Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
1ce31a49
Commit
1ce31a49
authored
Sep 30, 2019
by
Tomasz Socha
Committed by
Michał Karzyński
Sep 30, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[SPEC] Add v1:Convolution operator (#3636)
parent
ac4676ff
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1023 additions
and
118 deletions
+1023
-118
convolution.cpp
src/ngraph/op/convolution.cpp
+490
-29
convolution.hpp
src/ngraph/op/convolution.hpp
+242
-23
opset1_upgrade.cpp
src/ngraph/pass/opset1_upgrade.cpp
+157
-54
cpu_emitter.hpp
src/ngraph/runtime/cpu/cpu_emitter.hpp
+1
-3
serializer.cpp
src/ngraph/serializer.cpp
+86
-8
CMakeLists.txt
test/CMakeLists.txt
+2
-1
convolution_opset_pass.cpp
test/opset_pass/convolution_opset_pass.cpp
+45
-0
No files found.
src/ngraph/op/convolution.cpp
View file @
1ce31a49
...
...
@@ -25,9 +25,468 @@
using
namespace
std
;
using
namespace
ngraph
;
constexpr
NodeTypeInfo
op
::
Convolution
::
type_info
;
// *** Convolution OP SET 1 ***
constexpr
NodeTypeInfo
op
::
v1
::
Convolution
::
type_info
;
op
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
op
::
v1
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
,
const
Strides
&
strides
,
const
CoordinateDiff
&
pads_begin
,
const
CoordinateDiff
&
pads_end
,
const
Strides
&
dilations
,
const
PadType
&
auto_pad
)
:
Op
({
data_batch
,
filters
})
,
m_strides
(
strides
)
,
m_dilations
(
dilations
)
,
m_pads_begin
(
pads_begin
)
,
m_pads_end
(
pads_end
)
,
m_auto_pad
(
auto_pad
)
{
constructor_validate_and_infer_types
();
}
void
op
::
v1
::
Convolution
::
validate_and_infer_types
()
{
const
PartialShape
&
data_batch_shape
=
get_input_partial_shape
(
0
);
element
::
Type
data_batch_et
=
get_input_element_type
(
0
);
const
PartialShape
&
filters_shape
=
get_input_partial_shape
(
1
);
element
::
Type
filters_et
=
get_input_element_type
(
1
);
if
(
m_strides
.
size
()
==
0
)
{
m_strides
=
conv_default_strides
(
this
,
data_batch_shape
,
filters_shape
);
}
if
(
m_dilations
.
size
()
==
0
)
{
m_dilations
=
conv_default_strides
(
this
,
data_batch_shape
,
filters_shape
);
}
if
(
m_pads_begin
.
size
()
==
0
)
{
m_pads_begin
=
conv_default_padding
(
this
,
data_batch_shape
,
filters_shape
);
}
if
(
m_pads_end
.
size
()
==
0
)
{
m_pads_end
=
conv_default_padding
(
this
,
data_batch_shape
,
filters_shape
);
}
if
(
m_auto_pad
==
PadType
::
SAME_UPPER
||
m_auto_pad
==
PadType
::
SAME_LOWER
)
{
if
(
data_batch_shape
.
is_static
()
&&
filters_shape
.
is_static
())
{
m_pads_begin
.
clear
();
m_pads_end
.
clear
();
auto
filter_shape
=
filters_shape
.
to_shape
();
filter_shape
.
erase
(
filter_shape
.
begin
(),
filter_shape
.
begin
()
+
2
);
// Remove {O,I}
infer_auto_padding
(
data_batch_shape
.
to_shape
(),
filter_shape
,
m_strides
,
m_dilations
,
m_auto_pad
,
m_pads_end
,
m_pads_begin
);
}
}
element
::
Type
result_et
;
PartialShape
result_shape
;
NODE_VALIDATION_CHECK
(
this
,
element
::
Type
::
merge
(
result_et
,
data_batch_et
,
filters_et
),
"Element types for data batch and filters do not match (data batch element type: "
,
data_batch_et
,
", filters element type: "
,
filters_et
,
")."
);
result_shape
=
infer_convolution_forward
(
this
,
data_batch_shape
,
Strides
(
static_cast
<
size_t
>
(
data_batch_shape
.
rank
())
-
2
,
1
),
m_pads_begin
,
m_pads_end
,
filters_shape
,
m_strides
,
m_dilations
);
set_output_type
(
0
,
result_et
,
result_shape
);
}
shared_ptr
<
Node
>
op
::
v1
::
Convolution
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
v1
::
Convolution
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_strides
,
m_pads_begin
,
m_pads_end
,
m_dilations
,
m_auto_pad
);
}
void
op
::
v1
::
Convolution
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
input_value
(
0
);
const
auto
x_shape
=
x
.
get_shape
();
auto
f
=
input_value
(
1
);
const
auto
f_shape
=
f
.
get_shape
();
adjoints
.
add_delta
(
x
,
make_shared
<
op
::
v1
::
ConvolutionBackpropData
>
(
x_shape
,
f
,
delta
,
m_strides
,
m_dilations
,
m_pads_begin
,
m_pads_end
));
adjoints
.
add_delta
(
f
,
make_shared
<
op
::
v1
::
ConvolutionBackpropFilters
>
(
x
,
f_shape
,
delta
,
m_strides
,
m_dilations
,
m_pads_begin
,
m_pads_end
));
}
constexpr
NodeTypeInfo
op
::
v1
::
ConvolutionBackpropData
::
type_info
;
shared_ptr
<
Node
>
op
::
v1
::
Convolution
::
get_default_value
()
const
{
return
ngraph
::
make_constant_from_string
(
"0"
,
get_element_type
(),
get_shape
());
}
op
::
v1
::
ConvolutionBackpropData
::
ConvolutionBackpropData
(
const
Shape
&
data_batch_shape
,
const
Output
<
Node
>&
filters
,
const
Output
<
Node
>&
output_delta
,
const
Strides
&
strides
,
const
Strides
&
dilations
,
const
CoordinateDiff
&
pads_begin
,
const
CoordinateDiff
&
pads_end
)
:
Op
({
filters
,
output_delta
})
,
m_data_batch_shape
(
data_batch_shape
)
,
m_strides
(
strides
)
,
m_dilations
(
dilations
)
,
m_pads_begin
(
pads_begin
)
,
m_pads_end
(
pads_end
)
{
constructor_validate_and_infer_types
();
}
void
op
::
v1
::
ConvolutionBackpropData
::
validate_and_infer_types
()
{
// Backprop to data is itself convolution, with inputs/outputs/attributes transmogrified as
// follows.
//
// Forward Backward
// "N" axis for data batch 0 0
// "C" axis for data batch 1 1
// "Co" axis for filters 0 0
// "Ci" axis for filters 1 1
// "N" axis for output 0 0
// "C" axis for output 1 1
// Data batch x delta
// Data batch shape S_x S_o
// Filters f reverse(f) [on spatial axes]
// Filters shape S_f S_f
// Window movement strides q_x p_x
// Window dilation strides p_f p_f
// Padding below a_x (S_f - 1)p_f - a_x
// Padding above b_x (S_f - 1)p_f +
// + ((a_x + (S_x - 1)p_x + b_x - (S_f - 1)p_f)
// % q_x)
// - b_x
// Output shape S_o S_x
//
// To _validate_, we simply need to check/infer the output shape of the forward convolution,
// then check to make sure that the incoming delta has the same shape as the forward output.
const
PartialShape
&
filters_shape
=
get_input_partial_shape
(
0
);
element
::
Type
filters_et
=
get_input_element_type
(
0
);
const
PartialShape
&
delta_shape
=
get_input_partial_shape
(
1
);
element
::
Type
delta_et
=
get_input_element_type
(
1
);
element
::
Type
forward_result_et
;
PartialShape
forward_result_shape
;
NODE_VALIDATION_CHECK
(
this
,
element
::
Type
::
merge
(
forward_result_et
,
delta_et
,
filters_et
),
"Element types for data batch and filters do not match (data batch element type: "
,
delta_et
,
", filters element type: "
,
filters_et
,
")."
);
forward_result_shape
=
infer_convolution_forward
(
this
,
m_data_batch_shape
,
Strides
(
m_data_batch_shape
.
size
()
-
2
,
0
),
m_pads_begin
,
m_pads_end
,
filters_shape
,
m_strides
,
m_dilations
);
NODE_VALIDATION_CHECK
(
this
,
forward_result_shape
.
compatible
(
delta_shape
),
"Inferred forward output shape ("
,
forward_result_shape
,
") does not match shape of "
,
"delta ("
,
delta_shape
,
")."
);
set_output_type
(
0
,
forward_result_et
,
m_data_batch_shape
);
}
void
op
::
v1
::
ConvolutionBackpropData
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
{
auto
delta
=
deltas
.
at
(
0
);
auto
x
=
input_value
(
1
);
const
auto
x_shape
=
x
.
get_shape
();
auto
f
=
input_value
(
0
);
const
auto
f_shape
=
f
.
get_shape
();
auto
data_conv
=
make_shared
<
op
::
v1
::
Convolution
>
(
delta
,
f
,
m_strides
,
m_pads_begin
,
m_pads_end
,
m_dilations
);
adjoints
.
add_delta
(
x
,
data_conv
);
Strides
strides
=
m_dilations
;
CoordinateDiff
pads_begin
;
CoordinateDiff
pads_end
;
const
Shape
&
filters_shape
=
get_input_shape
(
0
);
for
(
size_t
i
=
0
;
i
<
f_shape
.
size
()
-
2
;
i
++
)
{
ptrdiff_t
pads_begin_backward
=
(
static_cast
<
ptrdiff_t
>
(
filters_shape
[
i
+
2
])
-
1
)
-
m_pads_begin
[
i
];
pads_begin
.
push_back
(
pads_begin_backward
);
ptrdiff_t
pads_end_backward
=
(
static_cast
<
ptrdiff_t
>
(
filters_shape
[
i
+
2
])
-
1
)
*
m_dilations
[
i
]
+
((
m_pads_begin
[
i
]
+
((
m_data_batch_shape
[
i
+
2
])
-
1
)
*
m_strides
[
i
]
+
m_pads_end
[
i
]
-
(
static_cast
<
ptrdiff_t
>
(
filters_shape
[
i
+
2
])
-
1
)
*
m_dilations
[
i
])
%
m_strides
[
i
])
-
m_pads_end
[
i
];
pads_end
.
push_back
(
pads_end_backward
-
(
pads_begin_backward
+
(
x_shape
[
i
+
2
]
-
1
)
*
m_strides
[
i
]
+
pads_end_backward
-
(
f_shape
[
i
+
2
]
-
1
)
*
m_dilations
[
i
])
%
m_strides
[
i
]);
}
auto
swap_NC
=
[](
const
Output
<
Node
>&
n
)
{
AxisVector
ax_order
=
ngraph
::
get_default_order
(
n
.
get_shape
());
ax_order
[
0
]
=
1
;
ax_order
[
1
]
=
0
;
auto
new_shape
=
n
.
get_shape
();
new_shape
[
0
]
=
n
.
get_shape
()[
1
];
new_shape
[
1
]
=
n
.
get_shape
()[
0
];
return
make_shared
<
op
::
Reshape
>
(
n
,
ax_order
,
new_shape
);
};
delta
=
swap_NC
(
delta
);
x
=
swap_NC
(
x
);
shared_ptr
<
Node
>
filter_deconv_bprop
=
make_shared
<
op
::
v1
::
Convolution
>
(
x
,
delta
,
strides
,
pads_begin
,
pads_end
,
Strides
(
x
.
get_shape
().
size
()
-
2
,
1
));
AxisSet
axes
;
for
(
size_t
i
=
2
;
i
<
filter_deconv_bprop
->
get_shape
().
size
();
++
i
)
{
axes
.
insert
(
i
);
}
filter_deconv_bprop
=
make_shared
<
ngraph
::
op
::
Reverse
>
(
filter_deconv_bprop
,
axes
);
adjoints
.
add_delta
(
f
,
filter_deconv_bprop
);
}
shared_ptr
<
Node
>
op
::
v1
::
ConvolutionBackpropData
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
v1
::
ConvolutionBackpropData
>
(
m_data_batch_shape
,
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_strides
,
m_dilations
,
m_pads_begin
,
m_pads_end
);
}
CoordinateDiff
op
::
v1
::
ConvolutionBackpropData
::
compute_backward_delta_out_pad_below
()
const
{
auto
&
in_shape
=
get_data_batch_shape
();
auto
&
filter_dilation
=
get_dilations
();
auto
&
filter_shape
=
get_input_shape
(
0
);
auto
&
in_pad_below
=
get_pads_begin
();
size_t
spatial_dim_count
=
static_cast
<
size_t
>
(
in_shape
.
size
())
-
2
;
CoordinateDiff
backward_delta_out_pad_below
;
backward_delta_out_pad_below
.
resize
(
spatial_dim_count
);
for
(
size_t
i
=
0
;
i
<
spatial_dim_count
;
i
++
)
{
backward_delta_out_pad_below
[
i
]
=
(
static_cast
<
ptrdiff_t
>
(
filter_shape
[
i
+
2
])
-
1
)
*
filter_dilation
[
i
]
-
in_pad_below
[
i
];
}
return
backward_delta_out_pad_below
;
}
CoordinateDiff
op
::
v1
::
ConvolutionBackpropData
::
compute_backward_delta_out_pad_above
()
const
{
auto
&
in_shape
=
get_data_batch_shape
();
auto
&
filter_dilation
=
get_dilations
();
auto
&
filter_shape
=
get_input_shape
(
0
);
auto
&
in_pad_below
=
get_pads_begin
();
auto
&
in_pad_above
=
get_pads_end
();
auto
&
stride
=
get_strides
();
size_t
spatial_dim_count
=
static_cast
<
size_t
>
(
in_shape
.
size
())
-
2
;
CoordinateDiff
backward_delta_out_pad_above
;
backward_delta_out_pad_above
.
resize
(
spatial_dim_count
);
for
(
size_t
i
=
0
;
i
<
spatial_dim_count
;
i
++
)
{
backward_delta_out_pad_above
[
i
]
=
(
static_cast
<
ptrdiff_t
>
(
filter_shape
[
i
+
2
])
-
1
)
*
filter_dilation
[
i
]
+
((
in_pad_below
[
i
]
+
((
in_shape
[
i
+
2
])
-
1
)
+
in_pad_above
[
i
]
-
(
static_cast
<
ptrdiff_t
>
(
filter_shape
[
i
+
2
])
-
1
)
*
filter_dilation
[
i
])
%
stride
[
i
])
-
in_pad_above
[
i
];
}
return
backward_delta_out_pad_above
;
}
constexpr
NodeTypeInfo
op
::
v1
::
ConvolutionBackpropFilters
::
type_info
;
op
::
v1
::
ConvolutionBackpropFilters
::
ConvolutionBackpropFilters
(
const
Output
<
Node
>&
data_batch
,
const
Shape
&
filters_shape
,
const
Output
<
Node
>&
output_delta
,
const
Strides
&
strides
,
const
Strides
&
dilations
,
const
CoordinateDiff
&
pads_begin
,
const
CoordinateDiff
&
pads_end
)
:
Op
({
data_batch
,
output_delta
})
,
m_filters_shape
(
filters_shape
)
,
m_strides
(
strides
)
,
m_dilations
(
dilations
)
,
m_pads_begin
(
pads_begin
)
,
m_pads_end
(
pads_end
)
{
constructor_validate_and_infer_types
();
}
void
op
::
v1
::
ConvolutionBackpropFilters
::
validate_and_infer_types
()
{
// Backprop to filters is itself convolution, with inputs/outputs/attributes transmogrified as
// follows.
//
// Forward Backward
// "N" axis for data batch 0 1
// "C" axis for data batch 1 0
// "Co" axis for filters 0 0
// "Ci" axis for filters 1 1
// "N" axis for output 0 1
// "C" axis for output 1 0
// Data batch x x
// Data batch shape S_x S_x
// Filters f delta
// Filters shape S_f S_f
// Window movement strides q_x p_f
// Window dilation strides p_f q_x
// Padding below a_x a_x
// Padding above b_x b_x - (a_x + (S_x - 1)p_x + b_x - (S_f - 1)p_f) % q_x
// Output shape S_o S_f
//
// To _validate_, we simply need to check/infer the output shape of the forward convolution,
// then check to make sure that the incoming delta has the same shape as the forward output.
//
// We will also compute and store the various parameters in the "backward" column above, since
// some backends need them. (TODO(amprocte): Is it just because of the way the reference works
// that this stuff is needed? If so, we can probably get rid of it and have conv_backprop
// reference kernels that do the calculations of the backward parameters internally, or supply
// utility functions to do it.)
const
PartialShape
&
data_batch_shape
=
get_input_partial_shape
(
0
);
element
::
Type
data_batch_et
=
get_input_element_type
(
0
);
const
PartialShape
&
delta_shape
=
get_input_partial_shape
(
1
);
element
::
Type
delta_et
=
get_input_element_type
(
1
);
element
::
Type
forward_result_et
;
PartialShape
forward_result_shape
;
NODE_VALIDATION_CHECK
(
this
,
element
::
Type
::
merge
(
forward_result_et
,
data_batch_et
,
delta_et
),
"Element types for data batch and filters do not match (data batch element type: "
,
data_batch_et
,
", filters element type: "
,
delta_et
,
")."
);
forward_result_shape
=
infer_convolution_forward
(
this
,
data_batch_shape
,
Strides
(
static_cast
<
size_t
>
(
data_batch_shape
.
rank
())
-
2
,
1
),
m_pads_begin
,
m_pads_end
,
m_filters_shape
,
m_strides
,
m_dilations
);
NODE_VALIDATION_CHECK
(
this
,
forward_result_shape
.
compatible
(
delta_shape
),
"Inferred forward output shape ("
,
forward_result_shape
,
") does not match shape of "
,
"delta ("
,
delta_shape
,
")."
);
set_output_type
(
0
,
forward_result_et
,
m_filters_shape
);
}
shared_ptr
<
Node
>
op
::
v1
::
ConvolutionBackpropFilters
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
v1
::
ConvolutionBackpropFilters
>
(
new_args
.
at
(
0
),
m_filters_shape
,
new_args
.
at
(
1
),
m_strides
,
m_dilations
,
m_pads_begin
,
m_pads_end
);
}
CoordinateDiff
op
::
v1
::
ConvolutionBackpropFilters
::
compute_backward_in_pad_above
()
const
{
const
auto
&
in_shape
=
get_input_shape
(
0
);
const
auto
&
out_shape
=
get_input_shape
(
1
);
const
auto
&
filter_shape
=
get_filters_shape
();
const
auto
&
in_pad_above
=
get_pads_end
();
const
auto
&
in_pad_below
=
get_pads_begin
();
const
auto
&
filter_dilation
=
get_dilations
();
const
auto
&
stride
=
get_strides
();
size_t
spatial_dim_count
=
static_cast
<
size_t
>
(
out_shape
.
size
())
-
2
;
CoordinateDiff
backward_in_pad_above
;
backward_in_pad_above
.
resize
(
spatial_dim_count
);
for
(
size_t
i
=
0
;
i
<
spatial_dim_count
;
i
++
)
{
backward_in_pad_above
[
i
]
=
in_pad_above
[
i
]
-
(
in_pad_below
[
i
]
+
(
static_cast
<
ptrdiff_t
>
(
in_shape
[
i
+
2
])
-
1
)
+
in_pad_above
[
i
]
-
(
filter_shape
[
i
+
2
]
-
1
)
*
filter_dilation
[
i
])
%
stride
[
i
];
}
return
backward_in_pad_above
;
}
// *** Convolution OP SET 0 ***
constexpr
NodeTypeInfo
op
::
v0
::
Convolution
::
type_info
;
op
::
v0
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
,
const
Strides
&
window_movement_strides
,
const
Strides
&
window_dilation_strides
,
...
...
@@ -46,7 +505,7 @@ op::Convolution::Convolution(const Output<Node>& data_batch,
constructor_validate_and_infer_types
();
}
void
op
::
Convolution
::
validate_and_infer_types
()
void
op
::
v0
::
Convolution
::
validate_and_infer_types
()
{
const
PartialShape
&
data_batch_shape
=
get_input_partial_shape
(
0
);
element
::
Type
data_batch_et
=
get_input_element_type
(
0
);
...
...
@@ -121,7 +580,7 @@ void op::Convolution::validate_and_infer_types()
set_output_type
(
0
,
result_et
,
result_shape
);
}
op
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
op
::
v0
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
,
const
Strides
&
window_movement_strides
,
const
Strides
&
window_dilation_strides
,
...
...
@@ -137,7 +596,7 @@ op::Convolution::Convolution(const Output<Node>& data_batch,
{
}
op
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
op
::
v0
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
,
const
Strides
&
window_movement_strides
,
const
Strides
&
window_dilation_strides
)
...
...
@@ -150,7 +609,7 @@ op::Convolution::Convolution(const Output<Node>& data_batch,
{
}
op
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
op
::
v0
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
,
const
Strides
&
window_movement_strides
)
:
Convolution
(
data_batch
,
...
...
@@ -162,15 +621,15 @@ op::Convolution::Convolution(const Output<Node>& data_batch,
{
}
op
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
)
op
::
v0
::
Convolution
::
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
)
:
Convolution
(
data_batch
,
filters
,
Strides
(),
Strides
(),
CoordinateDiff
(),
CoordinateDiff
())
{
}
shared_ptr
<
Node
>
op
::
Convolution
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
shared_ptr
<
Node
>
op
::
v0
::
Convolution
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
Convolution
>
(
new_args
.
at
(
0
),
return
make_shared
<
v0
::
Convolution
>
(
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_window_movement_strides
,
m_window_dilation_strides
,
...
...
@@ -180,7 +639,7 @@ shared_ptr<Node> op::Convolution::copy_with_new_args(const NodeVector& new_args)
m_pad_type
);
}
void
op
::
Convolution
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
void
op
::
v0
::
Convolution
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
{
auto
delta
=
deltas
.
at
(
0
);
...
...
@@ -191,7 +650,7 @@ void op::Convolution::generate_adjoints(autodiff::Adjoints& adjoints, const Node
const
auto
f_shape
=
f
.
get_shape
();
adjoints
.
add_delta
(
x
,
make_shared
<
op
::
ConvolutionBackpropData
>
(
x_shape
,
make_shared
<
op
::
v0
::
ConvolutionBackpropData
>
(
x_shape
,
f
,
delta
,
m_window_movement_strides
,
...
...
@@ -201,7 +660,7 @@ void op::Convolution::generate_adjoints(autodiff::Adjoints& adjoints, const Node
m_data_dilation_strides
));
adjoints
.
add_delta
(
f
,
make_shared
<
op
::
ConvolutionBackpropFilters
>
(
x
,
make_shared
<
op
::
v0
::
ConvolutionBackpropFilters
>
(
x
,
f_shape
,
delta
,
m_window_movement_strides
,
...
...
@@ -211,13 +670,14 @@ void op::Convolution::generate_adjoints(autodiff::Adjoints& adjoints, const Node
m_data_dilation_strides
));
}
constexpr
NodeTypeInfo
op
::
ConvolutionBackpropData
::
type_info
;
shared_ptr
<
Node
>
op
::
Convolution
::
get_default_value
()
const
constexpr
NodeTypeInfo
op
::
v0
::
ConvolutionBackpropData
::
type_info
;
shared_ptr
<
Node
>
op
::
v0
::
Convolution
::
get_default_value
()
const
{
return
ngraph
::
make_constant_from_string
(
"0"
,
get_element_type
(),
get_shape
());
}
op
::
ConvolutionBackpropData
::
ConvolutionBackpropData
(
const
Shape
&
data_batch_shape
,
op
::
v0
::
ConvolutionBackpropData
::
ConvolutionBackpropData
(
const
Shape
&
data_batch_shape
,
const
Output
<
Node
>&
filters
,
const
Output
<
Node
>&
output_delta
,
const
Strides
&
window_movement_strides_forward
,
...
...
@@ -236,7 +696,7 @@ op::ConvolutionBackpropData::ConvolutionBackpropData(const Shape& data_batch_sha
constructor_validate_and_infer_types
();
}
void
op
::
ConvolutionBackpropData
::
validate_and_infer_types
()
void
op
::
v0
::
ConvolutionBackpropData
::
validate_and_infer_types
()
{
// Backprop to data is itself convolution, with inputs/outputs/attributes transmogrified as
// follows.
...
...
@@ -302,7 +762,7 @@ void op::ConvolutionBackpropData::validate_and_infer_types()
set_output_type
(
0
,
forward_result_et
,
m_data_batch_shape
);
}
void
op
::
ConvolutionBackpropData
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
void
op
::
v0
::
ConvolutionBackpropData
::
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
{
auto
delta
=
deltas
.
at
(
0
);
...
...
@@ -313,7 +773,7 @@ void op::ConvolutionBackpropData::generate_adjoints(autodiff::Adjoints& adjoints
auto
f
=
input_value
(
0
);
const
auto
f_shape
=
f
.
get_shape
();
auto
data_conv
=
make_shared
<
op
::
Convolution
>
(
delta
,
auto
data_conv
=
make_shared
<
op
::
v0
::
Convolution
>
(
delta
,
f
,
m_window_movement_strides_forward
,
m_window_dilation_strides_forward
,
...
...
@@ -369,7 +829,7 @@ void op::ConvolutionBackpropData::generate_adjoints(autodiff::Adjoints& adjoints
delta
=
swap_NC
(
delta
);
x
=
swap_NC
(
x
);
shared_ptr
<
Node
>
filter_deconv_bprop
=
make_shared
<
op
::
Convolution
>
(
x
,
shared_ptr
<
Node
>
filter_deconv_bprop
=
make_shared
<
op
::
v0
::
Convolution
>
(
x
,
delta
,
window_movement_strides
,
window_dilation_strides
,
...
...
@@ -385,10 +845,11 @@ void op::ConvolutionBackpropData::generate_adjoints(autodiff::Adjoints& adjoints
adjoints
.
add_delta
(
f
,
filter_deconv_bprop
);
}
shared_ptr
<
Node
>
op
::
ConvolutionBackpropData
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
shared_ptr
<
Node
>
op
::
v0
::
ConvolutionBackpropData
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
ConvolutionBackpropData
>
(
m_data_batch_shape
,
return
make_shared
<
v0
::
ConvolutionBackpropData
>
(
m_data_batch_shape
,
new_args
.
at
(
0
),
new_args
.
at
(
1
),
m_window_movement_strides_forward
,
...
...
@@ -398,7 +859,7 @@ shared_ptr<Node> op::ConvolutionBackpropData::copy_with_new_args(const NodeVecto
m_data_dilation_strides_forward
);
}
CoordinateDiff
op
::
ConvolutionBackpropData
::
compute_backward_delta_out_pad_below
()
const
CoordinateDiff
op
::
v0
::
ConvolutionBackpropData
::
compute_backward_delta_out_pad_below
()
const
{
auto
&
in_shape
=
get_data_batch_shape
();
auto
&
filter_dilation
=
get_window_dilation_strides_forward
();
...
...
@@ -418,7 +879,7 @@ CoordinateDiff op::ConvolutionBackpropData::compute_backward_delta_out_pad_below
return
backward_delta_out_pad_below
;
}
CoordinateDiff
op
::
ConvolutionBackpropData
::
compute_backward_delta_out_pad_above
()
const
CoordinateDiff
op
::
v0
::
ConvolutionBackpropData
::
compute_backward_delta_out_pad_above
()
const
{
auto
&
in_shape
=
get_data_batch_shape
();
auto
&
filter_dilation
=
get_window_dilation_strides_forward
();
...
...
@@ -444,9 +905,9 @@ CoordinateDiff op::ConvolutionBackpropData::compute_backward_delta_out_pad_above
return
backward_delta_out_pad_above
;
}
constexpr
NodeTypeInfo
op
::
ConvolutionBackpropFilters
::
type_info
;
constexpr
NodeTypeInfo
op
::
v0
::
ConvolutionBackpropFilters
::
type_info
;
op
::
ConvolutionBackpropFilters
::
ConvolutionBackpropFilters
(
op
::
v0
::
ConvolutionBackpropFilters
::
ConvolutionBackpropFilters
(
const
Output
<
Node
>&
data_batch
,
const
Shape
&
filters_shape
,
const
Output
<
Node
>&
output_delta
,
...
...
@@ -466,7 +927,7 @@ op::ConvolutionBackpropFilters::ConvolutionBackpropFilters(
constructor_validate_and_infer_types
();
}
void
op
::
ConvolutionBackpropFilters
::
validate_and_infer_types
()
void
op
::
v0
::
ConvolutionBackpropFilters
::
validate_and_infer_types
()
{
// Backprop to filters is itself convolution, with inputs/outputs/attributes transmogrified as
// follows.
...
...
@@ -537,10 +998,10 @@ void op::ConvolutionBackpropFilters::validate_and_infer_types()
}
shared_ptr
<
Node
>
op
::
ConvolutionBackpropFilters
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
op
::
v0
::
ConvolutionBackpropFilters
::
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
{
check_new_args_count
(
this
,
new_args
);
return
make_shared
<
ConvolutionBackpropFilters
>
(
new_args
.
at
(
0
),
return
make_shared
<
v0
::
ConvolutionBackpropFilters
>
(
new_args
.
at
(
0
),
m_filters_shape
,
new_args
.
at
(
1
),
m_window_movement_strides_forward
,
...
...
@@ -550,7 +1011,7 @@ shared_ptr<Node>
m_data_dilation_strides_forward
);
}
CoordinateDiff
op
::
ConvolutionBackpropFilters
::
compute_backward_in_pad_above
()
const
CoordinateDiff
op
::
v0
::
ConvolutionBackpropFilters
::
compute_backward_in_pad_above
()
const
{
const
auto
&
in_shape
=
get_input_shape
(
0
);
const
auto
&
out_shape
=
get_input_shape
(
1
);
...
...
src/ngraph/op/convolution.hpp
View file @
1ce31a49
...
...
@@ -23,6 +23,204 @@
namespace
ngraph
{
namespace
op
{
namespace
v1
{
/// \brief Batched convolution operation, with optional window dilation and stride.
///
class
Convolution
:
public
Op
{
public
:
NGRAPH_API
static
constexpr
NodeTypeInfo
type_info
{
"Convolution"
,
1
};
const
NodeTypeInfo
&
get_type_info
()
const
override
{
return
type_info
;
}
/// \brief Constructs a batched convolution operation.
Convolution
()
=
default
;
/// \brief Constructs a batched convolution operation.
///
/// \param data_batch The node producing the input data batch tensor.<br>
/// `[N, C_IN, D1, ... Df]`
/// \param filters The node producing the filters tensor.<br>
/// `[C_OUT, C_IN, F1, ... Ff]`
/// \param strides The strides.<br>
/// `[f]`
/// \param dilations The dilations.<br>
/// `[f]`
/// \param pads_begin The beginning of padding shape.<br>
/// `[f]`
/// \param pads_end The end of padding shape.<br>
/// `[f]`
/// \param auto_pad The pad type for automatically computing padding sizes.<br>
/// `[f]`
///
/// Output `[N, C_OUT, R1, ... Rf]`
///
Convolution
(
const
Output
<
Node
>&
data_batch
,
const
Output
<
Node
>&
filters
,
const
Strides
&
strides
,
const
CoordinateDiff
&
pads_begin
,
const
CoordinateDiff
&
pads_end
,
const
Strides
&
dilations
,
const
PadType
&
auto_pad
=
PadType
::
EXPLICIT
);
size_t
get_version
()
const
override
{
return
1
;
}
void
validate_and_infer_types
()
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
/// \return The strides.
const
Strides
&
get_strides
()
const
{
return
m_strides
;
}
void
set_strides
(
const
Strides
&
strides
)
{
m_strides
=
strides
;
}
/// \return The dilations.
const
Strides
&
get_dilations
()
const
{
return
m_dilations
;
}
void
set_dilations
(
const
Strides
&
dilations
)
{
m_dilations
=
dilations
;
}
/// \return The padding-below sizes (possibly negative).
const
CoordinateDiff
&
get_pads_begin
()
const
{
return
m_pads_begin
;
}
void
set_pads_begin
(
const
CoordinateDiff
&
pads_begin
)
{
m_pads_begin
=
pads_begin
;
}
/// \return The padding-above sizes (possibly negative).
const
CoordinateDiff
&
get_pads_end
()
const
{
return
m_pads_end
;
}
void
set_adding_above
(
const
CoordinateDiff
&
pads_end
)
{
m_pads_end
=
pads_end
;
}
/// \return The pad type for convolution.
const
PadType
&
get_auto_pad
()
const
{
return
m_auto_pad
;
}
void
set_auto_pad
(
const
PadType
&
auto_pad
)
{
m_auto_pad
=
auto_pad
;
}
/// \return The default value for Convolution.
virtual
std
::
shared_ptr
<
Node
>
get_default_value
()
const
override
;
protected
:
Strides
m_strides
;
Strides
m_dilations
;
CoordinateDiff
m_pads_begin
;
CoordinateDiff
m_pads_end
;
PadType
m_auto_pad
;
};
/// \brief Data batch backprop for batched convolution operation.
class
ConvolutionBackpropData
:
public
Op
{
public
:
NGRAPH_API
static
constexpr
NodeTypeInfo
type_info
{
"ConvolutionBackpropData"
,
1
};
const
NodeTypeInfo
&
get_type_info
()
const
override
{
return
type_info
;
}
/// \brief Constructs a batched-convolution data batch-backprop operation.
ConvolutionBackpropData
()
=
default
;
/// \brief Constructs a batched-convolution data batch-backprop operation.
///
/// \param data_batch_shape The shape of the data batch from forward-prop.
/// \param filters The node producing the filters from forward-prop.
/// \param output_delta The node producing output delta.
/// \param strides The strides from forward-prop.
/// \param dilations The dilations from forward-prop.
/// \param pads_begin The padding-below sizes from forward-prop.
/// \param pads_end The padding-above sizes from forward-prop.
ConvolutionBackpropData
(
const
Shape
&
data_batch_shape
,
const
Output
<
Node
>&
filters
,
const
Output
<
Node
>&
output_delta
,
const
Strides
&
strides
,
const
Strides
&
dilations
,
const
CoordinateDiff
&
pads_begin
,
const
CoordinateDiff
&
pads_end
);
size_t
get_version
()
const
override
{
return
1
;
}
void
validate_and_infer_types
()
override
;
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
/// \return The data batch shape.
const
Shape
&
get_data_batch_shape
()
const
{
return
m_data_batch_shape
;
}
void
set_data_batch_shape
(
const
Shape
&
data_batch_shape
)
{
m_data_batch_shape
=
data_batch_shape
;
}
/// \return The strides from the forward prop.
const
Strides
&
get_strides
()
const
{
return
m_strides
;
}
void
set_strides
(
const
Strides
&
strides
)
{
m_strides
=
strides
;
}
/// \return The dilations from the forward prop.
const
Strides
&
get_dilations
()
const
{
return
m_dilations
;
}
void
set_dilations
(
const
Strides
&
dilations
)
{
m_dilations
=
dilations
;
}
/// \return The padding-below sizes (possibly negative) from the forward prop.
const
CoordinateDiff
&
get_pads_begin
()
const
{
return
m_pads_begin
;
}
void
set_pads_begin
(
const
CoordinateDiff
&
pads_begin
)
{
m_pads_begin
=
pads_begin
;
}
/// \return The padding-above sizes (possibly negative) from the forward prop.
const
CoordinateDiff
&
get_pads_end
()
const
{
return
m_pads_end
;
}
void
set_pads_end
(
const
CoordinateDiff
&
pads_end
)
{
m_pads_end
=
pads_end
;
}
// Compute the pad_above values to be used if in a convolution
CoordinateDiff
compute_backward_delta_out_pad_above
()
const
;
CoordinateDiff
compute_backward_delta_out_pad_below
()
const
;
protected
:
Shape
m_data_batch_shape
;
Strides
m_strides
;
Strides
m_dilations
;
CoordinateDiff
m_pads_begin
;
CoordinateDiff
m_pads_end
;
};
/// \brief Filters backprop for batched convolution operation.
class
ConvolutionBackpropFilters
:
public
Op
{
public
:
NGRAPH_API
static
constexpr
NodeTypeInfo
type_info
{
"ConvolutionBackpropFilters"
,
1
};
const
NodeTypeInfo
&
get_type_info
()
const
override
{
return
type_info
;
}
/// \brief Constructs a batched-convolution filter-backprop operation.
ConvolutionBackpropFilters
()
=
default
;
/// \brief Constructs a batched-convolution filter-backprop operation.
///
/// \param data_batch The tensor producing the data batch from forward-prop.
/// \param filters_shape The shape of the filters from forward-prop.
/// \param output_delta The node producing output delta.
/// \param strides The strides from forward-prop.
/// \param dilations The dilations from forward-prop.
/// \param pads_begin The padding-below sizes from forward-prop.
/// \param pads_end The padding-above sizes from forward-prop.
ConvolutionBackpropFilters
(
const
Output
<
Node
>&
data_batch
,
const
Shape
&
filters_shape
,
const
Output
<
Node
>&
output_delta
,
const
Strides
&
strides
,
const
Strides
&
dilations
,
const
CoordinateDiff
&
pads_begin
,
const
CoordinateDiff
&
pads_end
);
size_t
get_version
()
const
override
{
return
1
;
}
void
validate_and_infer_types
()
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
/// \return The filters tensor shape.
const
Shape
&
get_filters_shape
()
const
{
return
m_filters_shape
;
}
/// \return The strides from the forward prop.
const
Strides
&
get_strides
()
const
{
return
m_strides
;
}
void
set_strides
(
const
Strides
&
strides
)
{
m_strides
=
strides
;
}
/// \return The dilations from the forward prop.
const
Strides
&
get_dilations
()
const
{
return
m_dilations
;
}
void
set_dilations
(
const
Strides
&
dilations
)
{
m_dilations
=
dilations
;
}
/// \return The padding-below sizes (possibly negative) from the forward prop.
const
CoordinateDiff
&
get_pads_begin
()
const
{
return
m_pads_begin
;
}
void
set_pads_begin
(
const
CoordinateDiff
&
pads_begin
)
{
m_pads_begin
=
pads_begin
;
}
/// \return The padding-above sizes (possibly negative) from the forward prop.
const
CoordinateDiff
&
get_pads_end
()
const
{
return
m_pads_end
;
}
void
set_pads_end
(
const
CoordinateDiff
&
pads_end
)
{
m_pads_end
=
pads_end
;
}
// Compute the pad_above value to be used if in a convolution
CoordinateDiff
compute_backward_in_pad_above
()
const
;
protected
:
Shape
m_filters_shape
;
Strides
m_strides
;
Strides
m_dilations
;
CoordinateDiff
m_pads_begin
;
CoordinateDiff
m_pads_end
;
};
}
// namespace v1
namespace
v0
{
/// \brief Batched convolution operation, with optional window dilation and stride.
///
...
...
@@ -64,7 +262,8 @@ namespace ngraph
const
Strides
&
data_dilation_strides
,
const
PadType
&
pad_type
=
PadType
::
EXPLICIT
);
/// \brief Constructs a batched convolution operation with no data dilation (i.e., all
/// \brief Constructs a batched convolution operation with no data dilation (i.e.,
/// all
/// data dilation strides are 1).
///
/// \param data_batch The node producing the input data batch tensor.<br>
...
...
@@ -89,7 +288,8 @@ namespace ngraph
const
CoordinateDiff
&
padding_below
,
const
CoordinateDiff
&
padding_above
);
/// \brief Constructs a batched convolution operation with no padding or data dilation
/// \brief Constructs a batched convolution operation with no padding or data
/// dilation
/// (i.e., padding above and below are 0 everywhere, and all data dilation
/// strides are 1).
///
...
...
@@ -109,7 +309,8 @@ namespace ngraph
const
Strides
&
window_movement_strides
,
const
Strides
&
window_dilation_strides
);
/// \brief Constructs a batched convolution operation with no window dilation, padding,
/// \brief Constructs a batched convolution operation with no window dilation,
/// padding,
/// or data dilation (i.e., padding above and below are 0 everywhere, and all
/// window/data dilation strides are 1).
///
...
...
@@ -143,16 +344,23 @@ namespace ngraph
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
/// \return The window movement strides.
const
Strides
&
get_window_movement_strides
()
const
{
return
m_window_movement_strides
;
}
const
Strides
&
get_window_movement_strides
()
const
{
return
m_window_movement_strides
;
}
void
set_window_movement_strides
(
const
Strides
&
window_movement_strides
)
{
m_window_movement_strides
=
window_movement_strides
;
}
/// \return The window dilation strides.
const
Strides
&
get_window_dilation_strides
()
const
{
return
m_window_dilation_strides
;
}
const
Strides
&
get_window_dilation_strides
()
const
{
return
m_window_dilation_strides
;
}
void
set_window_dilation_strides
(
const
Strides
&
window_dilation_strides
)
{
m_window_dilation_strides
=
window_dilation_strides
;
...
...
@@ -210,7 +418,8 @@ namespace ngraph
/// forward-prop.
/// \param padding_below_forward The padding-below sizes from forward-prop.
/// \param padding_above_forward The padding-above sizes from forward-prop.
/// \param data_dilation_strides_forward The data dilation strides from forward-prop.
/// \param data_dilation_strides_forward The data dilation strides from
/// forward-prop.
ConvolutionBackpropData
(
const
Shape
&
data_batch_shape
,
const
Output
<
Node
>&
filters
,
const
Output
<
Node
>&
output_delta
,
...
...
@@ -222,7 +431,8 @@ namespace ngraph
void
validate_and_infer_types
()
override
;
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
void
generate_adjoints
(
autodiff
::
Adjoints
&
adjoints
,
const
NodeVector
&
deltas
)
override
;
virtual
std
::
shared_ptr
<
Node
>
copy_with_new_args
(
const
NodeVector
&
new_args
)
const
override
;
...
...
@@ -237,7 +447,8 @@ namespace ngraph
{
return
m_window_movement_strides_forward
;
}
void
set_window_movement_strides_forward
(
const
Strides
&
window_movement_strides_forward
)
void
set_window_movement_strides_forward
(
const
Strides
&
window_movement_strides_forward
)
{
m_window_movement_strides_forward
=
window_movement_strides_forward
;
}
...
...
@@ -246,7 +457,8 @@ namespace ngraph
{
return
m_window_dilation_strides_forward
;
}
void
set_window_dilation_strides_forward
(
const
Strides
&
window_dilation_strides_forward
)
void
set_window_dilation_strides_forward
(
const
Strides
&
window_dilation_strides_forward
)
{
m_window_dilation_strides_forward
=
window_dilation_strides_forward
;
}
...
...
@@ -306,12 +518,11 @@ namespace ngraph
/// \param filters_shape The shape of the filters from forward-prop.
/// \param output_delta The node producing output delta.
/// \param window_movement_strides_forward The window movement strides from
/// forward-prop.
/// \param window_dilation_strides_forward The window dilation strides from
/// forward-prop.
/// \param padding_below_forward The padding-below sizes from forward-prop.
/// \param padding_above_forward The padding-above sizes from forward-prop.
/// \param data_dilation_strides_forward The data dilation strides from forward-prop.
/// forward-prop. \param window_dilation_strides_forward The window dilation strides
/// from forward-prop. \param padding_below_forward The padding-below sizes from
/// forward-prop. \param padding_above_forward The padding-above sizes from
/// forward-prop. \param data_dilation_strides_forward The data dilation strides
/// from forward-prop.
ConvolutionBackpropFilters
(
const
Output
<
Node
>&
data_batch
,
const
Shape
&
filters_shape
,
const
Output
<
Node
>&
output_delta
,
...
...
@@ -333,7 +544,8 @@ namespace ngraph
{
return
m_window_movement_strides_forward
;
}
void
set_window_movement_strides_forward
(
const
Strides
&
window_movement_strides_forward
)
void
set_window_movement_strides_forward
(
const
Strides
&
window_movement_strides_forward
)
{
m_window_movement_strides_forward
=
window_movement_strides_forward
;
}
...
...
@@ -342,7 +554,8 @@ namespace ngraph
{
return
m_window_dilation_strides_forward
;
}
void
set_window_dilation_strides_forward
(
const
Strides
&
window_dilation_strides_forward
)
void
set_window_dilation_strides_forward
(
const
Strides
&
window_dilation_strides_forward
)
{
m_window_dilation_strides_forward
=
window_dilation_strides_forward
;
}
...
...
@@ -386,11 +599,13 @@ namespace ngraph
Strides
m_data_dilation_strides_forward
;
};
}
// namespace v0
namespace
util
{
// This is a legacy function, retained because the CPU backend uses it for now.
// TODO: Update CPU backend to use the new stuff in validation_util.hpp, and remove
//
this
function.
// TODO: Update CPU backend to use the new stuff in validation_util.hpp, and remove
this
// function.
Shape
infer_convolution_output_shape
(
const
Node
*
node
,
const
Shape
&
data_batch_shape
,
const
Shape
&
filters_shape
,
...
...
@@ -405,6 +620,10 @@ namespace ngraph
size_t
output_channel_axis_filters
,
size_t
batch_axis_result
,
size_t
output_channel_axis_result
);
}
}
}
}
// namespace util
using
v0
::
Convolution
;
using
v0
::
ConvolutionBackpropData
;
using
v0
::
ConvolutionBackpropFilters
;
}
// namespace op
}
// namespace ngraph
src/ngraph/pass/opset1_upgrade.cpp
View file @
1ce31a49
...
...
@@ -17,6 +17,7 @@
#include "ngraph/graph_util.hpp"
#include "ngraph/op/avg_pool.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/convolution.hpp"
#include "ngraph/op/gather.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/max_pool.hpp"
...
...
@@ -131,6 +132,107 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Convolution
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Convolution
*>
(
node
.
get
());
auto
strides
=
tmp
->
get_window_movement_strides
();
auto
dilations
=
tmp
->
get_window_dilation_strides
();
auto
pads_begin
=
tmp
->
get_padding_below
();
auto
pads_end
=
tmp
->
get_padding_above
();
auto
data_dilation_strides
=
tmp
->
get_data_dilation_strides
();
auto
auto_pad
=
tmp
->
get_pad_type
();
bool
is_dds_valid
=
true
;
for
(
auto
value
:
data_dilation_strides
)
{
is_dds_valid
=
is_dds_valid
&&
(
value
==
1
);
}
NGRAPH_CHECK
(
is_dds_valid
,
"Unable to convert Convolution:0 to Convolution:1 with data dilation strides "
"other than `1`. Node: "
,
*
node
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Convolution
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
strides
,
pads_begin
,
pads_end
,
dilations
,
auto_pad
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
ConvolutionBackpropData
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
ConvolutionBackpropData
*>
(
node
.
get
());
auto
data_batch_shape
=
tmp
->
get_data_batch_shape
();
auto
strides
=
tmp
->
get_window_movement_strides_forward
();
auto
dilations
=
tmp
->
get_window_dilation_strides_forward
();
auto
pads_begin
=
tmp
->
get_padding_below_forward
();
auto
pads_end
=
tmp
->
get_padding_above_forward
();
auto
data_dilation_strides
=
tmp
->
get_data_dilation_strides_forward
();
bool
is_dds_valid
=
true
;
for
(
auto
value
:
data_dilation_strides
)
{
is_dds_valid
=
is_dds_valid
&&
(
value
==
1
);
}
NGRAPH_CHECK
(
is_dds_valid
,
"Unable to convert ConvolutionBackpropData:0 to ConvolutionBackpropData:1 "
"with data dilation strides "
"other than `1`. Node: "
,
*
node
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
ConvolutionBackpropData
>
(
data_batch_shape
,
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
strides
,
dilations
,
pads_begin
,
pads_end
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
ConvolutionBackpropFilters
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
ConvolutionBackpropFilters
*>
(
node
.
get
());
auto
filters_shape
=
tmp
->
get_filters_shape
();
auto
strides
=
tmp
->
get_window_movement_strides_forward
();
auto
dilations
=
tmp
->
get_window_dilation_strides_forward
();
auto
pads_begin
=
tmp
->
get_padding_below_forward
();
auto
pads_end
=
tmp
->
get_padding_above_forward
();
auto
data_dilation_strides
=
tmp
->
get_data_dilation_strides_forward
();
bool
is_dds_valid
=
true
;
for
(
auto
value
:
data_dilation_strides
)
{
is_dds_valid
=
is_dds_valid
&&
(
value
==
1
);
}
NGRAPH_CHECK
(
is_dds_valid
,
"Unable to convert ConvolutionBackpropFilters:0 to ConvolutionBackpropFilters:1 "
"with data dilation strides "
"other than `1`. Node: "
,
*
node
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
ConvolutionBackpropFilters
>
(
node
->
input
(
0
).
get_source_output
(),
filters_shape
,
node
->
input
(
1
).
get_source_output
(),
strides
,
dilations
,
pads_begin
,
pads_end
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Gather
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Gather
*>
(
node
.
get
());
...
...
@@ -143,6 +245,60 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Product
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceProd
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Sum
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceSum
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Pad
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Pad
*>
(
node
.
get
());
auto
padding_below
=
tmp
->
get_padding_below
();
auto
pads_begin_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_below
.
size
()},
padding_below
);
auto
padding_above
=
tmp
->
get_padding_above
();
auto
pads_end_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_above
.
size
()},
padding_above
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Pad
>
(
node
->
input
(
0
).
get_source_output
(),
pads_begin_node
,
pads_end_node
,
node
->
input
(
1
).
get_source_output
(),
tmp
->
get_pad_mode
());
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Softmax
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Softmax
*>
(
node
.
get
());
AxisSet
axes
=
tmp
->
get_axes
();
NGRAPH_CHECK
(
axes
.
size
()
==
1
,
"Unable to convert Softmax:0 to Softmax:1 with zero or more than one axis. Node: "
,
*
node
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Softmax
>
(
node
->
input
(
0
).
get_source_output
(),
axes
.
to_vector
()[
0
]);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
MaxPool
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
MaxPool
*>
(
node
.
get
());
...
...
@@ -200,44 +356,6 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Product
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceProd
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Sum
:
{
bool
keep_dims
=
false
;
auto
replacement_node
=
make_shared
<
op
::
v1
::
ReduceSum
>
(
node
->
input
(
0
).
get_source_output
(),
node
->
input
(
1
).
get_source_output
(),
keep_dims
);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Pad
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Pad
*>
(
node
.
get
());
auto
padding_below
=
tmp
->
get_padding_below
();
auto
pads_begin_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_below
.
size
()},
padding_below
);
auto
padding_above
=
tmp
->
get_padding_above
();
auto
pads_end_node
=
make_shared
<
op
::
Constant
>
(
element
::
i64
,
Shape
{
padding_above
.
size
()},
padding_above
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Pad
>
(
node
->
input
(
0
).
get_source_output
(),
pads_begin_node
,
pads_end_node
,
node
->
input
(
1
).
get_source_output
(),
tmp
->
get_pad_mode
());
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
case
OP_TYPEID
:
:
Reverse
:
{
// creates a Constant node from the v0::Reverse reversed_axes attribute
...
...
@@ -257,24 +375,9 @@ bool pass::Opset1Upgrade::run_on_node(shared_ptr<Node> node)
break
;
}
case
OP_TYPEID
:
:
Softmax
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Softmax
*>
(
node
.
get
());
AxisSet
axes
=
tmp
->
get_axes
();
NGRAPH_CHECK
(
axes
.
size
()
==
1
,
"Unable to convert Softmax:0 to Softmax:1 with zero or more than one axis. Node: "
,
*
node
);
auto
replacement_node
=
make_shared
<
op
::
v1
::
Softmax
>
(
node
->
input
(
0
).
get_source_output
(),
axes
.
to_vector
()[
0
]);
replace_node
(
node
,
replacement_node
);
modified
=
true
;
break
;
}
default
:
break
;
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
...
...
src/ngraph/runtime/cpu/cpu_emitter.hpp
View file @
1ce31a49
...
...
@@ -22,6 +22,7 @@
#include "ngraph/code_writer.hpp"
#include "ngraph/node.hpp"
#include "ngraph/op/avg_pool.hpp"
#include "ngraph/op/convolution.hpp"
#include "ngraph/op/gather.hpp"
#include "ngraph/op/max_pool.hpp"
#include "ngraph/op/pad.hpp"
...
...
@@ -109,10 +110,7 @@ namespace ngraph
class
QuantizedConvolution
;
class
GroupConvolution
;
class
GroupConvolutionBias
;
class
Convolution
;
class
ConvolutionBackpropFilters
;
class
DeconvolutionBias
;
class
ConvolutionBackpropData
;
class
QuantizedConvolutionBias
;
class
QuantizedConvolutionBiasAdd
;
class
QuantizedConvolutionBiasSignedAdd
;
...
...
src/ngraph/serializer.cpp
View file @
1ce31a49
...
...
@@ -964,6 +964,8 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
break
;
}
case
OP_TYPEID
:
:
Convolution
:
{
if
(
op_version
==
0
)
{
auto
window_movement_strides
=
node_js
.
at
(
"window_movement_strides"
).
get
<
vector
<
size_t
>>
();
...
...
@@ -988,7 +990,7 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
if
(
data_dilation_strides
.
empty
())
{
node
=
make_shared
<
op
::
Convolution
>
(
args
[
0
],
node
=
make_shared
<
op
::
v0
::
Convolution
>
(
args
[
0
],
args
[
1
],
window_movement_strides
,
window_dilation_strides
,
...
...
@@ -997,8 +999,8 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
}
else
{
node
=
make_shared
<
op
::
Convolution
>
(
args
[
0
],
node
=
make_shared
<
op
::
v0
::
Convolution
>
(
args
[
0
],
args
[
1
],
window_movement_strides
,
window_dilation_strides
,
...
...
@@ -1007,9 +1009,24 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
data_dilation_strides
.
get
<
std
::
vector
<
size_t
>>
(),
pad_type
);
}
}
if
(
op_version
==
1
)
{
auto
strides
=
node_js
.
at
(
"strides"
).
get
<
vector
<
size_t
>>
();
auto
dilations
=
node_js
.
at
(
"dilations"
).
get
<
vector
<
size_t
>>
();
auto
pads_begin
=
node_js
.
at
(
"pads_begin"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
auto
pads_end
=
node_js
.
at
(
"pads_end"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
op
::
PadType
auto_pad
=
read_pad_type
(
node_js
);
node
=
make_shared
<
op
::
v1
::
Convolution
>
(
args
[
0
],
args
[
1
],
strides
,
pads_begin
,
pads_end
,
dilations
,
auto_pad
);
}
break
;
}
case
OP_TYPEID
:
:
ConvolutionBackpropData
:
{
if
(
op_version
==
0
)
{
auto
data_batch_shape
=
node_js
.
at
(
"data_batch_shape"
).
get
<
vector
<
size_t
>>
();
auto
window_movement_strides_forward
=
...
...
@@ -1022,7 +1039,7 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
node_js
.
at
(
"padding_above_forward"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
auto
data_dilation_strides_forward
=
node_js
.
at
(
"data_dilation_strides_forward"
).
get
<
vector
<
size_t
>>
();
node
=
make_shared
<
op
::
ConvolutionBackpropData
>
(
data_batch_shape
,
node
=
make_shared
<
op
::
v0
::
ConvolutionBackpropData
>
(
data_batch_shape
,
args
[
0
],
args
[
1
],
window_movement_strides_forward
,
...
...
@@ -1030,9 +1047,22 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
padding_below_forward
,
padding_above_forward
,
data_dilation_strides_forward
);
}
if
(
op_version
==
1
)
{
auto
data_batch_shape
=
node_js
.
at
(
"data_batch_shape"
).
get
<
vector
<
size_t
>>
();
auto
strides
=
node_js
.
at
(
"strides"
).
get
<
vector
<
size_t
>>
();
auto
dilations
=
node_js
.
at
(
"dilations"
).
get
<
vector
<
size_t
>>
();
auto
pads_begin
=
node_js
.
at
(
"pads_begin"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
auto
pads_end
=
node_js
.
at
(
"pads_end"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
node
=
make_shared
<
op
::
v1
::
ConvolutionBackpropData
>
(
data_batch_shape
,
args
[
0
],
args
[
1
],
strides
,
dilations
,
pads_begin
,
pads_end
);
}
break
;
}
case
OP_TYPEID
:
:
ConvolutionBackpropFilters
:
{
if
(
op_version
==
0
)
{
auto
filters_shape
=
node_js
.
at
(
"filters_shape"
).
get
<
vector
<
size_t
>>
();
auto
window_movement_strides_forward
=
...
...
@@ -1045,7 +1075,8 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
node_js
.
at
(
"padding_above_forward"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
auto
data_dilation_strides_forward
=
node_js
.
at
(
"data_dilation_strides_forward"
).
get
<
vector
<
size_t
>>
();
node
=
make_shared
<
op
::
ConvolutionBackpropFilters
>
(
args
[
0
],
node
=
make_shared
<
op
::
v0
::
ConvolutionBackpropFilters
>
(
args
[
0
],
filters_shape
,
args
[
1
],
window_movement_strides_forward
,
...
...
@@ -1053,6 +1084,17 @@ shared_ptr<Node> JSONDeserializer::deserialize_node(json node_js)
padding_below_forward
,
padding_above_forward
,
data_dilation_strides_forward
);
}
if
(
op_version
==
1
)
{
auto
filters_shape
=
node_js
.
at
(
"filters_shape"
).
get
<
vector
<
size_t
>>
();
auto
strides
=
node_js
.
at
(
"strides"
).
get
<
vector
<
size_t
>>
();
auto
dilations
=
node_js
.
at
(
"dilations"
).
get
<
vector
<
size_t
>>
();
auto
pads_begin
=
node_js
.
at
(
"pads_begin"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
auto
pads_end
=
node_js
.
at
(
"pads_end"
).
get
<
vector
<
std
::
ptrdiff_t
>>
();
node
=
make_shared
<
op
::
v1
::
ConvolutionBackpropFilters
>
(
args
[
0
],
filters_shape
,
args
[
1
],
strides
,
dilations
,
pads_begin
,
pads_end
);
}
break
;
}
case
OP_TYPEID
:
:
ConvolutionBias
:
...
...
@@ -2483,35 +2525,71 @@ json JSONSerializer::serialize_node(const Node& n)
}
case
OP_TYPEID
:
:
Convolution
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
Convolution
*>
(
&
n
);
if
(
op_version
==
0
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
Convolution
*>
(
&
n
);
node
[
"window_movement_strides"
]
=
tmp
->
get_window_movement_strides
();
node
[
"window_dilation_strides"
]
=
tmp
->
get_window_dilation_strides
();
node
[
"padding_below"
]
=
tmp
->
get_padding_below
();
node
[
"padding_above"
]
=
tmp
->
get_padding_above
();
node
[
"data_dilation_strides"
]
=
tmp
->
get_data_dilation_strides
();
node
[
"pad_type"
]
=
tmp
->
get_pad_type
();
}
if
(
op_version
==
1
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v1
::
Convolution
*>
(
&
n
);
node
[
"strides"
]
=
tmp
->
get_strides
();
node
[
"dilations"
]
=
tmp
->
get_dilations
();
node
[
"pads_begin"
]
=
tmp
->
get_pads_begin
();
node
[
"pads_end"
]
=
tmp
->
get_pads_end
();
node
[
"auto_pad"
]
=
tmp
->
get_auto_pad
();
}
break
;
}
case
OP_TYPEID
:
:
ConvolutionBackpropData
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
ConvolutionBackpropData
*>
(
&
n
);
if
(
op_version
==
0
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
ConvolutionBackpropData
*>
(
&
n
);
node
[
"data_batch_shape"
]
=
tmp
->
get_data_batch_shape
();
node
[
"window_movement_strides_forward"
]
=
tmp
->
get_window_movement_strides_forward
();
node
[
"window_dilation_strides_forward"
]
=
tmp
->
get_window_dilation_strides_forward
();
node
[
"padding_below_forward"
]
=
tmp
->
get_padding_below_forward
();
node
[
"padding_above_forward"
]
=
tmp
->
get_padding_above_forward
();
node
[
"data_dilation_strides_forward"
]
=
tmp
->
get_data_dilation_strides_forward
();
}
if
(
op_version
==
1
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v1
::
ConvolutionBackpropData
*>
(
&
n
);
node
[
"data_batch_shape"
]
=
tmp
->
get_data_batch_shape
();
node
[
"strides"
]
=
tmp
->
get_strides
();
node
[
"dilations"
]
=
tmp
->
get_dilations
();
node
[
"pads_begin"
]
=
tmp
->
get_pads_begin
();
node
[
"pads_end"
]
=
tmp
->
get_pads_end
();
}
break
;
}
case
OP_TYPEID
:
:
ConvolutionBackpropFilters
:
{
auto
tmp
=
dynamic_cast
<
const
op
::
ConvolutionBackpropFilters
*>
(
&
n
);
if
(
op_version
==
0
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v0
::
ConvolutionBackpropFilters
*>
(
&
n
);
node
[
"filters_shape"
]
=
tmp
->
get_filters_shape
();
node
[
"window_movement_strides_forward"
]
=
tmp
->
get_window_movement_strides_forward
();
node
[
"window_dilation_strides_forward"
]
=
tmp
->
get_window_dilation_strides_forward
();
node
[
"padding_below_forward"
]
=
tmp
->
get_padding_below_forward
();
node
[
"padding_above_forward"
]
=
tmp
->
get_padding_above_forward
();
node
[
"data_dilation_strides_forward"
]
=
tmp
->
get_data_dilation_strides_forward
();
}
if
(
op_version
==
1
)
{
auto
tmp
=
dynamic_cast
<
const
op
::
v1
::
ConvolutionBackpropFilters
*>
(
&
n
);
node
[
"filters_shape"
]
=
tmp
->
get_filters_shape
();
node
[
"strides"
]
=
tmp
->
get_strides
();
node
[
"dilations"
]
=
tmp
->
get_dilations
();
node
[
"pads_begin"
]
=
tmp
->
get_pads_begin
();
node
[
"pads_end"
]
=
tmp
->
get_pads_end
();
}
break
;
}
case
OP_TYPEID
:
:
ConvolutionBias
:
...
...
test/CMakeLists.txt
View file @
1ce31a49
...
...
@@ -69,13 +69,14 @@ set(SRC
node_input_output.cpp
nop_elimination.cpp
op.cpp
opset_pass/convolution_opset_pass.cpp
opset_pass/gather_opset_pass.cpp
opset_pass/pad_opset_pass.cpp
opset_pass/poolings_opset_pass.cpp
opset_pass/product_opset_pass.cpp
opset_pass/reverse_opset_pass.cpp
opset_pass/softmax_opset_pass.cpp
opset_pass/sum_opset_pass.cpp
opset_pass/poolings_opset_pass.cpp
partial_shape.cpp
pass.cpp
pass_liveness.cpp
...
...
test/opset_pass/convolution_opset_pass.cpp
0 → 100644
View file @
1ce31a49
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/opset1_upgrade.hpp"
#include "util/test_control.hpp"
#include "util/type_prop.hpp"
using
namespace
std
;
using
namespace
ngraph
;
TEST
(
upgrade_pass
,
opset1_convolution_pass
)
{
auto
data
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
1
,
3
,
6
,
9
});
auto
filters
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
1
,
3
,
3
,
3
});
CoordinateDiff
pads_begin
{
0
,
0
};
CoordinateDiff
pads_end
{
0
,
0
};
Strides
strides
{
1
,
1
};
Strides
dilations
{
1
,
1
};
Strides
data_dilations_strides
{
1
,
1
};
op
::
PadType
pad_type
=
op
::
PadType
::
EXPLICIT
;
auto
convolution_v0
=
make_shared
<
op
::
v0
::
Convolution
>
(
data
,
filters
,
strides
,
dilations
,
pads_begin
,
pads_end
,
data_dilations_strides
,
pad_type
);
auto
result
=
make_shared
<
op
::
Result
>
(
convolution_v0
);
auto
f
=
make_shared
<
Function
>
(
ResultVector
{
result
},
ParameterVector
{
data
,
filters
});
ngraph
::
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
pass
::
Opset1Upgrade
>
();
pass_manager
.
run_passes
(
f
);
auto
convolution_s1_result
=
f
->
get_results
().
at
(
0
);
auto
node
=
convolution_s1_result
->
input
(
0
).
get_source_output
().
get_node_shared_ptr
();
auto
convolution_v1_node
=
static_pointer_cast
<
op
::
v1
::
Convolution
>
(
node
);
EXPECT_EQ
(
convolution_v1_node
->
description
(),
"Convolution"
);
EXPECT_EQ
(
convolution_v1_node
->
get_version
(),
1
);
EXPECT_EQ
(
convolution_v1_node
->
get_pads_begin
(),
pads_begin
);
EXPECT_EQ
(
convolution_v1_node
->
get_pads_end
(),
pads_end
);
EXPECT_EQ
(
convolution_v1_node
->
get_strides
(),
strides
);
EXPECT_EQ
(
convolution_v1_node
->
get_auto_pad
(),
pad_type
);
EXPECT_EQ
(
convolution_v1_node
->
get_dilations
(),
dilations
);
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment