70,5 @@ private:
std
::
map
<
std
::
shared_ptr
<
ngraph
::
Function
>
,
FunctionInstance
>
m_function_map
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>
m_backend_list
;
std
::
string
get_placement_name
(
const
runtime
::
Tensor
*
t
);
std
::
string
get_placement_name
(
const
runtime
::
Backend
*
t
);
size_t
get_placement
(
const
runtime
::
Tensor
*
t
);
};
src/ngraph/util.cpp
View file @
21e73812
...
...
@@ -478,6 +478,10 @@ T ngraph::apply_permutation(T input, AxisVector order)
template
AxisVector
ngraph
::
apply_permutation
<
AxisVector
>
(
AxisVector
input
,
AxisVector
order
);
template
Shape
ngraph
::
apply_permutation
<
Shape
>
(
Shape
input
,
AxisVector
order
);
template
ngraph
::
Coordinate
ngraph
::
apply_permutation
<
ngraph
::
Coordinate
>
(
ngraph
::
Coordinate
input
,
ngraph
::
AxisVector
order
);
template
ngraph
::
Strides
ngraph
::
apply_permutation
<
ngraph
::
Strides
>
(
ngraph
::
Strides
input
,
ngraph
::
AxisVector
order
);
AxisVector
ngraph
::
get_default_order
(
const
Shape
&
shape
)
{
...
...
test/CMakeLists.txt
View file @
21e73812
...
...
@@ -65,13 +65,6 @@ set(SRC
set_source_files_properties
(
includes.cpp PROPERTIES COMPILE_DEFINITIONS
NGRAPH_INCLUDES=
"
${
PROJECT_SOURCE_DIR
}
/src/ngraph"
)
if
(
NGRAPH_ONNX_IMPORT_ENABLE
)
list
(
APPEND SRC onnx_import.cpp
)
if
(
NGRAPH_ONNXIFI_ENABLE
)
list
(
APPEND SRC onnxifi.cpp onnxifi_span.cpp
)
endif
()
endif
()
if
(
NGRAPH_INTERPRETER_ENABLE
)
list
(
APPEND SRC
backend_debug_api.cpp
...
...
@@ -140,13 +133,22 @@ set(MULTI_TEST_SRC
backend_unary_elementwise.in.cpp
convolution_test.in.cpp
)
if
(
NGRAPH_DISTRIBUTED_ENABLE
)
list
(
APPEND MULTI_TEST_SRC distributed.in.cpp
)
endif
()
if
(
NGRAPH_CPU_ENABLE
)
list
(
APPEND MULTI_TEST_SRC backend_graph_comparison.in.cpp
)
endif
()
if
(
NGRAPH_ONNX_IMPORT_ENABLE
)
list
(
APPEND MULTI_TEST_SRC onnx_import.in.cpp
)
if
(
NGRAPH_ONNXIFI_ENABLE
)
list
(
APPEND SRC onnxifi.cpp onnxifi_span.cpp
)
endif
()
endif
()
foreach
(
BACKEND_NAME
${
ACTIVE_BACKEND_LIST
}
)
# Some---but not all---autodiff tests go through multiple iterations with
# different random seeds. On the CPU backend this is currently very slow
...
...
test/onnx_import.cpp
→
test/onnx_import.
in.
cpp
View file @
21e73812
...
...
@@ -32,10 +32,12 @@
using
namespace
ngraph
;
static
std
::
string
s_manifest
=
"${MANIFEST}"
;
using
Inputs
=
std
::
vector
<
std
::
vector
<
float
>>
;
using
Outputs
=
std
::
vector
<
std
::
vector
<
float
>>
;
TEST
(
onnx
,
model_output_names_check
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_output_names_check
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/split_equal_parts_default.onnx"
));
...
...
@@ -48,7 +50,7 @@ TEST(onnx, model_output_names_check)
}
}
TEST
(
onnx
,
model_add_abc
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_add_abc
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/add_abc.onnx"
));
...
...
@@ -56,11 +58,11 @@ TEST(onnx, model_add_abc)
Inputs
inputs
{{
1
},
{
2
},
{
3
}};
Outputs
expected_outputs
{{
6
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_add_abc_initializers
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_add_abc_initializers
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/add_abc_initializers.onnx"
));
...
...
@@ -68,11 +70,11 @@ TEST(onnx, model_add_abc_initializers)
Inputs
inputs
{{
1
,
2
,
3
,
4
}};
Outputs
expected_outputs
{{
3
,
6
,
9
,
12
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_addmul_abc
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_addmul_abc
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/addmul_abc.onnx"
));
...
...
@@ -86,11 +88,11 @@ TEST(onnx, model_addmul_abc)
auto
expected_output
=
test
::
NDArray
<
float
,
3
>
({{{
46
,
62
}},
{{
80
,
100
}}}).
get_vector
();
auto
result_vectors
=
execute
(
function
,
inputs
,
"
INTERPRETER
"
);
auto
result_vectors
=
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
);
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
,
result_vectors
.
front
()));
}
TEST
(
onnx
,
model_argmin_no_keepdims
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_argmin_no_keepdims
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/argmin_no_keepdims.onnx"
));
...
...
@@ -98,11 +100,11 @@ TEST(onnx, model_argmin_no_keepdims)
Inputs
inputs
{
test
::
NDArray
<
float
,
2
>
{{
2
,
1
},
{
3
,
10
}}.
get_vector
()};
std
::
vector
<
std
::
vector
<
int64_t
>>
expected_output
{{
1
,
0
}};
std
::
vector
<
std
::
vector
<
int64_t
>>
result
{
execute
<
float
,
int64_t
>
(
function
,
inputs
,
"
INTERPRETER
"
)};
execute
<
float
,
int64_t
>
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_EQ
(
expected_output
,
result
);
}
TEST
(
onnx
,
model_split_equal_parts_default
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_split_equal_parts_default
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/split_equal_parts_default.onnx"
));
...
...
@@ -110,7 +112,7 @@ TEST(onnx, model_split_equal_parts_default)
Inputs
inputs
{{
1
,
2
,
3
,
4
,
5
,
6
}};
Outputs
expected_outputs
{{
1
,
2
},
{
3
,
4
},
{
5
,
6
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_EQ
(
outputs
.
size
(),
expected_outputs
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
expected_outputs
.
size
();
++
i
)
...
...
@@ -120,7 +122,7 @@ TEST(onnx, model_split_equal_parts_default)
}
}
TEST
(
onnx
,
model_split_equal_parts_2d
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_split_equal_parts_2d
)
{
// Split into 2 equal parts along axis=1
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -129,7 +131,7 @@ TEST(onnx, model_split_equal_parts_2d)
Inputs
inputs
{{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
}};
Outputs
expected_outputs
{{
0
,
1
,
2
,
6
,
7
,
8
},
{
3
,
4
,
5
,
9
,
10
,
11
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_EQ
(
outputs
.
size
(),
expected_outputs
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
expected_outputs
.
size
();
++
i
)
...
...
@@ -139,7 +141,7 @@ TEST(onnx, model_split_equal_parts_2d)
}
}
TEST
(
onnx
,
model_split_variable_parts_2d
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_split_variable_parts_2d
)
{
// Split into variable parts {2, 4} along axis=1
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -148,7 +150,7 @@ TEST(onnx, model_split_variable_parts_2d)
Inputs
inputs
{{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
}};
Outputs
expected_outputs
{{
0
,
1
,
6
,
7
},
{
2
,
3
,
4
,
5
,
8
,
9
,
10
,
11
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_EQ
(
outputs
.
size
(),
expected_outputs
.
size
());
for
(
std
::
size_t
i
=
0
;
i
<
expected_outputs
.
size
();
++
i
)
...
...
@@ -179,12 +181,12 @@ namespace
test
::
NDArray
<
float
,
4
>
{{{{{
1.
f
,
1.
f
,
1.
f
},
{
1.
f
,
1.
f
,
1.
f
},
{
1.
f
,
1.
f
,
1.
f
}}}}}
.
get_vector
());
return
execute
(
function
,
args
,
"
INTERPRETER
"
);
return
execute
(
function
,
args
,
"
${BACKEND_NAME}
"
);
}
}
// namespace
TEST
(
onnx
,
model_conv2d_strides_padding
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_conv2d_strides_padding
)
{
// Convolution with strides=2 and padding=1
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -201,7 +203,7 @@ TEST(onnx, model_conv2d_strides_padding)
EXPECT_EQ
(
expected_output
,
result
.
front
());
}
TEST
(
onnx
,
model_conv2d_strides_no_padding
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_conv2d_strides_no_padding
)
{
// Convolution with strides=2 and padding=1
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -215,7 +217,7 @@ TEST(onnx, model_conv2d_strides_no_padding)
EXPECT_EQ
(
expected_output
,
result
.
front
());
}
TEST
(
onnx
,
model_conv2d_strides_assymetric_padding
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_conv2d_strides_assymetric_padding
)
{
// Convolution with strides=2 and padding=1
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -230,7 +232,7 @@ TEST(onnx, model_conv2d_strides_assymetric_padding)
EXPECT_EQ
(
expected_output
,
result
.
front
());
}
TEST
(
onnx
,
model_average_pool_2d
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_average_pool_2d
)
{
// Pooling with strides=2 and no padding
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -247,12 +249,12 @@ TEST(onnx, model_average_pool_2d)
// (1, 1, 2, 2)
auto
expected_output
=
test
::
NDArray
<
float
,
4
>
({{{{
2.5
f
,
4.5
f
},
{
10.5
f
,
12.5
f
}}}}).
get_vector
();
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_EQ
(
expected_output
,
outputs
.
front
());
}
TEST
(
onnx
,
model_average_pool_2d_pads
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_average_pool_2d_pads
)
{
// Pooling with strides=2 and padding=1
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -271,12 +273,12 @@ TEST(onnx, model_average_pool_2d_pads)
test
::
NDArray
<
float
,
4
>
({{{{
0.
f
,
1.5
f
,
3.
f
},
{
6.
f
,
7.5
f
,
9.
f
},
{
12.
f
,
13.5
f
,
15.
f
}}}})
.
get_vector
();
Outputs
outputs
=
execute
(
function
,
inputs
,
"
INTERPRETER
"
);
Outputs
outputs
=
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
);
EXPECT_EQ
(
expected_output
,
outputs
.
front
());
}
TEST
(
onnx
,
model_max_pool_2d_pads
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_max_pool_2d_pads
)
{
// Pooling with strides=2 and padding=1
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -295,12 +297,12 @@ TEST(onnx, model_max_pool_2d_pads)
test
::
NDArray
<
float
,
4
>
({{{{
0.
f
,
2.
f
,
3.
f
},
{
8.
f
,
10.
f
,
11.
f
},
{
12.
f
,
14.
f
,
15.
f
}}}})
.
get_vector
();
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_EQ
(
expected_output
,
outputs
.
front
());
}
TEST
(
onnx
,
model_batchnorm_default
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_batchnorm_default
)
{
// Batch Normalization with default parameters
auto
function
=
onnx_import
::
import_onnx_model
(
...
...
@@ -326,11 +328,11 @@ TEST(onnx, model_batchnorm_default)
{{{{
-
0.999995
f
,
0.
f
,
0.999995
f
}},
{{
-
0.22474074
f
,
1.
f
,
2.2247407
f
}}}}}
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_relu
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_relu
)
{
// Simple ReLU test
auto
function
=
...
...
@@ -339,11 +341,11 @@ TEST(onnx, model_relu)
Inputs
inputs
{{
-
1
,
-
2
,
0
,
1
,
2
,
3
}};
Outputs
expected_outputs
{{
0
,
0
,
0
,
1
,
2
,
3
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_sum
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_sum
)
{
// Simple Sum test
auto
function
=
...
...
@@ -356,11 +358,11 @@ TEST(onnx, model_sum)
inputs
.
emplace_back
(
std
::
vector
<
float
>
{
2.
f
,
6.
f
,
6.
f
});
Outputs
expected_outputs
{{
6.
f
,
9.
f
,
12.
f
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_sum_one_input
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_sum_one_input
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/sum_one_input.onnx"
));
...
...
@@ -368,11 +370,11 @@ TEST(onnx, model_sum_one_input)
// input data shape (3, )
Inputs
inputs
{{
3.
f
,
0.
f
,
2.
f
}};
Outputs
expected_outputs
{{
3.
f
,
0.
f
,
2.
f
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_min_two_inputs
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_min_two_inputs
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/min_two_inputs.onnx"
));
...
...
@@ -383,11 +385,11 @@ TEST(onnx, model_min_two_inputs)
inputs
.
emplace_back
(
std
::
vector
<
float
>
{
1.
f
,
4.
f
,
4.
f
});
Outputs
expected_outputs
{{
1.
f
,
2.
f
,
1.
f
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_max
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_max
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/max.onnx"
));
...
...
@@ -399,11 +401,11 @@ TEST(onnx, model_max)
inputs
.
emplace_back
(
std
::
vector
<
float
>
{
2.
f
,
5.
f
,
3.
f
});
Outputs
expected_outputs
{{
3.
f
,
5.
f
,
4.
f
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_mean
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_mean
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/mean.onnx"
));
...
...
@@ -415,11 +417,11 @@ TEST(onnx, model_mean)
inputs
.
emplace_back
(
std
::
vector
<
float
>
{
2.
f
,
6.
f
,
6.
f
});
Outputs
expected_outputs
{{
2.
f
,
3.
f
,
4.
f
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_gemm_abc
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_gemm_abc
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/gemm_abc.onnx"
));
...
...
@@ -445,11 +447,11 @@ TEST(onnx, model_gemm_abc)
{{
340
,
350.5
,
361
,
371.5
},
{
862
,
890.5
,
919
,
947.5
},
{
1384
,
1430.5
,
1477
,
1523.5
}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_matmul
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_matmul
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/matmul.onnx"
));
...
...
@@ -466,11 +468,11 @@ TEST(onnx, model_matmul)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
2
>
({{
190
,
200
,
210
},
{
470
,
496
,
522
},
{
750
,
792
,
834
}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_softmax
)
TEST
(
onnx
_
$
{
BACKEND_NAME
},
DISABLED_
model_softmax
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/softmax.onnx"
));
...
...
@@ -521,11 +523,11 @@ TEST(onnx, model_softmax)
6.32120559e-01
f
}}})
.
get_vector
();
auto
result_vectors
=
execute
(
function
,
inputs
,
"
INTERPRETER
"
);
auto
result_vectors
=
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
);
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
,
result_vectors
.
front
()));
}
TEST
(
onnx
,
model_concat
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_concat
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/concat.onnx"
));
...
...
@@ -537,11 +539,11 @@ TEST(onnx, model_concat)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
1
>
({
1
,
2
,
3
,
4
}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_flatten
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_flatten
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/flatten.onnx"
));
...
...
@@ -553,11 +555,11 @@ TEST(onnx, model_flatten)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
3
>
({{{
1
,
2
,
3
,
4
},
{
5
,
6
,
7
,
8
}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_sub
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_sub
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/sub.onnx"
));
...
...
@@ -569,11 +571,11 @@ TEST(onnx, model_sub)
auto
expected_output
=
test
::
NDArray
<
float
,
3
>
({{{
-
3
,
-
3
,
-
4
}}}).
get_vector
();
auto
result_vectors
=
execute
(
function
,
inputs
,
"
INTERPRETER
"
);
auto
result_vectors
=
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
);
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
,
result_vectors
.
front
()));
}
TEST
(
onnx
,
model_unsqueeze
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_unsqueeze
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/unsqueeze.onnx"
));
...
...
@@ -592,11 +594,11 @@ TEST(onnx, model_unsqueeze)
{{
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
,
1
}}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_squeeze
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_squeeze
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/squeeze_duplicate_axes.onnx"
));
...
...
@@ -611,11 +613,11 @@ TEST(onnx, model_squeeze)
test
::
NDArray
<
float
,
2
>
({{
1.0
f
,
2.0
f
},
{
3.0
f
,
4.0
f
},
{
5.0
f
,
6.0
f
},
{
7.0
f
,
8.0
f
}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_div
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_div
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/div.onnx"
));
...
...
@@ -627,11 +629,11 @@ TEST(onnx, model_div)
auto
expected_output
=
test
::
NDArray
<
float
,
3
>
({{{
1
,
0.5
,
0.25
}}}).
get_vector
();
auto
result_vectors
=
execute
(
function
,
inputs
,
"
INTERPRETER
"
);
auto
result_vectors
=
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
);
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
,
result_vectors
.
front
()));
}
TEST
(
onnx
,
model_add_bcast
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_add_bcast
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/add_bcast.onnx"
));
...
...
@@ -652,11 +654,11 @@ TEST(onnx, model_add_bcast)
{{
2
,
3
,
4
,
5
,
6
},
{
2
,
3
,
4
,
5
,
6
},
{
2
,
3
,
4
,
5
,
6
},
{
2
,
3
,
4
,
5
,
6
}}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reshape_reduced_dims
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reshape_reduced_dims
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reshape_reduced_dims.onnx"
));
...
...
@@ -672,11 +674,11 @@ TEST(onnx, model_reshape_reduced_dims)
{
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reshape_reordered_dims
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reshape_reordered_dims
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reshape_reordered_dims.onnx"
));
...
...
@@ -693,11 +695,11 @@ TEST(onnx, model_reshape_reordered_dims)
{{
18
,
19
,
20
},
{
21
,
22
,
23
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reshape_extended_dims
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reshape_extended_dims
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reshape_extended_dims.onnx"
));
...
...
@@ -713,11 +715,11 @@ TEST(onnx, model_reshape_extended_dims)
{{{
16
,
17
},
{
18
,
19
}},
{{
20
,
21
},
{
22
,
23
}}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reshape_single_dim
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reshape_single_dim
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reshape_single_dim.onnx"
));
...
...
@@ -733,11 +735,11 @@ TEST(onnx, model_reshape_single_dim)
{
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reshape_negative_dim
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reshape_negative_dim
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reshape_negative_dim.onnx"
));
...
...
@@ -756,11 +758,11 @@ TEST(onnx, model_reshape_negative_dim)
{{
20
,
21
},
{
22
,
23
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reshape_negative_with_zero_dim
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reshape_negative_with_zero_dim
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reshape_negative_with_zero_dims.onnx"
));
...
...
@@ -776,11 +778,11 @@ TEST(onnx, model_reshape_negative_with_zero_dim)
{{
12
,
13
},
{
14
,
15
},
{
16
,
17
},
{
18
,
19
},
{
20
,
21
},
{
22
,
23
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reshape_output_shape_as_input
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reshape_output_shape_as_input
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reshape_output_shape_as_input.onnx"
));
...
...
@@ -796,11 +798,11 @@ TEST(onnx, model_reshape_output_shape_as_input)
{{
12
,
13
},
{
14
,
15
},
{
16
,
17
},
{
18
,
19
},
{
20
,
21
},
{
22
,
23
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_log_sum
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_log_sum
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_log_sum.onnx"
));
...
...
@@ -813,11 +815,11 @@ TEST(onnx, model_reduce_log_sum)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
2.77258872
f
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_log_sum_exp
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_log_sum_exp
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_log_sum_exp.onnx"
));
...
...
@@ -830,11 +832,11 @@ TEST(onnx, model_reduce_log_sum_exp)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
3.77258872
f
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_l1
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_l1
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_l1.onnx"
));
...
...
@@ -847,11 +849,11 @@ TEST(onnx, model_reduce_l1)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
16
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_l2
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_l2
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_l2.onnx"
));
...
...
@@ -864,11 +866,11 @@ TEST(onnx, model_reduce_l2)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
4
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_max
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_max
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_max.onnx"
));
...
...
@@ -881,11 +883,11 @@ TEST(onnx, model_reduce_max)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
16
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_mean
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_mean
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_mean.onnx"
));
...
...
@@ -898,11 +900,11 @@ TEST(onnx, model_reduce_mean)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
1
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_min
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_min
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_min.onnx"
));
...
...
@@ -915,11 +917,11 @@ TEST(onnx, model_reduce_min)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
1
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_prod
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_prod
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_prod.onnx"
));
...
...
@@ -932,11 +934,11 @@ TEST(onnx, model_reduce_prod)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
1
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_sum
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_sum
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_sum.onnx"
));
...
...
@@ -949,11 +951,11 @@ TEST(onnx, model_reduce_sum)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
16
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_reduce_sum_square
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_reduce_sum_square
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/reduce_sum_square.onnx"
));
...
...
@@ -966,11 +968,11 @@ TEST(onnx, model_reduce_sum_square)
// output data shape (1,)
Outputs
expected_outputs
{
test
::
NDArray
<
float
,
4
>
({{{{
16
}}}}).
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_shape
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_shape
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/shape.onnx"
));
...
...
@@ -985,11 +987,11 @@ TEST(onnx, model_shape)
std
::
vector
<
std
::
vector
<
int64_t
>>
expected_output
{{
3
,
4
,
5
}};
std
::
vector
<
std
::
vector
<
int64_t
>>
outputs
=
execute
<
float
,
int64_t
>
(
function
,
inputs
,
"
INTERPRETER
"
);
execute
<
float
,
int64_t
>
(
function
,
inputs
,
"
${BACKEND_NAME}
"
);
EXPECT_TRUE
(
test
::
all_close
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_elu
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_elu
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/elu.onnx"
));
...
...
@@ -1032,11 +1034,11 @@ TEST(onnx, model_elu)
{
2
,
2
,
2
,
2
,
2
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_leaky_relu
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_leaky_relu
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/leaky_relu.onnx"
));
...
...
@@ -1063,11 +1065,11 @@ TEST(onnx, model_leaky_relu)
{
2
,
2
,
2
,
2
,
2
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
prelu
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
prelu
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/prelu.onnx"
));
...
...
@@ -1093,11 +1095,11 @@ TEST(onnx, prelu)
{{
1
,
1
,
1
,
1
,
1
},
{
0
,
-
1
,
0
,
-
1
,
0
},
{
0
,
0
,
0
,
0
,
0
},
{
2
,
2
,
2
,
2
,
2
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_selu
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_selu
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/selu.onnx"
));
...
...
@@ -1134,11 +1136,11 @@ TEST(onnx, model_selu)
{
6
,
6
,
6
,
6
,
6
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_sigmoid
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_sigmoid
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/sigmoid.onnx"
));
...
...
@@ -1209,11 +1211,11 @@ TEST(onnx, model_sigmoid)
0.880797077977882
f
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_tanh
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_tanh
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/tanh.onnx"
));
...
...
@@ -1284,11 +1286,11 @@ TEST(onnx, model_tanh)
0.964027580075817
f
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_thresholded_relu
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_thresholded_relu
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/thresholded_relu.onnx"
));
...
...
@@ -1308,11 +1310,11 @@ TEST(onnx, model_thresholded_relu)
{{
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
},
{
0
,
0
,
0
,
0
,
0
}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_unsupported_op
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_unsupported_op
)
{
try
{
...
...
@@ -1333,7 +1335,7 @@ TEST(onnx, model_unsupported_op)
}
}
TEST
(
onnx
,
model_custom_op
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_custom_op
)
{
onnx_import
::
register_operator
(
"AddQ"
,
1
,
"com.intel.ai"
,
[](
const
onnx_import
::
Node
&
node
)
->
NodeVector
{
...
...
@@ -1347,11 +1349,11 @@ TEST(onnx, model_custom_op)
Inputs
inputs
{{
1
,
2
,
3
,
4
}};
Outputs
expected_outputs
{{
3
,
6
,
9
,
12
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_custom_op_default_domain
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_custom_op_default_domain
)
{
onnx_import
::
register_operator
(
"AddQ"
,
1
,
"com.intel.ai"
,
[](
const
onnx_import
::
Node
&
node
)
->
NodeVector
{
...
...
@@ -1365,11 +1367,11 @@ TEST(onnx, model_custom_op_default_domain)
Inputs
inputs
{{
1
,
2
,
3
,
4
}};
Outputs
expected_outputs
{{
3
,
6
,
9
,
12
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_outputs
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_conv2d_dilation_assymetric_pads_strides
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_conv2d_dilation_assymetric_pads_strides
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/conv2d_dilation_assym_pads_strides.onnx"
));
...
...
@@ -1405,11 +1407,11 @@ TEST(onnx, model_conv2d_dilation_assymetric_pads_strides)
{{
-
0.10154513269662857
f
,
-
0.13448859751224518
f
}}}})
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_conv3d_bias
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_conv3d_bias
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/conv3d_bias.onnx"
));
...
...
@@ -1519,11 +1521,11 @@ TEST(onnx, model_conv3d_bias)
-
0.39770257472991943
f
,
-
0.45317384600639343
f
,
-
0.5598302483558655
f
,
-
0.2542789578437805
f
,
-
0.5359901785850525
f
,
-
0.48090484738349915
f
,
-
0.38603779673576355
f
,
-
0.4991581439971924
f
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_matmul_vec_ten3d
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_matmul_vec_ten3d
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/matmul_vec_ten3d.onnx"
));
...
...
@@ -1535,11 +1537,11 @@ TEST(onnx, model_matmul_vec_ten3d)
Outputs
expected_output
{
test
::
NDArray
<
float
,
2
>
{{
1.
f
},
{
3.
f
},
{
5.
f
}}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_softplus
)
TEST
(
onnx
_
$
{
BACKEND_NAME
},
DISABLED_
model_softplus
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/softplus.onnx"
));
...
...
@@ -1578,7 +1580,7 @@ TEST(onnx, model_softplus)
std
::
transform
(
std
::
begin
(
input
),
std
::
end
(
input
),
std
::
back_inserter
(
output
),
softplus_impl
);
Outputs
expected_output
{
output
};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
inputs
.
clear
();
...
...
@@ -1599,7 +1601,7 @@ TEST(onnx, model_softplus)
std
::
numeric_limits
<
float
>::
infinity
(),
std
::
numeric_limits
<
float
>::
infinity
()});
input
=
inputs
.
back
();
outputs
=
execute
(
function
,
inputs
,
"
INTERPRETER
"
);
outputs
=
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
);
for
(
float
v
:
outputs
.
front
())
{
...
...
@@ -1607,7 +1609,7 @@ TEST(onnx, model_softplus)
}
}
TEST
(
onnx
,
model_sum_opset8
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_sum_opset8
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/sum_opset8.onnx"
));
...
...
@@ -1625,11 +1627,11 @@ TEST(onnx, model_sum_opset8)
{{
311.0
f
,
312.0
f
,
313.0
f
},
{
321.0
f
,
322.0
f
,
323.0
f
},
{
331.0
f
,
332.0
f
,
333.0
f
}}}
.
get_vector
()};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_conv_transpose_w_groups
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_conv_transpose_w_groups
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/conv_transpose_w_groups.onnx"
));
...
...
@@ -1644,11 +1646,11 @@ TEST(onnx, model_conv_transpose_w_groups)
Outputs
expected_output
{
std
::
vector
<
float
>
{
28.
f
,
34.
f
,
252.
f
,
274.
f
,
732.
f
,
770.
f
,
1468.
f
,
1522.
f
}};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
INTERPRETER
"
)};
Outputs
outputs
{
execute
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_argmax_int32
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_argmax_int32
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/argmax_int32.onnx"
));
...
...
@@ -1660,11 +1662,11 @@ TEST(onnx, model_argmax_int32)
std
::
vector
<
std
::
int64_t
>
{
1
,
1
,
1
,
1
,
1
,
1
}};
std
::
vector
<
std
::
vector
<
std
::
int64_t
>>
outputs
{
execute
<
std
::
int32_t
,
std
::
int64_t
>
(
function
,
inputs
,
"
CPU
"
)};
execute
<
std
::
int32_t
,
std
::
int64_t
>
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx
,
model_argmin_int32
)
TEST
(
onnx
_
$
{
BACKEND_NAME
}
,
model_argmin_int32
)
{
auto
function
=
onnx_import
::
import_onnx_model
(
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/argmin_int32.onnx"
));
...
...
@@ -1675,6 +1677,37 @@ TEST(onnx, model_argmin_int32)
std
::
vector
<
std
::
vector
<
std
::
int64_t
>>
expected_output
{
std
::
vector
<
std
::
int64_t
>
{
0
,
0
,
0
,
0
}};
std
::
vector
<
std
::
vector
<
std
::
int64_t
>>
outputs
{
execute
<
std
::
int32_t
,
std
::
int64_t
>
(
function
,
inputs
,
"
CPU
"
)};
execute
<
std
::
int32_t
,
std
::
int64_t
>
(
function
,
inputs
,
"
${BACKEND_NAME}
"
)};
EXPECT_TRUE
(
test
::
all_close
(
expected_output
.
front
(),
outputs
.
front
()));
}
TEST
(
onnx_
$
{
BACKEND_NAME
},
is_op_supported
)
{
// Simple case
EXPECT_TRUE
(
onnx_import
::
is_operator_supported
(
"Sum"
,
1
,
"ai.onnx"
));
// With fallback
EXPECT_TRUE
(
onnx_import
::
is_operator_supported
(
"Sum"
,
100
,
"ai.onnx"
));
// Different opset versions
EXPECT_TRUE
(
onnx_import
::
is_operator_supported
(
"Add"
,
1
,
"ai.onnx"
));
EXPECT_TRUE
(
onnx_import
::
is_operator_supported
(
"Add"
,
7
,
"ai.onnx"
));
// Default domain name
EXPECT_TRUE
(
onnx_import
::
is_operator_supported
(
"Sum"
,
1
));
// Unregistered operator
EXPECT_FALSE
(
onnx_import
::
is_operator_supported
(
"DummyOp"
,
1
));
EXPECT_FALSE
(
onnx_import
::
is_operator_supported
(
"DummyOp"
,
1
,
"ai.onnx"
));
EXPECT_FALSE
(
onnx_import
::
is_operator_supported
(
"DummyOp"
,
10
,
"ai.onnx"
));
// Operator with bad domain name
EXPECT_FALSE
(
onnx_import
::
is_operator_supported
(
"Sum"
,
1
,
"bad.domain"
));
// Registered custom operator
onnx_import
::
register_operator
(
"AddQ"
,
1
,
"com.intel.ai"
,
[](
const
onnx_import
::
Node
&
node
)
->
NodeVector
{
NodeVector
ng_inputs
{
node
.
get_ng_inputs
()};
return
{
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
ng_inputs
.
at
(
0
),
ng_inputs
.
at
(
1
))};
});
EXPECT_TRUE
(
onnx_import
::
is_operator_supported
(
"AddQ"
,
1
,
"com.intel.ai"
));
}
test/reshape_sinking.cpp
View file @
21e73812
...
...
@@ -163,3 +163,43 @@ TEST(reshape_sinking, nasnet_pooladd)
size_t
before_after
=
count_ops_of_type
<
op
::
Reshape
>
(
func
);
ASSERT_LE
(
before_after
,
before_count
);
}
TEST
(
reshape_sinking
,
slice_pad
)
{
Shape
shape_a
{
100
,
8
,
8
,
1
};
AxisVector
to_nhwc
{
0
,
2
,
3
,
1
};
AxisVector
to_nchw
{
0
,
3
,
1
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_a
);
auto
pad_value
=
op
::
Constant
::
create
<
float
>
(
element
::
f32
,
Shape
{},
std
::
vector
<
float
>
{
0.0
f
});
Shape
padding_below
{
0
,
0
,
0
,
0
};
Shape
padding_above
{
0
,
1
,
1
,
0
};
Shape
padding_interior
{
0
,
0
,
0
,
0
};
auto
reshape1
=
make_shared
<
op
::
Reshape
>
(
A
,
to_nchw
,
Shape
{
100
,
1
,
8
,
8
});
auto
maxpool
=
make_shared
<
op
::
MaxPool
>
(
reshape1
,
Shape
{
1
,
1
},
Strides
{
2
,
2
},
Shape
{
0
,
0
},
Shape
{
0
,
0
});
auto
reshape2
=
make_shared
<
op
::
Reshape
>
(
maxpool
,
to_nhwc
,
Shape
{
100
,
4
,
4
,
1
});
auto
pad
=
make_shared
<
op
::
Pad
>
(
reshape2
,
pad_value
,
padding_below
,
padding_above
,
padding_interior
);
auto
slice
=
make_shared
<
op
::
Slice
>
(
pad
,
Coordinate
{
0
,
1
,
1
,
0
},
Coordinate
{
100
,
5
,
5
,
1
},
Strides
{
1
,
1
,
1
,
1
});
auto
reshape3
=
make_shared
<
op
::
Reshape
>
(
slice
,
to_nchw
,
Shape
{
100
,
1
,
4
,
4
});
auto
avgpool
=
make_shared
<
op
::
AvgPool
>
(
reshape3
,
Shape
{
1
,
1
},
Strides
{
2
,
2
});
auto
reshape4
=
make_shared
<
op
::
Reshape
>
(
avgpool
,
to_nhwc
,
Shape
{
100
,
1
,
2
,
2
});
auto
f
=
make_shared
<
Function
>
(
reshape4
,
ParameterVector
{
A
});
pass
::
Manager
pass_manager
;
size_t
before_count
=
count_ops_of_type
<
op
::
Reshape
>
(
f
);
pass_manager
.
register_pass
<
pass
::
VisualizeTree
>
(
"before.pdf"
);
pass_manager
.
register_pass
<
pass
::
ReshapeSinking
>
();
pass_manager
.
register_pass
<
pass
::
ReshapeElimination
>
();
pass_manager
.
register_pass
<
pass
::
CommonSubexpressionElimination
>
();
pass_manager
.
register_pass
<
pass
::
VisualizeTree
>
(
"after.pdf"
);
pass_manager
.
run_passes
(
f
);
size_t
before_after
=
count_ops_of_type
<
op
::
Reshape
>
(
f
);
ASSERT_LE
(
before_after
,
before_count
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment