Commit 1fdf14ae authored by Tomasz Dołbniak's avatar Tomasz Dołbniak Committed by Robert Kimball

[FusedOps] ShuffleChannels (#2927)

* ShuffleChannels implementation

* Validation of ShuffleChannels params

* Implementation of ShuffleChannels decompose_op()

* Formatting adjustments

* Corrected implementation and validation of op params

* Basic test of ShuffleChannels

* Negative axis value test

* Default params for the ShuffleChannels op

* ShuffleChannels test with floats

* ShuffleChannels validation unit tests

* PR comments

* Compilation error fix

* PR feedback and cleanup

* Code formatting adjustment

* Negative axis value documentation

* Docs update (PR feedback)

* PR feedback: shape and axis validation

* Modify axis semantics on shuffle op

* Revert "PR feedback: shape and axis validation"

This reverts commit 21b708e710b91da2a7e37a69c0da1f31c7743b47.
parent 7d4bdab7
...@@ -314,6 +314,8 @@ set (SRC ...@@ -314,6 +314,8 @@ set (SRC
op/fused/prelu.hpp op/fused/prelu.hpp
op/fused/scale_shift.cpp op/fused/scale_shift.cpp
op/fused/scale_shift.hpp op/fused/scale_shift.hpp
op/fused/shuffle_channels.cpp
op/fused/shuffle_channels.hpp
op/fused/space_to_depth.cpp op/fused/space_to_depth.cpp
op/fused/space_to_depth.hpp op/fused/space_to_depth.hpp
op/fused/split.cpp op/fused/split.cpp
......
...@@ -108,6 +108,7 @@ ...@@ -108,6 +108,7 @@
#include "ngraph/op/fused/normalize.hpp" #include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp" #include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/scale_shift.hpp" #include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/shuffle_channels.hpp"
#include "ngraph/op/fused/space_to_depth.hpp" #include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/split.hpp" #include "ngraph/op/fused/split.hpp"
#include "ngraph/op/fused/squared_difference.hpp" #include "ngraph/op/fused/squared_difference.hpp"
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/op/fused/shuffle_channels.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/util/reshape.hpp"
using namespace std;
using namespace ngraph;
op::ShuffleChannels::ShuffleChannels(const shared_ptr<Node>& data,
const int axis,
const size_t groups)
: FusedOp("ShuffleChannels", {data})
, m_axis(axis)
, m_groups{groups}
{
constructor_validate_and_infer_types();
}
size_t op::ShuffleChannels::get_zero_based_axis() const
{
if (m_axis >= 0)
{
return m_axis;
}
else
{
if (!get_input_partial_shape(0).rank().is_dynamic())
{
return m_axis + static_cast<size_t>(get_input_partial_shape(0).rank());
}
else
{
throw ngraph_error("Cannot request zero-based axis with a input of unknown rank");
}
}
}
void op::ShuffleChannels::pre_validate_and_infer_types()
{
if (get_input_partial_shape(0).is_static())
{
const auto shape = get_argument(0)->get_shape();
NODE_VALIDATION_CHECK(
this, shape.size() >= 1, "The input tensor's shape is expected to be at least 1D.");
size_t axis_zb = get_zero_based_axis();
NODE_VALIDATION_CHECK(this,
axis_zb >= 0 && axis_zb < shape.size(),
"The 'axis' parameter for ShuffleChannels has to point to one of the "
"input tensor's shape dimensions.");
const auto channel_dim_size = shape.at(axis_zb);
NODE_VALIDATION_CHECK(
this,
channel_dim_size % m_groups == 0,
"The channel dimension size has to be a multiple of the groups parameter value.");
}
}
NodeVector op::ShuffleChannels::decompose_op() const
{
const auto data = get_argument(0);
const auto& data_shape = data->get_shape();
const auto reshaped = util::reshape(data, get_pre_shuffle_shape(data_shape));
const auto shuffled = util::reorder_axes(reshaped, {0, 2, 1, 3});
return {util::reshape(shuffled, data_shape)};
}
shared_ptr<Node> op::ShuffleChannels::copy_with_new_args(const NodeVector& new_args) const
{
if (new_args.size() != 1)
{
throw ngraph_error("Expected 1 element in new_args for the ShuffleChannels op but got " +
std::to_string(new_args.size()));
}
return make_shared<ShuffleChannels>(new_args.at(0), m_axis, m_groups);
}
Shape op::ShuffleChannels::get_pre_shuffle_shape(const Shape& data_shape) const
{
const Shape& ds = data_shape;
// in general the resulting shape should contain the following values:
// [0]: ds[0] * ds[1] * ... * ds[m_axis-1] (or 1 if m_axis == 0)
// [1]: m_groups
// [2]: ds[axis] / m_groups
// [3]: ds[axis+1] * ds[axis+2] * ... * ds[ds.size()-1] (or 1 if m_axis points to the last elem of ds)
Shape res(4, 1);
size_t axis_zb = get_zero_based_axis();
for (size_t i = 0; i < axis_zb; ++i)
{
res[0] *= ds[i];
}
res[1] = m_groups;
res[2] = ds[axis_zb] / m_groups;
for (size_t i = axis_zb + 1; i < ds.size(); ++i)
{
res[3] *= ds[i];
}
return res;
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <memory>
#include "ngraph/node.hpp"
#include "ngraph/op/util/fused_op.hpp"
namespace ngraph
{
namespace op
{
/// \brief Permutes data in the channel dimension of the input
class ShuffleChannels : public ngraph::op::util::FusedOp
{
public:
/// \brief Constructs a ShuffleChannels node.
///
/// \param data - Node producing the input tensor
/// \param axis - channel dimension index in the data tensor. A negative value means that the index should be calculated from the back of the input data shape.
/// \param groups - number of groups the channel dimension specified by axis should be split into
ShuffleChannels(const std::shared_ptr<ngraph::Node>& data,
const int axis = 1,
const size_t groups = 1UL);
size_t get_zero_based_axis() const;
virtual void pre_validate_and_infer_types() override;
virtual NodeVector decompose_op() const override;
virtual std::shared_ptr<Node>
copy_with_new_args(const NodeVector& new_args) const override;
int get_axis() const { return m_axis; }
size_t get_groups() const { return m_groups; }
private:
/// \brief Generates a shape required to permute the data
///
/// \param data_shape - Shape of the original input data tensor
/// \return A 4D tensor to be used to reshape the input data before shuffling it
Shape get_pre_shuffle_shape(const Shape& data_shape) const;
int m_axis;
const size_t m_groups;
};
}
}
...@@ -33,6 +33,7 @@ NGRAPH_OP(Normalize, ngraph::op) ...@@ -33,6 +33,7 @@ NGRAPH_OP(Normalize, ngraph::op)
NGRAPH_OP(PRelu, ngraph::op) NGRAPH_OP(PRelu, ngraph::op)
NGRAPH_OP(ScaleShift, ngraph::op) NGRAPH_OP(ScaleShift, ngraph::op)
NGRAPH_OP(SpaceToDepth, ngraph::op) NGRAPH_OP(SpaceToDepth, ngraph::op)
NGRAPH_OP(ShuffleChannels, ngraph::op)
NGRAPH_OP(SquaredDifference, ngraph::op) NGRAPH_OP(SquaredDifference, ngraph::op)
NGRAPH_OP(Squeeze, ngraph::op) NGRAPH_OP(Squeeze, ngraph::op)
NGRAPH_OP(Split, ngraph::op) NGRAPH_OP(Split, ngraph::op)
......
...@@ -89,6 +89,7 @@ ...@@ -89,6 +89,7 @@
#include "ngraph/op/fused/mvn.hpp" #include "ngraph/op/fused/mvn.hpp"
#include "ngraph/op/fused/normalize.hpp" #include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/scale_shift.hpp" #include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/shuffle_channels.hpp"
#include "ngraph/op/fused/space_to_depth.hpp" #include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/squeeze.hpp" #include "ngraph/op/fused/squeeze.hpp"
#include "ngraph/op/fused/unsqueeze.hpp" #include "ngraph/op/fused/unsqueeze.hpp"
...@@ -2079,6 +2080,7 @@ shared_ptr<runtime::Executable> ...@@ -2079,6 +2080,7 @@ shared_ptr<runtime::Executable>
case OP_TYPEID::ScatterAdd: case OP_TYPEID::ScatterAdd:
case OP_TYPEID::ScatterNDAdd: case OP_TYPEID::ScatterNDAdd:
case OP_TYPEID::ShapeOf: case OP_TYPEID::ShapeOf:
case OP_TYPEID::ShuffleChannels:
case OP_TYPEID::SpaceToDepth: case OP_TYPEID::SpaceToDepth:
case OP_TYPEID::Split: case OP_TYPEID::Split:
case OP_TYPEID::SquaredDifference: case OP_TYPEID::SquaredDifference:
...@@ -2181,6 +2183,7 @@ bool runtime::intelgpu::IntelGPUBackend::is_supported_impl(const Node& node) ...@@ -2181,6 +2183,7 @@ bool runtime::intelgpu::IntelGPUBackend::is_supported_impl(const Node& node)
case OP_TYPEID::Normalize: case OP_TYPEID::Normalize:
case OP_TYPEID::PRelu: case OP_TYPEID::PRelu:
case OP_TYPEID::ScaleShift: case OP_TYPEID::ScaleShift:
case OP_TYPEID::ShuffleChannels:
case OP_TYPEID::SpaceToDepth: case OP_TYPEID::SpaceToDepth:
case OP_TYPEID::Split: case OP_TYPEID::Split:
case OP_TYPEID::SquaredDifference: case OP_TYPEID::SquaredDifference:
......
...@@ -79,6 +79,7 @@ ...@@ -79,6 +79,7 @@
#include "ngraph/op/fused/normalize.hpp" #include "ngraph/op/fused/normalize.hpp"
#include "ngraph/op/fused/prelu.hpp" #include "ngraph/op/fused/prelu.hpp"
#include "ngraph/op/fused/scale_shift.hpp" #include "ngraph/op/fused/scale_shift.hpp"
#include "ngraph/op/fused/shuffle_channels.hpp"
#include "ngraph/op/fused/space_to_depth.hpp" #include "ngraph/op/fused/space_to_depth.hpp"
#include "ngraph/op/fused/split.hpp" #include "ngraph/op/fused/split.hpp"
#include "ngraph/op/fused/squared_difference.hpp" #include "ngraph/op/fused/squared_difference.hpp"
...@@ -1412,6 +1413,13 @@ static shared_ptr<ngraph::Function> ...@@ -1412,6 +1413,13 @@ static shared_ptr<ngraph::Function>
node = make_shared<op::ShapeOf>(args[0]); node = make_shared<op::ShapeOf>(args[0]);
break; break;
} }
case OP_TYPEID::ShuffleChannels:
{
const auto axis = node_js.at("axis").get<size_t>();
const auto groups = node_js.at("groups").get<size_t>();
node = make_shared<op::ShuffleChannels>(args[0], axis, groups);
break;
}
case OP_TYPEID::Sigmoid: case OP_TYPEID::Sigmoid:
{ {
node = make_shared<op::Sigmoid>(args[0]); node = make_shared<op::Sigmoid>(args[0]);
...@@ -2199,6 +2207,13 @@ static json write(const Node& n, bool binary_constant_data) ...@@ -2199,6 +2207,13 @@ static json write(const Node& n, bool binary_constant_data)
} }
case OP_TYPEID::ShapeOf: { break; case OP_TYPEID::ShapeOf: { break;
} }
case OP_TYPEID::ShuffleChannels:
{
const auto tmp = dynamic_cast<const op::ShuffleChannels*>(&n);
node["axis"] = tmp->get_axis();
node["groups"] = tmp->get_groups();
break;
}
case OP_TYPEID::Sigmoid: { break; case OP_TYPEID::Sigmoid: { break;
} }
case OP_TYPEID::SigmoidBackprop: { break; case OP_TYPEID::SigmoidBackprop: { break;
......
...@@ -867,6 +867,65 @@ NGRAPH_TEST(${BACKEND_NAME}, scale_shift) ...@@ -867,6 +867,65 @@ NGRAPH_TEST(${BACKEND_NAME}, scale_shift)
test_case.run(); test_case.run();
} }
NGRAPH_TEST(${BACKEND_NAME}, shuffle_channels_simple)
{
const auto data = make_shared<op::Parameter>(element::i32, Shape{1, 15, 2, 2});
auto tested_op = make_shared<op::ShuffleChannels>(data, 1, 5);
auto function = make_shared<Function>(tested_op, ParameterVector{data});
auto test_case = ngraph::test::NgraphTestCase(function, "${BACKEND_NAME}");
std::vector<int32_t> input_data(60);
std::iota(std::begin(input_data), std::end(input_data), 0);
test_case.add_input(input_data);
test_case.add_expected_output<int32_t>(
Shape{1, 15, 2, 2},
{0, 1, 2, 3, 12, 13, 14, 15, 24, 25, 26, 27, 36, 37, 38, 39, 48, 49, 50, 51,
4, 5, 6, 7, 16, 17, 18, 19, 28, 29, 30, 31, 40, 41, 42, 43, 52, 53, 54, 55,
8, 9, 10, 11, 20, 21, 22, 23, 32, 33, 34, 35, 44, 45, 46, 47, 56, 57, 58, 59});
test_case.run();
}
NGRAPH_TEST(${BACKEND_NAME}, shuffle_channels_negative_axis)
{
// in this test the output is the same as in shuffle_channels_simple but
// the axis value is negative and the C(channels) value is in a different dimension(0) of the shape
const auto data = make_shared<op::Parameter>(element::i32, Shape{15, 2, 1, 2});
auto tested_op = make_shared<op::ShuffleChannels>(data, -4, 5);
auto function = make_shared<Function>(tested_op, ParameterVector{data});
auto test_case = ngraph::test::NgraphTestCase(function, "${BACKEND_NAME}");
std::vector<int32_t> input_data(60);
std::iota(std::begin(input_data), std::end(input_data), 0);
test_case.add_input(input_data);
test_case.add_expected_output<int32_t>(
Shape{15, 2, 1, 2},
{0, 1, 2, 3, 12, 13, 14, 15, 24, 25, 26, 27, 36, 37, 38, 39, 48, 49, 50, 51,
4, 5, 6, 7, 16, 17, 18, 19, 28, 29, 30, 31, 40, 41, 42, 43, 52, 53, 54, 55,
8, 9, 10, 11, 20, 21, 22, 23, 32, 33, 34, 35, 44, 45, 46, 47, 56, 57, 58, 59});
test_case.run();
}
NGRAPH_TEST(${BACKEND_NAME}, shuffle_channels_float)
{
const auto data = make_shared<op::Parameter>(element::f32, Shape{6, 1, 1, 1});
auto tested_op = make_shared<op::ShuffleChannels>(data, 0, 2);
auto function = make_shared<Function>(tested_op, ParameterVector{data});
auto test_case = ngraph::test::NgraphTestCase(function, "${BACKEND_NAME}");
test_case.add_input<float>({0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f});
test_case.add_expected_output<float>(Shape{6, 1, 1, 1}, {0.0f, 3.0f, 1.0f, 4.0f, 2.0f, 5.0f});
test_case.run();
}
NGRAPH_TEST(${BACKEND_NAME}, squeeze) NGRAPH_TEST(${BACKEND_NAME}, squeeze)
{ {
const auto data_node = make_shared<op::Parameter>(element::f32, Shape{1, 4, 1, 1, 2}); const auto data_node = make_shared<op::Parameter>(element::f32, Shape{1, 4, 1, 1, 2});
......
...@@ -14568,6 +14568,65 @@ TEST(type_prop, scale_shift) ...@@ -14568,6 +14568,65 @@ TEST(type_prop, scale_shift)
EXPECT_EQ(scale_shift_func->get_shape(), (Shape{3, 6})); EXPECT_EQ(scale_shift_func->get_shape(), (Shape{3, 6}));
} }
TEST(type_prop, shuffle_channels_axis_validation)
{
try
{
const auto data = make_shared<op::Parameter>(element::f64, Shape{1, 2, 3, 4});
const auto shuffle_channels = make_shared<op::ShuffleChannels>(data, -5, 5);
FAIL() << "ShuffleChannels validation did not work. Op node was created with incorrect "
"params.";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(),
"The 'axis' parameter for ShuffleChannels has to point to one of the "
"input tensor's shape dimensions");
}
}
TEST(type_prop, shuffle_channels_negative_axis_calculation)
{
const auto data = make_shared<op::Parameter>(element::f64, Shape{1, 2, 3, 4});
const auto shuffle_channels = make_shared<op::ShuffleChannels>(data, -3, 2);
EXPECT_EQ(shuffle_channels->get_zero_based_axis(), 1);
}
TEST(type_prop, shuffle_channels_invalid_input_shape)
{
try
{
const auto data = make_shared<op::Parameter>(element::f64, Shape{});
const auto shuffle_channels = make_shared<op::ShuffleChannels>(data, 0, 1);
FAIL() << "ShuffleChannels validation did not work. Op node was created with incorrect "
"params.";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(error.what(),
"The input tensor's shape is expected to be at least 1D.");
}
}
TEST(type_prop, shuffle_channels_invalid_groups_value)
{
try
{
const auto data = make_shared<op::Parameter>(element::f64, Shape{1, 2, 3, 15});
const auto shuffle_channels = make_shared<op::ShuffleChannels>(data, -1, 2);
FAIL() << "ShuffleChannels validation did not work. Op node was created with incorrect "
"params.";
}
catch (const NodeValidationFailure& error)
{
EXPECT_HAS_SUBSTRING(
error.what(),
"The channel dimension size has to be a multiple of the groups parameter value.");
}
}
TEST(type_prop, squared_difference) TEST(type_prop, squared_difference)
{ {
const auto x1 = make_shared<op::Parameter>(element::f64, Shape{2, 2}); const auto x1 = make_shared<op::Parameter>(element::f64, Shape{2, 2});
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment