Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
21525b8e
Unverified
Commit
21525b8e
authored
Feb 08, 2019
by
Robert Kimball
Committed by
GitHub
Feb 08, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into master
parents
e165a460
5713b34d
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
217 additions
and
83 deletions
+217
-83
convolution.cpp
src/ngraph/runtime/cpu/builder/convolution.cpp
+20
-4
quantized_conv.cpp
src/ngraph/runtime/cpu/builder/quantized_conv.cpp
+104
-76
cpu_emitter.cpp
src/ngraph/runtime/cpu/cpu_emitter.cpp
+20
-0
mkldnn_emitter.cpp
src/ngraph/runtime/cpu/mkldnn_emitter.cpp
+11
-3
builder_quantization.cpp
test/builder_quantization.cpp
+62
-0
No files found.
src/ngraph/runtime/cpu/builder/convolution.cpp
View file @
21525b8e
...
...
@@ -186,7 +186,9 @@ namespace ngraph
auto
&
arg0_tensor
=
external_function
->
get_tensor_data
(
args
[
0
].
get_name
());
auto
&
arg1_tensor
=
external_function
->
get_tensor_data
(
args
[
1
].
get_name
());
auto
&
arg2_tensor
=
external_function
->
get_tensor_data
(
args
[
2
].
get_name
());
auto
&
arg3_tensor
=
external_function
->
get_tensor_data
(
args
[
3
].
get_name
());
auto
&
out_tensor
=
external_function
->
get_tensor_data
(
out
[
0
].
get_name
());
size_t
arg3_size
=
args
[
3
].
get_size
();
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
{
...
...
@@ -196,8 +198,14 @@ namespace ngraph
node
,
args
,
out
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_index
);
auto
functor
=
[
&
,
conv_index
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
{
auto
functor
=
[
&
,
conv_index
,
arg3_size
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
{
if
(
out_tensor
!=
arg3_tensor
)
{
memcpy
(
static_cast
<
char
*>
(
out_tensor
),
static_cast
<
char
*>
(
arg3_tensor
),
arg3_size
);
}
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
0
],
arg0_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
1
],
arg1_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
2
],
arg2_tensor
);
...
...
@@ -219,7 +227,9 @@ namespace ngraph
auto
&
arg0_tensor
=
external_function
->
get_tensor_data
(
args
[
0
].
get_name
());
auto
&
arg1_tensor
=
external_function
->
get_tensor_data
(
args
[
1
].
get_name
());
auto
&
arg2_tensor
=
external_function
->
get_tensor_data
(
args
[
2
].
get_name
());
auto
&
out_tensor
=
external_function
->
get_tensor_data
(
out
[
0
].
get_name
());
size_t
arg2_size
=
args
[
2
].
get_size
();
if
(
runtime
::
cpu
::
mkldnn_utils
::
use_mkldnn_kernel
(
node
))
{
...
...
@@ -228,8 +238,14 @@ namespace ngraph
node
,
args
,
out
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_index
);
auto
functor
=
[
&
,
conv_index
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
{
auto
functor
=
[
&
,
conv_index
,
arg2_size
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
{
if
(
out_tensor
!=
arg2_tensor
)
{
memcpy
(
static_cast
<
char
*>
(
out_tensor
),
static_cast
<
char
*>
(
arg2_tensor
),
arg2_size
);
}
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
0
],
arg0_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
1
],
arg1_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
2
],
out_tensor
);
...
...
src/ngraph/runtime/cpu/builder/quantized_conv.cpp
View file @
21525b8e
...
...
@@ -193,14 +193,17 @@ namespace ngraph
auto
&
arg0_tensor
=
external_function
->
get_tensor_data
(
args
[
0
].
get_name
());
auto
&
arg1_tensor
=
external_function
->
get_tensor_data
(
args
[
1
].
get_name
());
auto
&
arg2_tensor
=
external_function
->
get_tensor_data
(
args
[
2
].
get_name
());
auto
&
arg3_tensor
=
external_function
->
get_tensor_data
(
args
[
3
].
get_name
());
auto
&
arg4_tensor
=
external_function
->
get_tensor_data
(
args
[
4
].
get_name
());
auto
&
arg5_tensor
=
external_function
->
get_tensor_data
(
args
[
5
].
get_name
());
auto
&
out0_tensor
=
external_function
->
get_tensor_data
(
out
[
0
].
get_name
());
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
size_t
arg3_size
=
args
[
3
].
get_size
();
auto
scales_size
=
shape_size
(
args
[
4
].
get_shape
());
auto
sum_scales_size
=
shape_size
(
args
[
5
].
get_shape
());
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
conv_desc
=
mkldnn_emitter
->
get_convolution_forward_desc
<
ngraph
::
op
::
QuantizedConvolutionBiasAdd
>
(
...
...
@@ -212,47 +215,58 @@ namespace ngraph
size_t
conv_index
=
mkldnn_emitter
->
convolution_forward_init
(
true
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_index
);
auto
functor
=
[
&
,
scales_size
,
sum_scales_size
,
conv_desc
,
conv_attr
,
deps
,
conv_index
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
mutable
{
if
(
ctx
->
first_iteration
)
auto
functor
=
[
&
,
scales_size
,
sum_scales_size
,
conv_desc
,
conv_attr
,
deps
,
conv_index
,
arg3_size
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
mutable
{
if
(
ctx
->
first_iteration
)
{
vector
<
float
>
dyn_scales
;
vector
<
float
>
dyn_post_op_scales
;
dyn_scales
.
assign
(
static_cast
<
float
*>
(
arg4_tensor
),
static_cast
<
float
*>
(
arg4_tensor
)
+
scales_size
);
dyn_post_op_scales
.
assign
(
static_cast
<
float
*>
(
arg5_tensor
),
static_cast
<
float
*>
(
arg5_tensor
)
+
sum_scales_size
);
auto
old_pops
=
conv_attr
.
get_post_ops
();
mkldnn
::
post_ops
new_pops
;
for
(
int
i
=
0
;
i
<
old_pops
.
len
();
i
++
)
{
vector
<
float
>
dyn_scales
;
vector
<
float
>
dyn_post_op_scales
;
dyn_scales
.
assign
(
static_cast
<
float
*>
(
arg4_tensor
),
static_cast
<
float
*>
(
arg4_tensor
)
+
scales_size
);
dyn_post_op_scales
.
assign
(
static_cast
<
float
*>
(
arg5_tensor
),
static_cast
<
float
*>
(
arg5_tensor
)
+
sum_scales_size
);
auto
old_pops
=
conv_attr
.
get_post_ops
();
mkldnn
::
post_ops
new_pops
;
for
(
int
i
=
0
;
i
<
old_pops
.
len
();
i
++
)
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
eltwise
)
{
mkldnn
::
algorithm
alg
;
float
scale
,
alpha
,
beta
;
old_pops
.
get_params_eltwise
(
i
,
scale
,
alg
,
alpha
,
beta
);
new_pops
.
append_eltwise
(
scale
,
alg
,
alpha
,
beta
);
}
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
sum
)
{
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
eltwise
)
{
mkldnn
::
algorithm
alg
=
mkldnn
::
algorithm_undef
;
float
scale
=
0
;
float
alpha
=
0
;
float
beta
=
0
;
old_pops
.
get_params_eltwise
(
i
,
scale
,
alg
,
alpha
,
beta
);
new_pops
.
append_eltwise
(
scale
,
alg
,
alpha
,
beta
);
}
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
sum
)
{
new_pops
.
append_sum
(
dyn_post_op_scales
[
0
]);
}
new_pops
.
append_sum
(
dyn_post_op_scales
[
0
]);
}
conv_attr
.
set_output_scales
(
0
,
dyn_scales
);
conv_attr
.
set_post_ops
(
new_pops
);
mkldnn_emitter
->
convolution_forward
<
true
>
(
conv_desc
,
conv_attr
,
executor
::
global_cpu_engine
,
conv_index
);
}
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
0
],
arg0_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
1
],
arg1_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
2
],
arg2_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
3
],
out0_tensor
);
cpu
::
mkldnn_utils
::
mkldnn_invoke_primitive
(
ctx
,
conv_index
);
};
conv_attr
.
set_output_scales
(
0
,
dyn_scales
);
conv_attr
.
set_post_ops
(
new_pops
);
mkldnn_emitter
->
convolution_forward
<
true
>
(
conv_desc
,
conv_attr
,
executor
::
global_cpu_engine
,
conv_index
);
}
if
(
out0_tensor
!=
arg3_tensor
)
{
memcpy
(
static_cast
<
char
*>
(
out0_tensor
),
static_cast
<
char
*>
(
arg3_tensor
),
arg3_size
);
}
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
0
],
arg0_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
1
],
arg1_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
2
],
arg2_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
3
],
out0_tensor
);
cpu
::
mkldnn_utils
::
mkldnn_invoke_primitive
(
ctx
,
conv_index
);
};
functors
.
emplace_back
(
functor
);
}
else
...
...
@@ -271,14 +285,17 @@ namespace ngraph
auto
&
arg0_tensor
=
external_function
->
get_tensor_data
(
args
[
0
].
get_name
());
auto
&
arg1_tensor
=
external_function
->
get_tensor_data
(
args
[
1
].
get_name
());
auto
&
arg2_tensor
=
external_function
->
get_tensor_data
(
args
[
2
].
get_name
());
auto
&
arg3_tensor
=
external_function
->
get_tensor_data
(
args
[
3
].
get_name
());
auto
&
arg4_tensor
=
external_function
->
get_tensor_data
(
args
[
4
].
get_name
());
auto
&
arg5_tensor
=
external_function
->
get_tensor_data
(
args
[
5
].
get_name
());
auto
&
out0_tensor
=
external_function
->
get_tensor_data
(
out
[
0
].
get_name
());
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
size_t
arg3_size
=
args
[
3
].
get_size
();
auto
scales_size
=
shape_size
(
args
[
4
].
get_shape
());
auto
sum_scales_size
=
shape_size
(
args
[
5
].
get_shape
());
auto
&
mkldnn_emitter
=
external_function
->
get_mkldnn_emitter
();
auto
conv_desc
=
mkldnn_emitter
->
get_convolution_forward_desc
<
ngraph
::
op
::
QuantizedConvolutionBiasSignedAdd
>
(
node
,
args
,
out
);
auto
conv_attr
=
mkldnn_emitter
->
get_convolution_forward_attr
<
...
...
@@ -286,47 +303,58 @@ namespace ngraph
size_t
conv_index
=
mkldnn_emitter
->
convolution_forward_init
(
true
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_index
);
auto
functor
=
[
&
,
scales_size
,
sum_scales_size
,
conv_desc
,
conv_attr
,
deps
,
conv_index
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
mutable
{
if
(
ctx
->
first_iteration
)
auto
functor
=
[
&
,
scales_size
,
sum_scales_size
,
conv_desc
,
conv_attr
,
deps
,
conv_index
,
arg3_size
](
CPURuntimeContext
*
ctx
,
CPUExecutionContext
*
ectx
)
mutable
{
if
(
ctx
->
first_iteration
)
{
vector
<
float
>
dyn_scales
;
vector
<
float
>
dyn_post_op_scales
;
dyn_scales
.
assign
(
static_cast
<
float
*>
(
arg4_tensor
),
static_cast
<
float
*>
(
arg4_tensor
)
+
scales_size
);
dyn_post_op_scales
.
assign
(
static_cast
<
float
*>
(
arg5_tensor
),
static_cast
<
float
*>
(
arg5_tensor
)
+
sum_scales_size
);
auto
old_pops
=
conv_attr
.
get_post_ops
();
mkldnn
::
post_ops
new_pops
;
for
(
int
i
=
0
;
i
<
old_pops
.
len
();
i
++
)
{
vector
<
float
>
dyn_scales
;
vector
<
float
>
dyn_post_op_scales
;
dyn_scales
.
assign
(
static_cast
<
float
*>
(
arg4_tensor
),
static_cast
<
float
*>
(
arg4_tensor
)
+
scales_size
);
dyn_post_op_scales
.
assign
(
static_cast
<
float
*>
(
arg5_tensor
),
static_cast
<
float
*>
(
arg5_tensor
)
+
sum_scales_size
);
auto
old_pops
=
conv_attr
.
get_post_ops
();
mkldnn
::
post_ops
new_pops
;
for
(
int
i
=
0
;
i
<
old_pops
.
len
();
i
++
)
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
eltwise
)
{
mkldnn
::
algorithm
alg
;
float
scale
,
alpha
,
beta
;
old_pops
.
get_params_eltwise
(
i
,
scale
,
alg
,
alpha
,
beta
);
new_pops
.
append_eltwise
(
scale
,
alg
,
alpha
,
beta
);
}
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
sum
)
{
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
eltwise
)
{
mkldnn
::
algorithm
alg
=
mkldnn
::
algorithm_undef
;
float
scale
=
0
;
float
alpha
=
0
;
float
beta
=
0
;
old_pops
.
get_params_eltwise
(
i
,
scale
,
alg
,
alpha
,
beta
);
new_pops
.
append_eltwise
(
scale
,
alg
,
alpha
,
beta
);
}
if
(
old_pops
.
kind
(
i
)
==
mkldnn
::
primitive
::
kind
::
sum
)
{
new_pops
.
append_sum
(
2
*
dyn_post_op_scales
[
0
]);
}
new_pops
.
append_sum
(
2
*
dyn_post_op_scales
[
0
]);
}
conv_attr
.
set_post_ops
(
new_pops
);
conv_attr
.
set_output_scales
(
0
,
dyn_scales
);
mkldnn_emitter
->
convolution_forward
<
true
>
(
conv_desc
,
conv_attr
,
executor
::
global_cpu_engine
,
conv_index
);
}
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
0
],
arg0_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
1
],
arg1_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
2
],
arg2_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
3
],
out0_tensor
);
cpu
::
mkldnn_utils
::
mkldnn_invoke_primitive
(
ctx
,
conv_index
);
};
conv_attr
.
set_post_ops
(
new_pops
);
conv_attr
.
set_output_scales
(
0
,
dyn_scales
);
mkldnn_emitter
->
convolution_forward
<
true
>
(
conv_desc
,
conv_attr
,
executor
::
global_cpu_engine
,
conv_index
);
}
if
(
out0_tensor
!=
arg3_tensor
)
{
memcpy
(
static_cast
<
char
*>
(
out0_tensor
),
static_cast
<
char
*>
(
arg3_tensor
),
arg3_size
);
}
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
0
],
arg0_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
1
],
arg1_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
2
],
arg2_tensor
);
cpu
::
mkldnn_utils
::
set_memory_ptr
(
ctx
,
deps
[
3
],
out0_tensor
);
cpu
::
mkldnn_utils
::
mkldnn_invoke_primitive
(
ctx
,
conv_index
);
};
functors
.
emplace_back
(
functor
);
}
else
...
...
src/ngraph/runtime/cpu/cpu_emitter.cpp
View file @
21525b8e
...
...
@@ -2410,6 +2410,11 @@ namespace ngraph
node
,
args
,
out
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
qconv_index
);
writer
<<
"if ("
<<
out
[
0
].
get_name
()
<<
" != "
<<
args
[
3
].
get_name
()
<<
")
\n
"
;
writer
.
block_begin
();
writer
<<
"memcpy("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
3
].
get_name
()
<<
", "
<<
args
[
3
].
get_size
()
*
args
[
3
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
block_end
();
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
...
...
@@ -2441,6 +2446,11 @@ namespace ngraph
node
,
args
,
out
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
qconv_index
);
writer
<<
"if ("
<<
out
[
0
].
get_name
()
<<
" != "
<<
args
[
3
].
get_name
()
<<
")
\n
"
;
writer
.
block_begin
();
writer
<<
"memcpy("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
3
].
get_name
()
<<
", "
<<
args
[
3
].
get_size
()
*
args
[
3
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
block_end
();
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
...
...
@@ -2500,6 +2510,11 @@ namespace ngraph
node
,
args
,
out
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_index
);
writer
<<
"if ("
<<
out
[
0
].
get_name
()
<<
" != "
<<
args
[
3
].
get_name
()
<<
")
\n
"
;
writer
.
block_begin
();
writer
<<
"memcpy("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
3
].
get_name
()
<<
", "
<<
args
[
3
].
get_size
()
*
args
[
3
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
block_end
();
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
...
...
@@ -2527,6 +2542,11 @@ namespace ngraph
node
,
args
,
out
);
auto
&
deps
=
mkldnn_emitter
->
get_primitive_deps
(
conv_index
);
writer
<<
"if ("
<<
out
[
0
].
get_name
()
<<
" != "
<<
args
[
2
].
get_name
()
<<
")
\n
"
;
writer
.
block_begin
();
writer
<<
"memcpy("
<<
out
[
0
].
get_name
()
<<
", "
<<
args
[
2
].
get_name
()
<<
", "
<<
args
[
2
].
get_size
()
*
args
[
2
].
get_element_type
().
size
()
<<
");
\n
"
;
writer
.
block_end
();
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
0
])
<<
", "
<<
args
[
0
].
get_name
()
<<
");
\n
"
;
writer
<<
"cpu::mkldnn_utils::set_memory_ptr(ctx, "
<<
to_string
(
deps
[
1
])
...
...
src/ngraph/runtime/cpu/mkldnn_emitter.cpp
View file @
21525b8e
...
...
@@ -772,10 +772,18 @@ size_t MKLDNNEmitter::build_reorder(const mkldnn::memory::desc& input_desc,
size_t
input_index
=
build_memory_primitive
(
input_desc
);
size_t
result_index
=
build_memory_primitive
(
result_desc
);
size_t
primitive_index
=
insert_primitive
(
new
mkldnn
::
reorder
(
*
m_mkldnn_primitives
[
input_index
],
*
m_mkldnn_primitives
[
result_index
]));
size_t
primitive_index
=
0
;
try
{
primitive_index
=
insert_primitive
(
new
mkldnn
::
reorder
(
*
m_mkldnn_primitives
[
input_index
],
*
m_mkldnn_primitives
[
result_index
]));
m_primitive_deps
[
primitive_index
]
=
{
input_index
,
result_index
};
}
catch
(
const
mkldnn
::
error
&
e
)
{
throw
ngraph_error
(
"Could not create mkldnn primitive "
+
e
.
message
);
}
m_primitive_deps
[
primitive_index
]
=
{
input_index
,
result_index
};
return
primitive_index
;
}
...
...
test/builder_quantization.cpp
View file @
21525b8e
...
...
@@ -679,6 +679,68 @@ TEST(builder, scaled_QC_with_bias_signed_add_and_relu)
read_vector
<
uint8_t
>
(
result
));
}
TEST
(
builder
,
scaled_QC_with_bias_signed_add_and_relu_nhwc
)
{
Shape
shape_a
{
1
,
3
,
4
,
1
};
// input shape
Shape
shape_b
{
1
,
3
,
3
,
1
};
// filter shape
Shape
shape_r
{
1
,
1
,
3
,
4
};
// output shape
vector
<
uint8_t
>
a_data
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
0
,
1
,
2
,
3
,
4
};
vector
<
int8_t
>
b_data
=
{
1
,
2
,
3
,
4
,
5
,
0
,
0
,
1
,
2
};
vector
<
int32_t
>
c_data
=
{
5
};
vector
<
int8_t
>
conv_2_data
=
{
-
1
,
-
2
,
-
3
,
-
4
,
-
5
,
-
6
,
-
10
,
0
,
1
,
2
,
3
,
4
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
u8
,
shape_a
);
auto
A_reshape
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
0
,
3
,
1
,
2
},
Shape
{
1
,
1
,
3
,
4
});
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
i8
,
shape_b
);
auto
B_reshape
=
make_shared
<
op
::
Reshape
>
(
B
,
AxisVector
{
0
,
3
,
1
,
2
},
Shape
{
1
,
1
,
3
,
3
});
auto
Add
=
make_shared
<
op
::
Parameter
>
(
element
::
i8
,
shape_a
);
auto
Add_reshape
=
make_shared
<
op
::
Reshape
>
(
Add
,
AxisVector
{
0
,
3
,
1
,
2
},
Shape
{
1
,
1
,
3
,
4
});
auto
Bias
=
make_shared
<
op
::
Parameter
>
(
element
::
i32
,
Shape
{
1
});
auto
C
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
0.0
f
});
auto
D
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
255.0
f
});
auto
E
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
-
127.0
f
});
auto
F
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
127.0
f
});
auto
G
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
22.0
f
});
auto
H
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
90.0
f
});
auto
I
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
22.0
f
});
auto
J
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
90.0
f
});
auto
CV
=
ngraph
::
builder
::
ScaledQuantizedConvolutionBiasSignedAdd
(
A_reshape
,
B_reshape
,
Bias
,
Add_reshape
,
Strides
{
1
,
1
},
// move_strides
Strides
{
1
,
1
},
// filter_dilation
CoordinateDiff
{
1
,
1
},
// below_pads
CoordinateDiff
{
1
,
1
},
// above_pads
Strides
{
1
,
1
},
// data_dilation
C
,
D
,
E
,
F
,
G
,
H
,
I
,
J
,
true
);
auto
f
=
make_shared
<
Function
>
(
NodeVector
{
CV
},
ParameterVector
{
A
,
B
,
Bias
,
Add
});
constant_fold
(
f
);
auto
backend
=
runtime
::
Backend
::
create
(
"CPU"
);
// Create some tensors for input/output
auto
a
=
backend
->
create_tensor
(
element
::
u8
,
shape_a
);
copy_data
(
a
,
a_data
);
auto
b
=
backend
->
create_tensor
(
element
::
i8
,
shape_b
);
copy_data
(
b
,
b_data
);
auto
c
=
backend
->
create_tensor
(
element
::
i32
,
Shape
{
1
});
copy_data
(
c
,
c_data
);
auto
d
=
backend
->
create_tensor
(
element
::
i8
,
shape_a
);
copy_data
(
d
,
conv_2_data
);
auto
result
=
backend
->
create_tensor
(
element
::
u8
,
shape_r
);
auto
handle
=
backend
->
compile
(
f
);
backend
->
call_with_validate
(
handle
,
{
result
},
{
a
,
b
,
c
,
d
});
EXPECT_EQ
((
vector
<
uint8_t
>
{
74
,
106
,
93
,
97
,
112
,
127
,
127
,
127
,
110
,
127
,
127
,
127
}),
read_vector
<
uint8_t
>
(
result
));
}
TEST
(
builder
,
dynamic_scaled_QC_with_bias_signed_add_and_relu
)
{
Shape
shape_a
{
1
,
1
,
3
,
4
};
// input shape
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment