Commit 1efd0bfd authored by Robert Kimball's avatar Robert Kimball Committed by Scott Cyphers

The General Purpose graph splitting is no longer used (#2391)

* remove general splitting code. New code in hybrid transformer.

* more cleanup
parent c9a9c154
...@@ -123,7 +123,6 @@ set (SRC ...@@ -123,7 +123,6 @@ set (SRC
op/util/logical_reduction.cpp op/util/logical_reduction.cpp
op/util/unary_elementwise_arithmetic.cpp op/util/unary_elementwise_arithmetic.cpp
partial_shape.cpp partial_shape.cpp
pass/assign_placement.cpp
pass/algebraic_simplification.cpp pass/algebraic_simplification.cpp
pass/common_function_collection.cpp pass/common_function_collection.cpp
pass/constant_folding.cpp pass/constant_folding.cpp
......
...@@ -31,7 +31,6 @@ ...@@ -31,7 +31,6 @@
#include "ngraph/op/constant.hpp" #include "ngraph/op/constant.hpp"
#include "ngraph/op/parameter.hpp" #include "ngraph/op/parameter.hpp"
#include "ngraph/op/result.hpp" #include "ngraph/op/result.hpp"
#include "ngraph/placement.hpp"
#include "ngraph/result_vector.hpp" #include "ngraph/result_vector.hpp"
#include "ngraph/util.hpp" #include "ngraph/util.hpp"
...@@ -406,29 +405,6 @@ void ngraph::insert_new_node_between(const shared_ptr<Node>& src_node, ...@@ -406,29 +405,6 @@ void ngraph::insert_new_node_between(const shared_ptr<Node>& src_node,
dst_input->replace_output(new_node, 0); // Remove [0] (again), add [8], remove [1], add [9] dst_input->replace_output(new_node, 0); // Remove [0] (again), add [8], remove [1], add [9]
} }
// Assert that nodes in the function is colocated and return that placement
Placement ngraph::get_colocated_function_placement(shared_ptr<Function> func)
{
Placement function_placement = Placement::DEFAULT;
traverse_nodes(func, [&](shared_ptr<Node> node) {
Placement node_placement = node->get_placement();
if (node_placement == Placement::DEFAULT)
{
throw ngraph_error("Node should have a device placement, not Placement::DEFAULT");
}
if (function_placement == Placement::DEFAULT)
{
// First time seeing a node
function_placement = node->get_placement();
}
else if (function_placement != node_placement)
{
throw ngraph_error("Function contains nodes of two different placements");
}
});
return function_placement;
}
std::shared_ptr<Node> ngraph::make_zero(const element::Type& element_type, const Shape& shape) std::shared_ptr<Node> ngraph::make_zero(const element::Type& element_type, const Shape& shape)
{ {
std::shared_ptr<Node> zero = op::Constant::create(element_type, Shape{}, {0.0}); std::shared_ptr<Node> zero = op::Constant::create(element_type, Shape{}, {0.0});
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/pass/assign_placement.hpp"
#include "ngraph/log.hpp"
#include "ngraph/node.hpp"
#include "ngraph/placement.hpp"
#include "ngraph/runtime/backend.hpp"
using namespace ngraph;
using namespace std;
pass::AssignPlacement::AssignPlacement(function<Placement(shared_ptr<Node>)> placement_policy)
: m_placement_policy(placement_policy)
{
}
bool pass::AssignPlacement::run_on_node(shared_ptr<Node> node)
{
node->set_placement(m_placement_policy(node));
return false;
}
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <exception>
#include <functional>
#include <sstream>
#include "ngraph/pass/pass.hpp"
#include "ngraph/placement.hpp"
namespace ngraph
{
namespace pass
{
class AssignPlacement : public NodePass
{
public:
// TODO: make policy a class
AssignPlacement(std::function<Placement(std::shared_ptr<Node>)> placement_policy);
private:
bool run_on_node(std::shared_ptr<Node> node) override;
std::function<Placement(std::shared_ptr<Node>)> m_placement_policy;
};
}
}
...@@ -39,188 +39,3 @@ std::string ngraph::placement_to_string(Placement placement) ...@@ -39,188 +39,3 @@ std::string ngraph::placement_to_string(Placement placement)
} }
throw runtime_error("unhandled placement type"); throw runtime_error("unhandled placement type");
} }
static Node* take_independent_node_with_placement_priority(
map<Placement, deque<Node*>>& independent_nodes_by_placement, Placement placement)
{
Node* selected_node = nullptr;
if (independent_nodes_by_placement.find(placement) != independent_nodes_by_placement.end() &&
independent_nodes_by_placement.at(placement).size() != 0)
{
selected_node = independent_nodes_by_placement.at(placement).front();
independent_nodes_by_placement.at(placement).pop_front();
}
else
{
for (auto& it : independent_nodes_by_placement)
{
if (it.second.size() > 0)
{
selected_node = it.second.front();
it.second.pop_front();
break;
}
}
}
return selected_node;
}
static vector<unordered_set<shared_ptr<Node>>>
group_function_nodes_to_clusters(const shared_ptr<Function>& f)
{
// Topologically sort nodes by picking independent node with the same placement as the
// previously picked node greedily
map<Placement, deque<Node*>> independent_nodes_by_placement;
unordered_map<Node*, size_t> node_dependency_count;
unordered_map<ngraph::Node*, shared_ptr<ngraph::Node>> node_map;
for (shared_ptr<Node> node : f->get_ops())
{
size_t dependency_count = node->get_arguments().size();
node_map[node.get()] = node;
node_dependency_count[node.get()] = dependency_count;
if (dependency_count == 0)
{
independent_nodes_by_placement[node->get_placement()].push_back(node.get());
}
}
list<shared_ptr<Node>> sorted_nodes;
Placement previous_placement = Placement::DEFAULT;
while (Node* independent_node = take_independent_node_with_placement_priority(
independent_nodes_by_placement, previous_placement))
{
previous_placement = independent_node->get_placement();
sorted_nodes.push_back(node_map.at(independent_node));
for (auto user : independent_node->get_users())
{
Node* user_node = user.get();
node_dependency_count.at(user_node) -= 1;
if (node_dependency_count.at(user_node) == 0)
{
independent_nodes_by_placement[user_node->get_placement()].push_back(user_node);
}
}
}
if (sorted_nodes.size() != f->get_ops().size())
{
throw ngraph_error("sorted_nodes.size()== " + to_string(sorted_nodes.size()) +
" != f->get_ops().size()== " + to_string(f->get_ops().size()) +
". Internal error with topological sort.");
}
// Build clusters from the sorted_nodes
previous_placement = Placement::DEFAULT;
vector<unordered_set<shared_ptr<Node>>> clusters;
for (shared_ptr<Node> node : sorted_nodes)
{
Placement node_placement = node->get_placement();
if (node_placement != previous_placement)
{
unordered_set<shared_ptr<Node>> new_cluster;
clusters.push_back(new_cluster);
}
clusters.back().insert(node);
previous_placement = node_placement;
}
// Sanity check for node duplication and full node coverage
unordered_set<shared_ptr<Node>> cluster_nodes;
for (auto cluster : clusters)
{
for (auto node : cluster)
{
if (cluster_nodes.find(node) != cluster_nodes.end())
{
throw ngraph_error("Node " + node->get_name() + " is duplicated in clusters");
}
cluster_nodes.insert(node);
}
}
unordered_set<shared_ptr<Node>> f_nodes;
for (auto node : f->get_ordered_ops())
{
f_nodes.insert(node);
}
if (cluster_nodes != f_nodes)
{
throw ngraph_error(
"Cluster's nodes are not the same as function's nodes. cluster_nodes.size()=" +
to_string(cluster_nodes.size()) + ", f_nodes.size()=" + to_string(f_nodes.size()));
}
return clusters;
}
// Split function by placement, maximizing the span each subgraph. Each subgraph will be placed in
// a single device.
//
// For nested functions, we only consider the ops in the main function that represent calling of the
// nested functions.
pair<vector<shared_ptr<Function>>, unordered_map<shared_ptr<op::Parameter>, shared_ptr<op::Result>>>
ngraph::split_function_by_placement(const shared_ptr<Function>& f)
{
// Split functions to clusters of nodes that can be computed together
vector<unordered_set<shared_ptr<Node>>> clusters = group_function_nodes_to_clusters(f);
// Map from (intermediate) parameter to result node, for guiding data copy among devices
unordered_map<shared_ptr<op::Parameter>, shared_ptr<op::Result>> map_parameter_to_result;
// Split neighboring nodes if they belong to different clusters
// TODO: optimization to group multiple result node from the same source,
// and to group the parameter node in the same cluster with the same result node source
unordered_map<shared_ptr<Node>, unordered_set<shared_ptr<Node>>*> map_node_to_cluster;
for (auto& cluster : clusters)
{
for (auto node : cluster)
{
map_node_to_cluster[node] = &cluster;
}
}
for (auto dst_node : f->get_ordered_ops())
{
for (auto src_node : dst_node->get_arguments())
{
auto src_cluster = map_node_to_cluster.at(src_node);
auto dst_cluster = map_node_to_cluster.at(dst_node);
if (src_cluster != dst_cluster)
{
// Split src_node and dst_node
pair<shared_ptr<op::Result>, shared_ptr<op::Parameter>> res_par_pair =
insert_result_parameter_split(src_node, dst_node);
shared_ptr<op::Result> res_node = res_par_pair.first;
shared_ptr<op::Parameter> par_node = res_par_pair.second;
map_parameter_to_result[par_node] = res_node;
// Insert newly created nodes into clusters
src_cluster->insert(res_node);
dst_cluster->insert(par_node);
}
}
}
// Create functions from clusters
vector<shared_ptr<Function>> sub_functions;
for (auto cluster : clusters)
{
ParameterVector par_vector;
ResultVector res_vector;
for (auto node : cluster)
{
if (auto res_node = dynamic_pointer_cast<op::Result>(node))
{
res_vector.push_back(res_node);
}
else if (auto par_node = dynamic_pointer_cast<op::Parameter>(node))
{
par_vector.push_back(par_node);
}
}
auto sub_function = make_shared<Function>(res_vector, par_vector);
sub_functions.push_back(sub_function);
}
return make_pair(sub_functions, map_parameter_to_result);
}
...@@ -26,15 +26,6 @@ ...@@ -26,15 +26,6 @@
namespace ngraph namespace ngraph
{ {
class Function;
class Node;
namespace op
{
class Parameter;
class Result;
}
enum class Placement enum class Placement
{ {
DEFAULT, DEFAULT,
...@@ -46,9 +37,4 @@ namespace ngraph ...@@ -46,9 +37,4 @@ namespace ngraph
}; };
std::string placement_to_string(Placement placement); std::string placement_to_string(Placement placement);
// Split function to function(s) with unique placement
std::pair<std::vector<std::shared_ptr<Function>>,
std::unordered_map<std::shared_ptr<op::Parameter>, std::shared_ptr<op::Result>>>
split_function_by_placement(const std::shared_ptr<Function>& f);
} }
...@@ -16,7 +16,6 @@ ...@@ -16,7 +16,6 @@
#include "ngraph/runtime/gpuh/gpuh_backend.hpp" #include "ngraph/runtime/gpuh/gpuh_backend.hpp"
#include "ngraph/graph_util.hpp" #include "ngraph/graph_util.hpp"
#include "ngraph/pass/assign_placement.hpp"
#include "ngraph/pass/manager.hpp" #include "ngraph/pass/manager.hpp"
#include "ngraph/runtime/gpu/gpu_backend.hpp" #include "ngraph/runtime/gpu/gpu_backend.hpp"
#include "ngraph/runtime/interpreter/int_backend.hpp" #include "ngraph/runtime/interpreter/int_backend.hpp"
......
...@@ -37,7 +37,6 @@ set(SRC ...@@ -37,7 +37,6 @@ set(SRC
cse.cpp cse.cpp
element_type.cpp element_type.cpp
file_util.cpp file_util.cpp
graph_partition.cpp
includes.cpp includes.cpp
input_output_assign.cpp input_output_assign.cpp
main.cpp main.cpp
...@@ -200,7 +199,7 @@ if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "^(Apple)?Clang$") ...@@ -200,7 +199,7 @@ if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "^(Apple)?Clang$")
endif() endif()
if (NGRAPH_CPU_ENABLE) if (NGRAPH_CPU_ENABLE)
# The INTERPRETER backend is required for graph_partition, convolution, and backwards unit tests # The INTERPRETER backend is required for convolution, and backwards unit tests
target_link_libraries(unit-test PRIVATE cpu_backend interpreter_backend) target_link_libraries(unit-test PRIVATE cpu_backend interpreter_backend)
target_link_libraries(unit-test PRIVATE libmkldnn) target_link_libraries(unit-test PRIVATE libmkldnn)
endif() endif()
......
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment