Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
1f662004
Unverified
Commit
1f662004
authored
Aug 28, 2018
by
Michał Karzyński
Committed by
GitHub
Aug 28, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[ONNX] Average and Max Pooling (#1489)
parent
14f5fd6f
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
315 additions
and
45 deletions
+315
-45
CMakeLists.txt
src/ngraph/frontend/onnx_import/CMakeLists.txt
+4
-0
average_pool.cpp
src/ngraph/frontend/onnx_import/op/average_pool.cpp
+38
-0
average_pool.hpp
src/ngraph/frontend/onnx_import/op/average_pool.hpp
+43
-0
conv.cpp
src/ngraph/frontend/onnx_import/op/conv.cpp
+3
-3
max_pool.cpp
src/ngraph/frontend/onnx_import/op/max_pool.cpp
+38
-0
max_pool.hpp
src/ngraph/frontend/onnx_import/op/max_pool.hpp
+43
-0
ops_bridge.cpp
src/ngraph/frontend/onnx_import/ops_bridge.cpp
+5
-0
convpool.cpp
src/ngraph/frontend/onnx_import/utils/convpool.cpp
+4
-4
convpool.hpp
src/ngraph/frontend/onnx_import/utils/convpool.hpp
+32
-2
reshape.cpp
src/ngraph/frontend/onnx_import/utils/reshape.cpp
+1
-1
avg_pool.hpp
src/ngraph/op/avg_pool.hpp
+1
-1
average_pool_2d.onnx
test/models/onnx/average_pool_2d.onnx
+0
-0
average_pool_2d_pads.onnx
test/models/onnx/average_pool_2d_pads.onnx
+0
-0
max_pool_2d_pads.onnx
test/models/onnx/max_pool_2d_pads.onnx
+0
-0
onnx_import.cpp
test/onnx_import.cpp
+103
-34
No files found.
src/ngraph/frontend/onnx_import/CMakeLists.txt
View file @
1f662004
...
...
@@ -32,6 +32,8 @@ add_library(onnx_import STATIC
core/value_info.hpp
exceptions.hpp
op/add.hpp
op/average_pool.cpp
op/average_pool.hpp
op/batch_norm.cpp
op/batch_norm.hpp
op/constant.cpp
...
...
@@ -40,6 +42,8 @@ add_library(onnx_import STATIC
op/gemm.cpp
op/gemm.hpp
op/matmul.hpp
op/max_pool.cpp
op/max_pool.hpp
op/mul.hpp
op/relu.hpp
op/split.cpp
...
...
src/ngraph/frontend/onnx_import/op/average_pool.cpp
0 → 100644
View file @
1f662004
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "ngraph/node.hpp"
#include "ngraph/node_vector.hpp"
#include "ngraph/op/avg_pool.hpp"
#include "utils/convpool.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
NodeVector
average_pool
(
const
Node
&
node
)
{
return
convpool
::
make_ng_pool
<
ngraph
::
op
::
AvgPool
>
(
node
);
}
}
// namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/average_pool.hpp
0 → 100644
View file @
1f662004
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include "ngraph/node_vector.hpp"
#include "core/node.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
/**
* @brief Convert ONNX AveragePool operation to an nGraph node.
*
* @param node The ONNX node object representing this operation.
*
* @return The vector containing Ngraph nodes producing output of ONNX AveragePool
* operation.
*/
NodeVector
average_pool
(
const
Node
&
node
);
}
// namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/conv.cpp
View file @
1f662004
...
...
@@ -118,9 +118,9 @@ namespace ngraph
std
::
to_string
(
groups
)};
}
auto
strides
=
attribute
::
get_strides
(
node
);
auto
dilations
=
attribute
::
get_dilations
(
node
);
auto
paddings
=
attribute
::
get_pads
(
node
);
auto
strides
=
convpool
::
get_strides
(
node
);
auto
dilations
=
convpool
::
get_dilations
(
node
);
auto
paddings
=
convpool
::
get_pads
(
node
);
const
auto
&
padding_below
=
paddings
.
first
;
const
auto
&
padding_above
=
paddings
.
second
;
...
...
src/ngraph/frontend/onnx_import/op/max_pool.cpp
0 → 100644
View file @
1f662004
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "ngraph/op/max_pool.hpp"
#include "ngraph/node.hpp"
#include "ngraph/node_vector.hpp"
#include "utils/convpool.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
NodeVector
max_pool
(
const
Node
&
node
)
{
return
convpool
::
make_ng_pool
<
ngraph
::
op
::
MaxPool
>
(
node
);
}
}
// namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/max_pool.hpp
0 → 100644
View file @
1f662004
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include "ngraph/node_vector.hpp"
#include "core/node.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
/**
* @brief Convert ONNX MaxPool operation to an nGraph node.
*
* @param node The ONNX node object representing this operation.
*
* @return The vector containing Ngraph nodes producing output of ONNX MaxPool
* operation.
*/
NodeVector
max_pool
(
const
Node
&
node
);
}
// namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/ops_bridge.cpp
View file @
1f662004
...
...
@@ -19,11 +19,13 @@
#include "core/attribute.hpp"
#include "op/add.hpp"
#include "op/average_pool.hpp"
#include "op/batch_norm.hpp"
#include "op/constant.hpp"
#include "op/conv.hpp"
#include "op/gemm.hpp"
#include "op/matmul.hpp"
#include "op/max_pool.hpp"
#include "op/mul.hpp"
#include "op/relu.hpp"
#include "op/split.hpp"
...
...
@@ -72,12 +74,15 @@ namespace ngraph
ops_bridge
()
{
m_map
.
emplace
(
"Add"
,
std
::
bind
(
op
::
add
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"AveragePool"
,
std
::
bind
(
op
::
average_pool
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"BatchNormalization"
,
std
::
bind
(
op
::
batch_norm
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"Constant"
,
std
::
bind
(
op
::
constant
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"Conv"
,
std
::
bind
(
op
::
conv
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"Gemm"
,
std
::
bind
(
op
::
gemm
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"MatMul"
,
std
::
bind
(
op
::
matmul
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"MaxPool"
,
std
::
bind
(
op
::
max_pool
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"Mul"
,
std
::
bind
(
op
::
mul
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"Relu"
,
std
::
bind
(
op
::
relu
,
std
::
placeholders
::
_1
));
m_map
.
emplace
(
"Split"
,
std
::
bind
(
op
::
split
,
std
::
placeholders
::
_1
));
...
...
src/ngraph/frontend/onnx_import/utils/convpool.cpp
View file @
1f662004
...
...
@@ -14,12 +14,12 @@
* limitations under the License.
*******************************************************************************/
#include "convpool.hpp"
#include <cmath>
#include "ngraph/coordinate_diff.hpp"
#include "ngraph/shape.hpp"
#include "convpool.hpp"
#include "core/attribute.hpp"
#include "core/node.hpp"
...
...
@@ -27,7 +27,7 @@ namespace ngraph
{
namespace
onnx_import
{
namespace
attribute
namespace
convpool
{
Shape
get_kernel_shape
(
const
Node
&
node
)
{
...
...
@@ -118,7 +118,7 @@ namespace ngraph
}
if
(
pads
.
empty
())
{
pads
=
{
static_cast
<
std
::
ptrdiff_t
>
(
kernel_shape
.
size
()),
0UL
}
;
pads
=
CoordinateDiff
(
static_cast
<
std
::
ptrdiff_t
>
(
kernel_shape
.
size
()),
0UL
)
;
}
if
(
pads
.
size
()
<=
3
)
...
...
@@ -133,6 +133,6 @@ namespace ngraph
}
}
}
// namespace
attribute
}
// namespace
convpool
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/utils/convpool.hpp
View file @
1f662004
...
...
@@ -26,7 +26,7 @@ namespace ngraph
{
namespace
onnx_import
{
namespace
attribute
namespace
convpool
{
/**
* @brief Get shape of kernel (filter) in pixels.
...
...
@@ -94,7 +94,37 @@ namespace ngraph
{
return
get_pads
(
node
,
get_kernel_shape
(
node
));
}
}
// namespace attribute
/**
* @brief Create an nGraph pooling operation based on an ONNX pooling op.
*
* @tparam T Class of an nGraph pooling operation (e.g. AveragePool, MaxPool)
* @param node incoming ONNX opearation
* @return nGraph node equivalent of the ONNX operation
*/
template
<
class
T
>
inline
NodeVector
make_ng_pool
(
const
Node
&
node
)
{
// Fetch input node for the pooling operation
auto
data
=
node
.
get_ng_inputs
().
at
(
0
);
// Parse ONNX op attributes
Shape
kernel_shape
=
convpool
::
get_kernel_shape
(
node
);
auto
strides
=
convpool
::
get_strides
(
node
);
auto
dilations
=
convpool
::
get_dilations
(
node
);
auto
paddings
=
convpool
::
get_pads
(
node
);
// Convert padding from CoordinateDiff to Shape objects
const
CoordinateDiff
&
padding_below
{
paddings
.
first
};
const
CoordinateDiff
&
padding_above
{
paddings
.
second
};
Shape
padding_below_shape
{
std
::
begin
(
padding_below
),
std
::
end
(
padding_below
)};
Shape
padding_above_shape
{
std
::
begin
(
padding_above
),
std
::
end
(
padding_above
)};
return
{
std
::
make_shared
<
T
>
(
data
,
kernel_shape
,
strides
,
padding_below_shape
,
padding_above_shape
)};
}
}
// namespace convpool
}
// namespace onnx_import
...
...
src/ngraph/frontend/onnx_import/utils/reshape.cpp
View file @
1f662004
...
...
@@ -35,7 +35,7 @@ namespace ngraph
}
else
{
for
(
int
i
=
0
;
i
<
axes_order
.
size
();
++
i
)
for
(
auto
i
=
0
;
i
<
axes_order
.
size
();
++
i
)
{
out_shape
[
i
]
=
node
->
get_shape
().
at
(
axes_order
.
at
(
i
));
}
...
...
src/ngraph/op/avg_pool.hpp
View file @
1f662004
...
...
@@ -48,7 +48,7 @@ namespace ngraph
const
Strides
&
window_movement_strides
,
const
Shape
&
padding_below
,
const
Shape
&
padding_above
,
bool
include_padding_in_avg_computation
);
bool
include_padding_in_avg_computation
=
false
);
/// \brief Constructs a batched, unpadded average pooling operation (i.e., all padding shapes are set to 0).
///
...
...
test/models/onnx/average_pool_2d.onnx
0 → 100644
View file @
1f662004
File added
test/models/onnx/average_pool_2d_pads.onnx
0 → 100644
View file @
1f662004
File added
test/models/onnx/max_pool_2d_pads.onnx
0 → 100644
View file @
1f662004
File added
test/onnx_import.cpp
View file @
1f662004
...
...
@@ -56,17 +56,17 @@ TEST(onnx, model_add_abc_initializers)
TEST
(
onnx
,
model_addmul_abc
)
{
auto
function
{
ngraph
::
onnx_import
::
import_onnx_function
(
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/addmul_abc.onnx"
))
}
;
auto
function
=
ngraph
::
onnx_import
::
import_onnx_function
(
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/addmul_abc.onnx"
));
std
::
vector
<
std
::
vector
<
float
>>
inputs
;
ngraph
::
Shape
shape
{
1
,
2
,
2
};
inputs
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
3
>
({{{
9
,
10
}},
{{
11
,
12
}}}).
get_vector
());
inputs
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
3
>
({{{
5
,
6
}},
{{
7
,
8
}}}).
get_vector
());
inputs
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
3
>
({{{
1
,
2
}},
{{
3
,
4
}}}).
get_vector
());
inputs
.
emplace_back
(
test
::
NDArray
<
float
,
3
>
({{{
9
,
10
}},
{{
11
,
12
}}}).
get_vector
());
inputs
.
emplace_back
(
test
::
NDArray
<
float
,
3
>
({{{
5
,
6
}},
{{
7
,
8
}}}).
get_vector
());
inputs
.
emplace_back
(
test
::
NDArray
<
float
,
3
>
({{{
1
,
2
}},
{{
3
,
4
}}}).
get_vector
());
auto
expected_output
=
ngraph
::
test
::
NDArray
<
float
,
3
>
({{{
46
,
62
}},
{{
80
,
100
}}}).
get_vector
();
auto
expected_output
=
test
::
NDArray
<
float
,
3
>
({{{
46
,
62
}},
{{
80
,
100
}}}).
get_vector
();
auto
result_vectors
=
execute
(
function
,
inputs
,
"INTERPRETER"
);
EXPECT_TRUE
(
test
::
all_close_f
(
expected_output
,
result_vectors
.
front
()));
...
...
@@ -130,18 +130,18 @@ namespace
std
::
vector
<
std
::
vector
<
float
>>
args
;
// data (1, 1, 7, 5) input tensor
args
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
4
>
{{{{{
0.
f
,
1.
f
,
2.
f
,
3.
f
,
4.
f
},
{
5.
f
,
6.
f
,
7.
f
,
8.
f
,
9.
f
},
{
10.
f
,
11.
f
,
12.
f
,
13.
f
,
14.
f
},
{
15.
f
,
16.
f
,
17.
f
,
18.
f
,
19.
f
},
{
20.
f
,
21.
f
,
22.
f
,
23.
f
,
24.
f
},
{
25.
f
,
26.
f
,
27.
f
,
28.
f
,
29.
f
},
{
30.
f
,
31.
f
,
32.
f
,
33.
f
,
34.
f
}}}}}
args
.
emplace_back
(
test
::
NDArray
<
float
,
4
>
{{{{{
0.
f
,
1.
f
,
2.
f
,
3.
f
,
4.
f
},
{
5.
f
,
6.
f
,
7.
f
,
8.
f
,
9.
f
},
{
10.
f
,
11.
f
,
12.
f
,
13.
f
,
14.
f
},
{
15.
f
,
16.
f
,
17.
f
,
18.
f
,
19.
f
},
{
20.
f
,
21.
f
,
22.
f
,
23.
f
,
24.
f
},
{
25.
f
,
26.
f
,
27.
f
,
28.
f
,
29.
f
},
{
30.
f
,
31.
f
,
32.
f
,
33.
f
,
34.
f
}}}}}
.
get_vector
());
// filters (1, 1, 3, 3) aka convolution weights
args
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
4
>
{{{{{
1.
f
,
1.
f
,
1.
f
},
{
1.
f
,
1.
f
,
1.
f
},
{
1.
f
,
1.
f
,
1.
f
}}}}}
test
::
NDArray
<
float
,
4
>
{{{{{
1.
f
,
1.
f
,
1.
f
},
{
1.
f
,
1.
f
,
1.
f
},
{
1.
f
,
1.
f
,
1.
f
}}}}}
.
get_vector
());
return
execute
(
function
,
args
,
"INTERPRETER"
);
...
...
@@ -155,10 +155,10 @@ TEST(onnx, model_conv2d_strides_padding)
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/conv_with_strides_padding.onnx"
));
// (1, 1, 4, 3)
auto
expected_output
=
ngraph
::
test
::
NDArray
<
float
,
4
>
({{{{
12.
f
,
27.
f
,
24.
f
},
{
63.
f
,
108.
f
,
81.
f
},
{
123.
f
,
198.
f
,
141.
f
},
{
112.
f
,
177.
f
,
124.
f
}}}})
auto
expected_output
=
test
::
NDArray
<
float
,
4
>
({{{{
12.
f
,
27.
f
,
24.
f
},
{
63.
f
,
108.
f
,
81.
f
},
{
123.
f
,
198.
f
,
141.
f
},
{
112.
f
,
177.
f
,
124.
f
}}}})
.
get_vector
();
auto
result
=
conv2d_execute
(
function
);
...
...
@@ -173,8 +173,7 @@ TEST(onnx, model_conv2d_strides_no_padding)
// (1, 1, 3, 2)
auto
expected_output
=
ngraph
::
test
::
NDArray
<
float
,
4
>
({{{{
54.
f
,
72.
f
},
{
144.
f
,
162.
f
},
{
234.
f
,
252.
f
}}}})
.
get_vector
();
test
::
NDArray
<
float
,
4
>
({{{{
54.
f
,
72.
f
},
{
144.
f
,
162.
f
},
{
234.
f
,
252.
f
}}}}).
get_vector
();
auto
result
=
conv2d_execute
(
function
);
EXPECT_EQ
(
expected_output
,
result
.
front
());
...
...
@@ -187,14 +186,84 @@ TEST(onnx, model_conv2d_strides_assymetric_padding)
SERIALIZED_ZOO
,
"onnx/conv_with_strides_and_asymmetric_padding.onnx"
));
// (1, 1, 4, 2)
auto
expected_output
=
ngraph
::
test
::
NDArray
<
float
,
4
>
(
{{{{
21.
f
,
33.
f
},
{
99.
f
,
117.
f
},
{
189.
f
,
207.
f
},
{
171.
f
,
183.
f
}}}})
.
get_vector
();
auto
expected_output
=
test
::
NDArray
<
float
,
4
>
(
{{{{
21.
f
,
33.
f
},
{
99.
f
,
117.
f
},
{
189.
f
,
207.
f
},
{
171.
f
,
183.
f
}}}})
.
get_vector
();
auto
result
=
conv2d_execute
(
function
);
EXPECT_EQ
(
expected_output
,
result
.
front
());
}
TEST
(
onnx
,
model_average_pool_2d
)
{
// Pooling with strides=2 and no padding
auto
model
=
ngraph
::
onnx_import
::
import_onnx_function
(
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/average_pool_2d.onnx"
));
// input data shape (1, 1, 4, 4)
Inputs
inputs
;
inputs
.
push_back
(
test
::
NDArray
<
float
,
4
>
({{{{
0.
f
,
1.
f
,
2.
f
,
3.
f
},
{
4.
f
,
5.
f
,
6.
f
,
7.
f
},
{
8.
f
,
9.
f
,
10.
f
,
11.
f
},
{
12.
f
,
13.
f
,
14.
f
,
15.
f
}}}})
.
get_vector
());
// (1, 1, 2, 2)
auto
expected_output
=
test
::
NDArray
<
float
,
4
>
({{{{
2.5
f
,
4.5
f
},
{
10.5
f
,
12.5
f
}}}}).
get_vector
();
Outputs
outputs
{
execute
(
model
,
inputs
,
"INTERPRETER"
)};
EXPECT_EQ
(
expected_output
,
outputs
.
front
());
}
TEST
(
onnx
,
model_average_pool_2d_pads
)
{
// Pooling with strides=2 and padding=1
auto
model
=
ngraph
::
onnx_import
::
import_onnx_function
(
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/average_pool_2d_pads.onnx"
));
// input data shape (1, 1, 4, 4)
Inputs
inputs
;
inputs
.
push_back
(
test
::
NDArray
<
float
,
4
>
({{{{
0.
f
,
1.
f
,
2.
f
,
3.
f
},
{
4.
f
,
5.
f
,
6.
f
,
7.
f
},
{
8.
f
,
9.
f
,
10.
f
,
11.
f
},
{
12.
f
,
13.
f
,
14.
f
,
15.
f
}}}})
.
get_vector
());
// (1, 1, 3, 3)
auto
expected_output
=
test
::
NDArray
<
float
,
4
>
({{{{
0.
f
,
1.5
f
,
3.
f
},
{
6.
f
,
7.5
f
,
9.
f
},
{
12.
f
,
13.5
f
,
15.
f
}}}})
.
get_vector
();
Outputs
outputs
=
execute
(
model
,
inputs
,
"INTERPRETER"
);
EXPECT_EQ
(
expected_output
,
outputs
.
front
());
}
TEST
(
onnx
,
model_max_pool_2d_pads
)
{
// Pooling with strides=2 and padding=1
auto
model
=
ngraph
::
onnx_import
::
import_onnx_function
(
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/max_pool_2d_pads.onnx"
));
// input data shape (1, 1, 4, 4)
Inputs
inputs
;
inputs
.
push_back
(
test
::
NDArray
<
float
,
4
>
({{{{
0.
f
,
1.
f
,
2.
f
,
3.
f
},
{
4.
f
,
5.
f
,
6.
f
,
7.
f
},
{
8.
f
,
9.
f
,
10.
f
,
11.
f
},
{
12.
f
,
13.
f
,
14.
f
,
15.
f
}}}})
.
get_vector
());
// (1, 1, 3, 3)
auto
expected_output
=
test
::
NDArray
<
float
,
4
>
({{{{
0.
f
,
2.
f
,
3.
f
},
{
8.
f
,
10.
f
,
11.
f
},
{
12.
f
,
14.
f
,
15.
f
}}}})
.
get_vector
();
Outputs
outputs
{
execute
(
model
,
inputs
,
"INTERPRETER"
)};
EXPECT_EQ
(
expected_output
,
outputs
.
front
());
}
TEST
(
onnx
,
model_batchnorm_default
)
{
// Batch Normalization with default parameters
...
...
@@ -240,28 +309,28 @@ TEST(onnx, model_relu)
TEST
(
onnx
,
model_gemm_abc
)
{
auto
function
{
ngraph
::
onnx_import
::
import_onnx_function
(
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/gemm_abc.onnx"
))
}
;
auto
function
=
ngraph
::
onnx_import
::
import_onnx_function
(
ngraph
::
file_util
::
path_join
(
SERIALIZED_ZOO
,
"onnx/gemm_abc.onnx"
));
std
::
vector
<
std
::
vector
<
float
>>
inputs
;
inputs
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
2
>
(
inputs
.
emplace_back
(
test
::
NDArray
<
float
,
2
>
(
{{
1
,
2
,
3
,
4
,
5
,
6
},
{
7
,
8
,
9
,
10
,
11
,
12
},
{
13
,
14
,
15
,
16
,
17
,
18
}})
.
get_vector
());
inputs
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
2
>
({{
19
,
20
,
21
,
22
},
{
23
,
24
,
25
,
26
},
{
27
,
28
,
29
,
30
},
{
31
,
32
,
33
,
34
},
{
35
,
36
,
37
,
38
},
{
39
,
40
,
41
,
42
}})
inputs
.
emplace_back
(
test
::
NDArray
<
float
,
2
>
({{
19
,
20
,
21
,
22
},
{
23
,
24
,
25
,
26
},
{
27
,
28
,
29
,
30
},
{
31
,
32
,
33
,
34
},
{
35
,
36
,
37
,
38
},
{
39
,
40
,
41
,
42
}})
.
get_vector
());
inputs
.
emplace_back
(
ngraph
::
test
::
NDArray
<
float
,
2
>
({{
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
}}).
get_vector
());
test
::
NDArray
<
float
,
2
>
({{
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
},
{
1
,
1
,
1
,
1
}}).
get_vector
());
auto
expected_output
=
ngraph
::
test
::
NDArray
<
float
,
2
>
(
test
::
NDArray
<
float
,
2
>
(
{{
340
,
350.5
,
361
,
371.5
},
{
862
,
890.5
,
919
,
947.5
},
{
1384
,
1430.5
,
1477
,
1523.5
}})
.
get_vector
();
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment