Commit 1bb52e61 authored by Jai Menon's avatar Jai Menon Committed by GitHub

Merge branch 'master' into jmenon/codegen

parents 9a19500f 6f38615d
......@@ -6,7 +6,7 @@ RUN apt-get update && apt-get install -y \
build-essential cmake \
clang-3.9 clang-format-3.9 \
git \
wget patch diffutils
wget patch diffutils zlib1g-dev libtinfo-dev
RUN apt-get clean autoclean && \
apt-get autoremove -y
......
......@@ -14,9 +14,11 @@
set (SRC
descriptor/input.cpp
descriptor/layout/dense_tensor_view_layout.cpp
descriptor/layout/tensor_view_layout.cpp
descriptor/output.cpp
descriptor/primary_tensor_view.cpp
descriptor/tensor.cpp
descriptor/tensor_view.cpp
descriptor/tuple.cpp
function.cpp
log.cpp
......@@ -50,8 +52,13 @@ set (SRC
pass/propagate_types.cpp
pass/topological_sort.cpp
pass/visualize_tree.cpp
runtime/call_frame.cpp
runtime/external_function.cpp
runtime/backend.cpp
runtime/manager.cpp
runtime/ngvm/call_frame.cpp
runtime/ngvm/external_function.cpp
runtime/ngvm/ngvm_backend.cpp
runtime/ngvm/ngvm_manager.cpp
runtime/tensor_view.cpp
runtime/tuple.cpp
runtime/utils.cpp
shape.cpp
......
......@@ -14,8 +14,6 @@
#pragma once
#include <memory>
namespace ngraph
{
namespace descriptor
......
......@@ -12,9 +12,9 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/descriptor/input.hpp"
#include "ngraph/descriptor/output.hpp"
using namespace std;
using namespace ngraph;
using namespace descriptor;
......
......@@ -15,6 +15,7 @@
#include "ngraph/descriptor/layout/dense_tensor_view_layout.hpp"
#include "ngraph/except.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/types/element_type.hpp"
using namespace ngraph::descriptor::layout;
using ngraph::Shape;
......
......@@ -14,16 +14,17 @@
#pragma once
#include <cstddef>
#include <vector>
#include "ngraph/descriptor/buffer.hpp"
#include "ngraph/descriptor/layout/tensor_view_layout.hpp"
#include "ngraph/descriptor/tensor_view.hpp"
namespace ngraph
{
namespace descriptor
{
class TensorView;
namespace layout
{
/// @brief The standard strided layout, used for row-major and column-major, their permutations and slices.
......
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/descriptor/layout/tensor_view_layout.hpp"
#include "ngraph/descriptor/tensor_view.hpp"
#include "ngraph/types/element_type.hpp"
using namespace ngraph::descriptor::layout;
TensorViewLayout::TensorViewLayout(const ngraph::descriptor::TensorView& tensor_view)
: m_tensor_view_type(tensor_view.get_tensor_view_type())
{
}
const ngraph::element::Type& TensorViewLayout::get_element_type() const
{
return m_tensor_view_type->get_element_type();
}
const ngraph::Shape& TensorViewLayout::get_shape() const
{
return m_tensor_view_type->get_shape();
}
......@@ -14,6 +14,7 @@
#pragma once
#include <memory>
#include <tuple>
#include <vector>
......@@ -22,6 +23,11 @@
namespace ngraph
{
namespace element
{
class Type;
}
namespace descriptor
{
class TensorView;
......@@ -34,10 +40,7 @@ namespace ngraph
class TensorViewLayout
{
protected:
TensorViewLayout(const ngraph::descriptor::TensorView& tensor_view)
: m_tensor_view_type(tensor_view.get_tensor_view_type())
{
}
TensorViewLayout(const ngraph::descriptor::TensorView& tensor_view);
public:
virtual ~TensorViewLayout() {}
......@@ -51,11 +54,8 @@ namespace ngraph
/// With non-linear buffers, this will need to be something other than size_t.
virtual size_t get_index_offset(const std::vector<size_t>& indices) = 0;
const element::Type& get_element_type() const
{
return m_tensor_view_type->get_element_type();
}
const Shape& get_shape() const { return m_tensor_view_type->get_shape(); }
const element::Type& get_element_type() const;
const Shape& get_shape() const;
/// Where this view is located in the buffer.
const BufferPos& get_buffer_pos() const { return m_buffer_pos; }
BufferPos& get_buffer_pos() { return m_buffer_pos; }
......
......@@ -12,11 +12,12 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/descriptor/output.hpp"
#include "ngraph/descriptor/input.hpp"
using namespace std;
using namespace ngraph;
using namespace descriptor;
using namespace ngraph::descriptor;
Output::Output(const std::shared_ptr<Node>& node,
size_t index,
......
......@@ -18,6 +18,7 @@
#include <set>
#include "ngraph/descriptor/tensor_view.hpp"
#include "ngraph/node.hpp"
namespace ngraph
{
......
......@@ -12,14 +12,12 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/descriptor/tensor_view.hpp"
#include "ngraph/types/type.hpp"
using namespace ngraph::descriptor;
namespace ngraph
std::shared_ptr<const ngraph::ValueType> TensorView::get_value_type() const
{
namespace runtime
{
using TensorViewIndex = unordered_map<shared_ptr<ngraph::descriptor::TensorView>, size_t>;
}
return m_tensor_view_type;
}
......@@ -16,15 +16,13 @@
#include <memory>
#include "ngraph/descriptor/tensor.hpp"
#include "ngraph/descriptor/value.hpp"
#include "ngraph/log.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/types/type.hpp"
namespace ngraph
{
class Node;
class TensorViewType;
namespace descriptor
{
......@@ -34,6 +32,9 @@ namespace ngraph
class TensorViewLayout;
}
class Tensor;
class TensorView;
/// @brief Compile-time descriptor of a first-class value that is a view of a tensor.
class TensorView : public Value
{
......@@ -51,10 +52,7 @@ namespace ngraph
virtual const Tensor& get_tensor() const = 0;
virtual Tensor& get_tensor() = 0;
virtual std::shared_ptr<const ValueType> get_value_type() const override
{
return m_tensor_view_type;
}
virtual std::shared_ptr<const ValueType> get_value_type() const override;
const std::string& get_name() const { return m_name; }
std::shared_ptr<const TensorViewType> get_tensor_view_type() const
......
......@@ -15,11 +15,12 @@
#pragma once
#include <memory>
#include "ngraph/types/type.hpp"
#include <vector>
namespace ngraph
{
class ValueType;
namespace descriptor
{
class TensorView;
......
......@@ -25,7 +25,6 @@
#include "ngraph/node.hpp"
#include "ngraph/ops/op.hpp"
#include "ngraph/ops/parameter.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/types/type.hpp"
namespace ngraph
......
......@@ -80,9 +80,12 @@
#include "ngraph/ops/select.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/tuple.hpp"
#include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/external_function.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/manager.hpp"
#include "ngraph/runtime/ngvm/ngvm_backend.hpp"
#include "ngraph/runtime/ngvm/ngvm_manager.hpp"
#include "ngraph/runtime/parameterized_tensor_view.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tuple.hpp"
......
......@@ -22,17 +22,13 @@
#include <iostream>
#include "ngraph/common.hpp"
#include "ngraph/descriptor/input.hpp"
#include "ngraph/descriptor/output.hpp"
#include "ngraph/descriptor/tensor.hpp"
#include "ngraph/types/type.hpp"
namespace ngraph
{
namespace descriptor
{
class Input;
class Output;
class Tensor;
}
/// Nodes are the backbone of the graph of Value dataflow. Every node has
/// zero or more nodes as arguments and one value, which is either a tensor
/// view or a (possibly empty) tuple of values.
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/op.hpp"
using namespace std;
using namespace ngraph;
......
......@@ -15,7 +15,7 @@
#include <memory>
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/op.hpp"
using namespace std;
using namespace ngraph;
......
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/op.hpp"
using namespace std;
using namespace ngraph;
......
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/broadcast.hpp"
using namespace std;
using namespace ngraph::op;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,7 +14,7 @@
#include <memory>
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/concatenate.hpp"
using namespace std;
using namespace ngraph::op;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/constant.hpp"
using namespace ngraph::op;
......
......@@ -16,6 +16,7 @@
#include <sstream>
#include "ngraph/node.hpp"
#include "ngraph/runtime/utils.hpp"
#include "ngraph/types/element_type.hpp"
......
......@@ -14,7 +14,7 @@
#include <memory>
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/convert.hpp"
using namespace std;
using namespace ngraph;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,7 +14,7 @@
#include <memory>
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/dot.hpp"
using namespace std;
using namespace ngraph::op;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/pass/topological_sort.hpp"
#include "ngraph/ops/function_call.hpp"
#include "ngraph/function.hpp"
using namespace std;
using namespace ngraph::op;
......
......@@ -14,7 +14,7 @@
#pragma once
#include "ngraph/pass/manager.hpp"
#include "ngraph/ops/op.hpp"
#include "ngraph/pass/propagate_types.hpp"
namespace ngraph
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -15,7 +15,7 @@
#include <algorithm>
#include <sstream>
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/op.hpp"
using namespace ngraph;
using namespace std;
......@@ -14,7 +14,7 @@
#include <sstream>
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/parameter.hpp"
using namespace std;
using namespace ngraph::op;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -12,8 +12,8 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ngraph.hpp"
#include "ngraph/pass/topological_sort.hpp"
#include "ngraph/ops/reduce.hpp"
#include "ngraph/function.hpp"
using namespace std;
using namespace ngraph::op;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -15,7 +15,7 @@
#include <memory>
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/select.hpp"
using namespace std;
using namespace ngraph;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -15,7 +15,7 @@
#include <memory>
#include <vector>
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/tuple.hpp"
using namespace std;
using namespace ngraph::op;
......
......@@ -14,6 +14,8 @@
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
......
......@@ -12,11 +12,8 @@
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include <memory>
#include "ngraph/ops/op.hpp"
#include "ngraph/ngraph.hpp"
using namespace std;
using namespace ngraph;
using namespace ngraph::op;
......
......@@ -14,7 +14,7 @@
#include <memory>
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/op.hpp"
using namespace std;
using namespace ngraph;
......
......@@ -22,7 +22,6 @@ namespace ngraph
{
class AssignTensors;
}
class Node;
}
class ngraph::pass::AssignTensors : public CallGraphPass
......
......@@ -14,7 +14,8 @@
#include <fstream>
#include "ngraph/ngraph.hpp"
#include "ngraph/descriptor/input.hpp"
#include "ngraph/descriptor/output.hpp"
#include "ngraph/pass/dump_sorted.hpp"
#include "ngraph/util.hpp"
......
......@@ -24,7 +24,6 @@ namespace ngraph
{
class DumpSorted;
}
class Node;
}
class ngraph::pass::DumpSorted : public ModulePass
......
......@@ -16,9 +16,10 @@
#include <sstream>
#include <unordered_set>
#include "ngraph/descriptor/input.hpp"
#include "ngraph/descriptor/output.hpp"
#include "ngraph/log.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/node.hpp"
#include "ngraph/pass/assign_tensors.hpp"
#include "ngraph/pass/liveness.hpp"
#include "ngraph/util.hpp"
......
......@@ -23,7 +23,6 @@ namespace ngraph
{
class Liveness;
}
class Node;
}
class ngraph::pass::Liveness : public CallGraphPass
......
......@@ -28,9 +28,6 @@ namespace ngraph
class Manager;
class ManagerState;
}
class Node;
class Function;
}
class ngraph::pass::Manager
......
......@@ -17,15 +17,14 @@
#include <memory>
#include <vector>
#include "ngraph/function.hpp"
namespace ngraph
{
namespace pass
{
class ManagerState;
}
class Node;
class Function;
}
class ngraph::pass::ManagerState
......
......@@ -17,7 +17,6 @@
#include "ngraph/log.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/pass/liveness.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/memory_layout.hpp"
......
......@@ -28,7 +28,6 @@ namespace ngraph
class MemoryNode;
class MemoryManager;
}
class Node;
}
class ngraph::pass::MemoryLayout : public CallGraphPass
......
......@@ -26,7 +26,6 @@ namespace ngraph
{
class MemoryVisualize;
}
class Node;
}
class ngraph::pass::MemoryVisualize : public ModulePass
......
......@@ -18,7 +18,9 @@
#include <memory>
#include <vector>
#include "ngraph/function.hpp"
#include "ngraph/node.hpp"
#include "ngraph/pass/manager_state.hpp"
namespace ngraph
{
......@@ -30,9 +32,7 @@ namespace ngraph
class NodePass;
class CallGraphPass;
class Manager;
class ManagerState;
}
class Function;
}
class ngraph::pass::PassBase
......
......@@ -22,7 +22,6 @@ namespace ngraph
{
class PropagateTypes;
}
class Node;
}
class ngraph::pass::PropagateTypes : public CallGraphPass
......
......@@ -25,7 +25,6 @@ namespace ngraph
{
class TopologicalSort;
}
class Node;
}
class ngraph::pass::TopologicalSort : public FunctionPass
......
......@@ -26,7 +26,6 @@ namespace ngraph
{
class VisualizeTree;
}
class Node;
}
class ngraph::pass::VisualizeTree : public ModulePass
......
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include <memory>
#include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tuple.hpp"
#include "ngraph/types/element_type.hpp"
using namespace ngraph::runtime;
std::shared_ptr<TensorView>
Backend::make_primary_tensor_view(const ngraph::element::Type& element_type, const Shape& shape)
{
return element_type.make_primary_tensor_view(shape);
}
std::shared_ptr<ngraph::runtime::Tuple>
Backend::make_tuple(const std::vector<std::shared_ptr<ngraph::runtime::Value>>& elements)
{
return std::make_shared<ngraph::runtime::Tuple>(elements);
}
......@@ -14,46 +14,57 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include <memory>
#include "ngraph/common.hpp"
namespace ngraph
{
namespace runtime
namespace element
{
namespace eigen
class Type;
}
namespace runtime
{
class ExternalFunction;
class CallFrame;
class TensorView;
class Tuple;
class Value;
template <typename ET>
class ScalarTensorProductInstruction : public Instruction
class ParameterizedTensorView;
/// @brief Interface to a generic backend.
///
/// Backends are responsible for function execution and value allocation.
class Backend
{
public:
ScalarTensorProductInstruction(const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
}
virtual ~Backend() {}
/// @brief Make a call frame that can support one concurrent call of an external function.
///
/// If more than one concurrent execution is needed, each execution will require its own call frame.
virtual std::shared_ptr<ngraph::runtime::CallFrame>
make_call_frame(const std::shared_ptr<ExternalFunction>& external_function) = 0;
virtual void execute(CallFrame& call_frame) const override
/// @brief Return a handle for a tensor on the backend device.
virtual std::shared_ptr<ngraph::runtime::TensorView>
make_primary_tensor_view(const ngraph::element::Type& element_type,
const Shape& shape);
template <typename ET>
std::shared_ptr<ngraph::runtime::ParameterizedTensorView<ET>>
make_parameterized_tensor_view(const Shape& shape)
{
// This is a bit hacky: regardless of the tensor rank we
// pull it out as a vector. This works because of the way
// fmt::V computes sizes---it lumps together any higher
// dimensions---while fmt::M ignores them.
EigenVector<ET>(call_frame, m_out) =
call_frame.get_tensor_view_data<ET>(m_arg0.get_index())[0] *
EigenVector<ET>(call_frame, m_arg1);
return std::dynamic_pointer_cast<ngraph::runtime::ParameterizedTensorView<ET>>(
make_primary_tensor_view(ET::element_type(), shape));
}
protected:
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
/// @brief Construct a tuple handle from a sequence of values.
virtual std::shared_ptr<ngraph::runtime::Tuple>
make_tuple(const std::vector<std::shared_ptr<ngraph::runtime::Value>>& elements);
};
}
}
}
......@@ -25,51 +25,23 @@ namespace ngraph
namespace runtime
{
class PrimaryTensorView;
class Instruction;
class Value;
// A VM for executing lightly-compiled graph functions.
class CallFrame
{
public:
CallFrame(
size_t n_inputs,
size_t n_outputs,
const TensorViewPtrs& temps,
size_t initial_pc,
const std::shared_ptr<std::vector<std::shared_ptr<Instruction>>>& instructions);
virtual ~CallFrame() {}
/// @brief Invoke the function with values matching the signature of the function.
///
/// Tuples will be expanded into their tensor views to build the call frame.
void operator()(const std::vector<std::shared_ptr<ngraph::runtime::Value>>& inputs,
const std::vector<std::shared_ptr<ngraph::runtime::Value>>& outputs);
virtual void
operator()(const std::vector<std::shared_ptr<ngraph::runtime::Value>>& inputs,
const std::vector<std::shared_ptr<ngraph::runtime::Value>>& outputs) = 0;
/// @brief Invoke the function with tuples pre-expanded to their underlying tensor views.
void tensor_call(const TensorViewPtrs& inputs, const TensorViewPtrs& outputs);
void set_return() { m_return = true; }
std::shared_ptr<TensorView> get_tensor_view(size_t i) { return m_tensor_views[i]; }
template <typename ET>
ParameterizedTensorView<ET>* get_parameterized_tensor_view(size_t i)
{
return m_tensor_views[i]->get_parameterized_tensor_view<ET>();
}
template <typename ET>
typename ET::type* get_tensor_view_data(size_t i)
{
return &get_parameterized_tensor_view<ET>(i)->get_vector()[0];
}
protected:
size_t m_n_inputs;
size_t m_n_outputs;
TensorViewPtrs m_tensor_views;
size_t m_initial_pc;
std::shared_ptr<std::vector<std::shared_ptr<Instruction>>> m_instructions;
size_t m_pc;
size_t m_next_pc;
bool m_return;
virtual void tensor_call(const TensorViewPtrs& inputs,
const TensorViewPtrs& outputs) = 0;
};
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace eigen
{
template <typename ET>
class DivideInstruction : public Instruction
{
public:
DivideInstruction(const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
EigenArray1d<ET>(call_frame, m_out) =
EigenArray1d<ET>(call_frame, m_arg0) / EigenArray1d<ET>(call_frame, m_arg1);
}
protected:
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
};
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace eigen
{
template <typename ET>
class DotInstruction : public Instruction
{
public:
DotInstruction(const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
EigenArray1d<ET>(call_frame, m_out)
<< EigenVector<ET>(call_frame, m_arg0)
.dot(EigenVector<ET>(call_frame, m_arg1));
}
protected:
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
};
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace eigen
{
template <typename ET>
class MaximumInstruction : public Instruction
{
public:
MaximumInstruction(TensorViewInfo arg0, TensorViewInfo arg1, TensorViewInfo out)
: m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
EigenArray1d<ET>(call_frame, m_out) =
EigenArray1d<ET>(call_frame, m_arg0)
.max(EigenArray1d<ET>(call_frame, m_arg1));
}
protected:
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
};
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <memory>
#include <Eigen/Dense>
#include "ngraph/descriptor/layout/dense_tensor_view_layout.hpp"
#include "ngraph/runtime/tensor_view_info.hpp"
namespace ngraph
{
namespace runtime
{
class TensorViewInfo;
class CallFrame;
namespace eigen
{
using DynamicStrides = Eigen::Stride<Eigen::Dynamic, Eigen::Dynamic>;
using VectorStrides = Eigen::Stride<Eigen::Dynamic, 1>;
template <typename ET>
using DynamicArray = Eigen::Array<typename ET::type, Eigen::Dynamic, Eigen::Dynamic>;
template <typename ET>
using EigenArrayBase = Eigen::Map<DynamicArray<ET>, 0, DynamicStrides>;
template <typename ET>
using DynamicMatrix =
Eigen::Matrix<typename ET::type, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>;
template <typename ET>
using EigenMatrixBase = Eigen::Map<DynamicMatrix<ET>, 0, DynamicStrides>;
template <typename ET>
using DynamicVector = Eigen::Matrix<typename ET::type, Eigen::Dynamic, 1>;
template <typename ET>
using EigenVectorBase = Eigen::Map<DynamicVector<ET>, 0, VectorStrides>;
namespace fmt
{
/// @brief vector format for Eigen wrappers.
class V
{
public:
V(const TensorViewInfo& tensor_view_info)
: l0(tensor_view_info
.get_layout<ngraph::descriptor::layout::DenseTensorViewLayout>()
->get_size())
{
}
public:
size_t l0;
size_t l1{1};
size_t s0{1};
size_t s1{1};
};
class M
{
M(const Shape& shape, const Strides& strides)
: l0(shape.at(0))
, l1(shape.at(1))
, s0(strides.at(0))
, s1(strides.at(1))
{
}
M(const std::shared_ptr<ngraph::descriptor::layout::DenseTensorViewLayout>&
layout)
: M(layout->get_shape(), layout->get_strides())
{
}
public:
M(const TensorViewInfo& tensor_view_info)
: M(tensor_view_info
.get_layout<ngraph::descriptor::layout::DenseTensorViewLayout>())
{
}
public:
size_t l0;
size_t l1;
size_t s0;
size_t s1;
};
}
// ET element type
// FMT array format (fmt::V for vector, etc.)
// BASE select array/matrix
template <typename ET, typename FMT, typename BASE, typename STRIDES = DynamicStrides>
class EigenWrapper : public BASE
{
using base = BASE;
public:
EigenWrapper(typename ET::type* t, const FMT& fmt)
: base(t, fmt.l0, fmt.l1, STRIDES(fmt.s0, fmt.s1))
{
}
EigenWrapper(
typename ET::type* t,
const std::shared_ptr<ngraph::descriptor::layout::DenseTensorViewLayout>&
layout)
: base(t, layout->get_size(), 1, DynamicStrides(1, 1))
{
}
EigenWrapper(CallFrame& call_frame, const TensorViewInfo& tensor_view_info)
: EigenWrapper(
call_frame.get_tensor_view_data<ET>(tensor_view_info.get_index()),
FMT(tensor_view_info))
{
}
template <typename U>
EigenWrapper& operator=(const U& other)
{
this->base::operator=(other);
return *this;
}
};
template <typename ET, typename FMT = fmt::V>
using EigenArray1d = EigenWrapper<ET, FMT, EigenArrayBase<ET>>;
template <typename ET, typename FMT = fmt::M>
using EigenArray2d = EigenWrapper<ET, FMT, EigenArrayBase<ET>>;
template <typename ET, typename FMT = fmt::M>
using EigenMatrix = EigenWrapper<ET, FMT, EigenMatrixBase<ET>>;
template <typename ET, typename FMT = fmt::V>
using EigenVector = EigenWrapper<ET, FMT, EigenVectorBase<ET>, VectorStrides>;
}
}
}
......@@ -26,45 +26,29 @@ namespace ngraph
{
namespace runtime
{
class CallFrame;
class ExternalFunction
{
using FunctionMap =
std::unordered_map<std::shared_ptr<Function>, std::shared_ptr<ExternalFunction>>;
using OpFunction = std::function<void(const ngraph::Node*,
ExternalFunction*,
FunctionMap&,
const std::vector<TensorViewInfo>& inputs,
const std::vector<TensorViewInfo>& outputs)>;
using OpMap = std::unordered_map<std::type_index, OpFunction>;
public:
protected:
ExternalFunction(const std::shared_ptr<ngraph::Function>& function,
bool release_function = true);
std::shared_ptr<ngraph::runtime::CallFrame> make_call_frame();
std::shared_ptr<ngraph::runtime::CallFrame> make_call_frame(FunctionMap& function_map);
std::shared_ptr<std::vector<std::shared_ptr<ngraph::runtime::Instruction>>>
get_instructions()
bool release_function = true)
: m_function(function)
, m_release_function(release_function)
, m_is_compiled(false)
{
return m_instructions;
}
// Release original function's resources
void release_function() { m_function = nullptr; }
protected:
void compile();
void compile(FunctionMap& function_map);
public:
virtual ~ExternalFunction() {}
virtual std::shared_ptr<CallFrame> make_call_frame() = 0;
protected:
std::shared_ptr<ngraph::Function> m_function;
bool m_release_function;
bool m_is_compiled;
size_t m_n_inputs;
size_t m_n_outputs;
std::shared_ptr<std::vector<std::shared_ptr<ngraph::runtime::Instruction>>>
m_instructions;
ngraph::descriptor::TensorViewPtrs m_temp_views;
static OpMap& get_op_map();
};
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/runtime/manager.hpp"
using namespace ngraph::runtime;
Manager::FactoryMap& Manager::get_factory_map()
{
static FactoryMap factory_map;
return factory_map;
}
std::shared_ptr<Manager> Manager::get(const std::string& name)
{
return get_factory_map().at(name)(name);
}
Manager::Factory Manager::register_factory(std::string name, Factory factory)
{
get_factory_map()[name] = factory;
return factory;
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <functional>
#include <map>
#include <memory>
#include <string>
namespace ngraph
{
class Function;
namespace runtime
{
class Backend;
class ExternalFunction;
/// @brief Interface to a generic manager.
///
/// A manager provides access to compilation for a backend, and a means to obtain
/// a backed for execution and allocation.
class Manager
{
public:
virtual ~Manager() {}
/// @brief Allocate a backend for this transformer.
///
/// Specific transformers may provide addtional methods for allocating customized backends.
virtual std::shared_ptr<Backend> allocate_backend() = 0;
/// @brief Convert a function to a form that can be run on a backend.
virtual std::shared_ptr<ExternalFunction>
compile(const std::shared_ptr<ngraph::Function>& fun) = 0;
using Factory = std::function<std::shared_ptr<Manager>(const std::string&)>;
using FactoryMap = std::map<std::string, Factory>;
static FactoryMap& get_factory_map();
static std::shared_ptr<Manager> get(const std::string& name);
static Factory register_factory(std::string name, Factory factory);
};
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include <algorithm>
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
using namespace std;
using namespace ngraph::runtime::ngvm;
CallFrame::CallFrame(size_t n_inputs,
size_t n_outputs,
const TensorViewPtrs& temps,
size_t initial_pc,
const shared_ptr<vector<shared_ptr<Instruction>>>& instructions)
: m_n_inputs(n_inputs)
, m_n_outputs(n_outputs)
, m_tensor_views(n_inputs + n_outputs + temps.size())
, m_initial_pc(initial_pc)
, m_instructions(instructions)
{
copy(temps.begin(), temps.end(), m_tensor_views.begin() + m_n_inputs + m_n_outputs);
}
void CallFrame::tensor_call(
const std::vector<std::shared_ptr<ngraph::runtime::TensorView>>& inputs,
const std::vector<std::shared_ptr<ngraph::runtime::TensorView>>& outputs)
{
copy(inputs.begin(), inputs.end(), m_tensor_views.begin());
copy(outputs.begin(), outputs.end(), m_tensor_views.begin() + m_n_inputs);
m_next_pc = m_initial_pc;
m_return = false;
while (!m_return)
{
m_pc = m_next_pc;
m_next_pc = m_pc + 1;
m_instructions->at(m_pc)->execute(*this);
}
// Don't hold onto inputs/outputs
fill_n(m_tensor_views.begin(), m_n_inputs + m_n_outputs, nullptr);
}
void CallFrame::operator()(const std::vector<std::shared_ptr<ngraph::runtime::Value>>& arguments,
const std::vector<std::shared_ptr<ngraph::runtime::Value>>& results)
{
// TODO: Check types of args and result
std::vector<std::shared_ptr<ngraph::runtime::TensorView>> inputs;
for (auto argument : arguments)
{
argument->collect_tensor_views(inputs, argument);
}
std::vector<std::shared_ptr<ngraph::runtime::TensorView>> outputs;
for (auto result : results)
{
result->collect_tensor_views(outputs, result);
}
tensor_call(inputs, outputs);
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <memory>
#include <vector>
#include "ngraph/function.hpp"
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
class PrimaryTensorView;
namespace ngvm
{
class Instruction;
// A VM for executing lightly-compiled graph functions.
class CallFrame : public ngraph::runtime::CallFrame
{
public:
CallFrame(
size_t n_inputs,
size_t n_outputs,
const TensorViewPtrs& temps,
size_t initial_pc,
const std::shared_ptr<std::vector<std::shared_ptr<Instruction>>>& instructions);
/// @brief Invoke the function with values matching the signature of the function.
///
/// Tuples will be expanded into their tensor views to build the call frame.
void
operator()(const std::vector<std::shared_ptr<ngraph::runtime::Value>>& inputs,
const std::vector<std::shared_ptr<ngraph::runtime::Value>>& outputs);
/// @brief Invoke the function with tuples pre-expanded to their underlying tensor views.
void tensor_call(const TensorViewPtrs& inputs, const TensorViewPtrs& outputs);
void set_return() { m_return = true; }
std::shared_ptr<TensorView> get_tensor_view(size_t i) { return m_tensor_views[i]; }
template <typename ET>
ParameterizedTensorView<ET>* get_parameterized_tensor_view(size_t i)
{
return m_tensor_views[i]->get_parameterized_tensor_view<ET>();
}
template <typename ET>
typename ET::type* get_tensor_view_data(size_t i)
{
return &get_parameterized_tensor_view<ET>(i)->get_vector()[0];
}
protected:
size_t m_n_inputs;
size_t m_n_outputs;
TensorViewPtrs m_tensor_views;
size_t m_initial_pc;
std::shared_ptr<std::vector<std::shared_ptr<Instruction>>> m_instructions;
size_t m_pc;
size_t m_next_pc;
bool m_return;
};
}
}
}
......@@ -14,23 +14,25 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tensor_view_info.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ETI, typename ETO>
class ConvertInstruction : public Instruction
template <typename ET>
class AbsInstruction : public Instruction
{
public:
ConvertInstruction(const TensorViewInfo& arg, const TensorViewInfo& out)
AbsInstruction(const TensorViewInfo& arg, const TensorViewInfo& out)
: m_arg(arg)
, m_out(out)
{
......@@ -38,8 +40,8 @@ namespace ngraph
virtual void execute(CallFrame& call_frame) const override
{
EigenArray1d<ETO>(call_frame, m_out) =
EigenArray1d<ETI>(call_frame, m_arg).template cast<typename ETO::type>();
EigenArray1d<ET>(call_frame, m_out) =
Eigen::abs(EigenArray1d<ET>(call_frame, m_arg));
}
protected:
......@@ -48,4 +50,5 @@ namespace ngraph
};
}
}
}
}
......@@ -14,14 +14,16 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
......@@ -40,8 +42,8 @@ namespace ngraph
virtual void execute(CallFrame& call_frame) const override
{
EigenArray1d<ET>(call_frame, m_out) =
EigenArray1d<ET>(call_frame, m_arg0) + EigenArray1d<ET>(call_frame, m_arg1);
EigenArray1d<ET>(call_frame, m_out) = EigenArray1d<ET>(call_frame, m_arg0) +
EigenArray1d<ET>(call_frame, m_arg1);
}
protected:
......@@ -51,4 +53,5 @@ namespace ngraph
};
}
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class BroadcastScalarInstruction : public Instruction
{
public:
BroadcastScalarInstruction(const TensorViewInfo& arg, const TensorViewInfo& out)
: m_arg(arg)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
// This is a bit hacky: regardless of the tensor rank we
// pull it out as a vector. This works because of the way
// fmt::V computes sizes---it lumps together any higher
// dimensions---while fmt::M ignores them.
EigenArray1d<ET>(call_frame, m_out) =
EigenArray1d<ET>(call_frame, m_arg)(0, 0);
}
protected:
TensorViewInfo m_arg;
TensorViewInfo m_out;
};
}
}
}
}
......@@ -14,41 +14,42 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class EqualInstruction : public Instruction
class BroadcastVectorColwiseInstruction : public Instruction
{
public:
EqualInstruction(TensorViewInfo arg0, TensorViewInfo arg1, TensorViewInfo out)
: m_arg0(arg0)
, m_arg1(arg1)
BroadcastVectorColwiseInstruction(const TensorViewInfo& arg,
const TensorViewInfo& out)
: m_arg(arg)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
EigenArray1d<element::Bool>(call_frame, m_out) =
(EigenArray1d<ET>(call_frame, m_arg0) ==
EigenArray1d<ET>(call_frame, m_arg1))
.template cast<char>();
EigenMatrix<ET>(call_frame, m_out).colwise() =
EigenVector<ET>(call_frame, m_arg);
}
protected:
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_arg;
TensorViewInfo m_out;
};
}
}
}
}
......@@ -14,14 +14,16 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
......@@ -48,4 +50,5 @@ namespace ngraph
};
}
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <memory>
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/external_function.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
class CallInstruction : public Instruction
{
public:
CallInstruction(std::shared_ptr<ExternalFunction> ef,
std::vector<TensorViewInfo> in,
std::vector<TensorViewInfo> out)
: m_external_function(ef)
, m_in(in)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
std::shared_ptr<CallFrame> cf = std::dynamic_pointer_cast<CallFrame>(
m_external_function->make_call_frame());
std::vector<std::shared_ptr<ngraph::runtime::Value>> inputs;
std::vector<std::shared_ptr<ngraph::runtime::Value>> outputs;
for (auto in : m_in)
{
inputs.push_back(call_frame.get_tensor_view(in.get_index()));
}
for (auto out : m_out)
{
outputs.push_back(call_frame.get_tensor_view(out.get_index()));
}
(*cf)(inputs, outputs);
}
protected:
std::shared_ptr<ExternalFunction> m_external_function;
std::vector<TensorViewInfo> m_in;
std::vector<TensorViewInfo> m_out;
};
}
}
}
}
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tensor_view_info.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class ConcatMatrixInstruction : public Instruction
{
public:
ConcatMatrixInstruction(const std::vector<TensorViewInfo>& args,
size_t axis,
const TensorViewInfo& out)
: m_args(args)
, m_axis(axis)
, m_out(out)
{
size_t concat_pos[2]{0, 0};
for (auto arg : args)
{
auto& arg_shape = arg.get_tensor_view_layout()->get_shape();
m_blocks.push_back(
{concat_pos[0], concat_pos[1], arg_shape.at(0), arg_shape.at(1)});
concat_pos[axis] += arg_shape.at(axis);
}
}
virtual void execute(CallFrame& call_frame) const override
{
EigenMatrix<ET> out(call_frame, m_out);
for (size_t i = 0; i < m_args.size(); i++)
{
auto& b = m_blocks[i];
out.block(b[0], b[1], b[2], b[3])
<< EigenMatrix<ET>(call_frame, m_args.at(i));
}
}
protected:
std::vector<TensorViewInfo> m_args;
size_t m_axis;
TensorViewInfo m_out;
std::vector<std::vector<size_t>> m_blocks;
};
}
}
}
}
......@@ -14,56 +14,57 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include <vector>
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tensor_view_info.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
// Would be better to just generate a sequence of copy into slice of output instructions
template <typename ET>
class ConcatMatrixInstruction : public Instruction
class ConcatVectorInstruction : public Instruction
{
public:
ConcatMatrixInstruction(const std::vector<TensorViewInfo>& args,
size_t axis,
ConcatVectorInstruction(const std::vector<TensorViewInfo>& args,
const TensorViewInfo& out)
: m_args(args)
, m_axis(axis)
, m_out(out)
{
size_t concat_pos[2]{0, 0};
for (auto arg : args)
{
auto& arg_shape = arg.get_tensor_view_layout()->get_shape();
m_blocks.push_back(
{concat_pos[0], concat_pos[1], arg_shape.at(0), arg_shape.at(1)});
concat_pos[axis] += arg_shape.at(axis);
m_sizes.push_back(arg_shape.at(0));
}
}
virtual void execute(CallFrame& call_frame) const override
{
EigenMatrix<ET> out(call_frame, m_out);
EigenVector<ET> out(call_frame, m_out);
size_t concat_pos = 0;
for (size_t i = 0; i < m_args.size(); i++)
{
auto& b = m_blocks[i];
out.block(b[0], b[1], b[2], b[3])
<< EigenMatrix<ET>(call_frame, m_args.at(i));
out.segment(concat_pos, m_sizes[i])
<< EigenVector<ET>(call_frame, m_args.at(i));
concat_pos += m_sizes[i];
}
}
protected:
std::vector<TensorViewInfo> m_args;
size_t m_axis;
TensorViewInfo m_out;
std::vector<std::vector<size_t>> m_blocks;
std::vector<size_t> m_sizes;
};
}
}
}
}
......@@ -14,42 +14,42 @@
#pragma once
#include <cassert>
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tensor_view_info.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
/// @brief Copies a tensor from in to out.
template <typename ET>
class CopyInstruction : public Instruction
class ConstantInstruction : public Instruction
{
public:
/// @param in Index of input tensor in call frame.
/// @param out Index of output tensor in call frame.
CopyInstruction(size_t in, size_t out)
: m_in(in)
ConstantInstruction(const std::vector<typename ET::type> value,
const TensorViewInfo& out)
: m_value(value)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
call_frame.get_parameterized_tensor_view<ET>(m_out)->get_vector() =
call_frame.get_parameterized_tensor_view<ET>(m_in)->get_vector();
call_frame.get_parameterized_tensor_view<ET>(m_out.get_index())
->get_vector() = m_value;
}
protected:
size_t m_in;
size_t m_out;
const std::vector<typename ET::type> m_value;
TensorViewInfo m_out;
};
}
}
}
}
......@@ -14,39 +14,42 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tensor_view_info.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class ConstantInstruction : public Instruction
template <typename ETI, typename ETO>
class ConvertInstruction : public Instruction
{
public:
ConstantInstruction(const std::vector<typename ET::type> value,
const TensorViewInfo& out)
: m_value(value)
ConvertInstruction(const TensorViewInfo& arg, const TensorViewInfo& out)
: m_arg(arg)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
call_frame.get_parameterized_tensor_view<ET>(m_out.get_index())->get_vector() =
m_value;
EigenArray1d<ETO>(call_frame, m_out) =
EigenArray1d<ETI>(call_frame, m_arg)
.template cast<typename ETO::type>();
}
protected:
const std::vector<typename ET::type> m_value;
TensorViewInfo m_arg;
TensorViewInfo m_out;
};
}
}
}
}
......@@ -14,41 +14,45 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include <cassert>
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
/// @brief Copies a tensor from in to out.
template <typename ET>
class LessEqInstruction : public Instruction
class CopyInstruction : public Instruction
{
public:
LessEqInstruction(TensorViewInfo arg0, TensorViewInfo arg1, TensorViewInfo out)
: m_arg0(arg0)
, m_arg1(arg1)
/// @param in Index of input tensor in call frame.
/// @param out Index of output tensor in call frame.
CopyInstruction(size_t in, size_t out)
: m_in(in)
, m_out(out)
{
}
virtual void execute(CallFrame& call_frame) const override
{
EigenArray1d<element::Bool>(call_frame, m_out) =
(EigenArray1d<ET>(call_frame, m_arg0) <=
EigenArray1d<ET>(call_frame, m_arg1))
.template cast<char>();
call_frame.get_parameterized_tensor_view<ET>(m_out)->get_vector() =
call_frame.get_parameterized_tensor_view<ET>(m_in)->get_vector();
}
protected:
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
size_t m_in;
size_t m_out;
};
}
}
}
}
......@@ -14,22 +14,24 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
template <typename ET>
class MatrixMultInstruction : public Instruction
class DivideInstruction : public Instruction
{
public:
MatrixMultInstruction(const TensorViewInfo& arg0,
DivideInstruction(const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_arg0(arg0)
......@@ -40,8 +42,8 @@ namespace ngraph
virtual void execute(CallFrame& call_frame) const override
{
EigenMatrix<ET>(call_frame, m_out) =
EigenMatrix<ET>(call_frame, m_arg0) * EigenMatrix<ET>(call_frame, m_arg1);
EigenArray1d<ET>(call_frame, m_out) = EigenArray1d<ET>(call_frame, m_arg0) /
EigenArray1d<ET>(call_frame, m_arg1);
}
protected:
......@@ -51,4 +53,5 @@ namespace ngraph
};
}
}
}
}
......@@ -14,51 +14,45 @@
#pragma once
#include "ngraph/runtime/call_frame.hpp"
#include "ngraph/runtime/eigen/utils.hpp"
#include "ngraph/runtime/instruction.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace eigen
{
// Would be better to just generate a sequence of copy into slice of output instructions
template <typename ET>
class ConcatVectorInstruction : public Instruction
class DotInstruction : public Instruction
{
public:
ConcatVectorInstruction(const std::vector<TensorViewInfo>& args,
DotInstruction(const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out)
: m_args(args)
: m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
{
for (auto arg : args)
{
auto& arg_shape = arg.get_tensor_view_layout()->get_shape();
m_sizes.push_back(arg_shape.at(0));
}
}
virtual void execute(CallFrame& call_frame) const override
{
EigenVector<ET> out(call_frame, m_out);
size_t concat_pos = 0;
for (size_t i = 0; i < m_args.size(); i++)
{
out.segment(concat_pos, m_sizes[i])
<< EigenVector<ET>(call_frame, m_args.at(i));
concat_pos += m_sizes[i];
}
EigenArray1d<ET>(call_frame, m_out)
<< EigenVector<ET>(call_frame, m_arg0)
.dot(EigenVector<ET>(call_frame, m_arg1));
}
protected:
std::vector<TensorViewInfo> m_args;
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
std::vector<size_t> m_sizes;
};
}
}
}
}
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment