Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
1b3f0e07
Commit
1b3f0e07
authored
Oct 14, 2017
by
Scott Cyphers
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Tensor initializers
parent
77b216aa
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
226 additions
and
6 deletions
+226
-6
clang_4_0_flags.cmake
cmake/clang_4_0_flags.cmake
+1
-0
ndarray.hpp
src/ngraph/runtime/ndarray.hpp
+201
-0
parameterized_tensor_view.hpp
src/ngraph/runtime/parameterized_tensor_view.hpp
+18
-0
execute.cpp
test/execute.cpp
+6
-6
No files found.
cmake/clang_4_0_flags.cmake
View file @
1b3f0e07
...
@@ -13,6 +13,7 @@
...
@@ -13,6 +13,7 @@
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Werror=return-type"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Werror=return-type"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Werror=inconsistent-missing-override"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Werror=inconsistent-missing-override"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-pedantic-errors"
)
# whitelist errors here
# whitelist errors here
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Weverything"
)
set
(
CMAKE_CXX_FLAGS
"
${
CMAKE_CXX_FLAGS
}
-Weverything"
)
...
...
src/ngraph/runtime/ndarray.hpp
0 → 100644
View file @
1b3f0e07
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
// Based on the Matrix class in
// The C++ Programming Language
// Fourth edition
// Bjarne Stroustrup
// Addison-Wesley, Boston, 2013.
#pragma once
#include <algorithm>
#include <cassert>
#include <cstring>
#include <memory>
#include <type_traits>
#include <vector>
namespace
ngraph
{
namespace
runtime
{
namespace
init
{
// Recursively define types for N-deep initializer lists
template
<
typename
T
,
size_t
N
>
struct
NestedInitializerListWrapper
{
using
type
=
std
::
initializer_list
<
typename
NestedInitializerListWrapper
<
T
,
N
-
1
>::
type
>
;
};
// 1-deep is a plain initializer_list
template
<
typename
T
>
struct
NestedInitializerListWrapper
<
T
,
1
>
{
using
type
=
std
::
initializer_list
<
T
>
;
};
// Scalar case is just the element type
template
<
typename
T
>
struct
NestedInitializerListWrapper
<
T
,
0
>
{
using
type
=
T
;
};
// Convenience type name for N-deep initializer lists of Ts
template
<
typename
T
,
size_t
N
>
using
NestedInitializerList
=
typename
NestedInitializerListWrapper
<
T
,
N
>::
type
;
// Fill in a shape from a nested initializer list
// For a scalar, nothing to do.
template
<
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
==
0
),
void
>::
type
fill_shape
(
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
}
// Check that the inits match the shape
template
<
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
==
0
),
void
>::
type
check_shape
(
const
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
assert
(
shape
.
size
()
==
0
);
}
// For a plain initializer list, the shape is the length of the list.
template
<
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
==
1
)
>::
type
fill_shape
(
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
shape
.
push_back
(
inits
.
size
());
}
template
<
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
==
1
)
>::
type
check_shape
(
const
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
assert
(
shape
.
at
(
shape
.
size
()
-
N
)
==
inits
.
size
());
}
// In the general case, we append our level's length and recurse.
template
<
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
>
1
),
void
>::
type
fill_shape
(
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
shape
.
push_back
(
inits
.
size
());
fill_shape
<
T
,
N
-
1
>
(
shape
,
*
inits
.
begin
());
}
template
<
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
>
1
),
void
>::
type
check_shape
(
const
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
assert
(
shape
.
at
(
shape
.
size
()
-
N
)
==
inits
.
size
());
for
(
auto
it
:
inits
)
{
check_shape
<
T
,
N
-
1
>
(
shape
,
it
);
}
}
// Get the shape of inits.
template
<
typename
T
,
size_t
N
>
Shape
get_shape
(
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
Shape
shape
;
fill_shape
<
T
,
N
>
(
shape
,
inits
);
check_shape
<
T
,
N
>
(
shape
,
inits
);
return
shape
;
}
template
<
typename
IT
,
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
==
1
),
IT
>::
type
flatten
(
IT
it
,
const
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
assert
(
inits
.
size
()
==
shape
.
at
(
shape
.
size
()
-
N
));
for
(
auto
it1
:
inits
)
{
*
(
it
++
)
=
it1
;
}
return
it
;
}
template
<
typename
IT
,
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
>
1
),
IT
>::
type
flatten
(
IT
it
,
const
Shape
&
shape
,
const
NestedInitializerList
<
T
,
N
>&
inits
)
{
assert
(
inits
.
size
()
==
shape
.
at
(
shape
.
size
()
-
N
));
for
(
auto
it1
:
inits
)
{
it
=
flatten
<
IT
,
T
,
N
-
1
>
(
it
,
shape
,
it1
);
}
return
it
;
}
template
<
typename
IT
,
typename
T
,
size_t
N
>
typename
std
::
enable_if
<
(
N
==
0
),
IT
>::
type
flatten
(
IT
it
,
const
Shape
&
shape
,
const
NestedInitializerList
<
T
,
0
>&
init
)
{
assert
(
shape
.
size
()
==
0
);
*
(
it
++
)
=
init
;
return
it
;
}
}
template
<
typename
T
>
class
NDArrayBase
{
using
vtype
=
std
::
vector
<
T
>
;
public
:
using
type
=
T
;
using
iterator
=
typename
vtype
::
iterator
;
using
const_iterator
=
typename
vtype
::
const_iterator
;
NDArrayBase
(
const
Shape
&
shape
)
:
m_shape
(
shape
)
,
m_elements
(
shape_size
(
m_shape
))
{
}
const
Shape
&
get_shape
()
const
{
return
m_shape
;
}
const_iterator
begin
()
const
{
return
m_elements
.
begin
();
}
const_iterator
end
()
const
{
return
m_elements
.
end
();
}
vtype
get_vector
()
{
return
m_elements
;
}
const
vtype
get_vector
()
const
{
return
m_elements
;
}
bool
operator
==
(
const
NDArrayBase
<
T
>&
other
)
const
{
return
m_shape
==
other
.
m_shape
&&
m_elements
==
other
.
m_elements
;
}
protected
:
Shape
m_shape
;
vtype
m_elements
;
};
/// An N dimensional array of elements of type T
template
<
typename
T
,
size_t
N
>
class
NDArray
:
public
NDArrayBase
<
T
>
{
public
:
NDArray
(
const
init
::
NestedInitializerList
<
T
,
N
>&
initial_value
)
:
NDArrayBase
<
T
>
(
init
::
get_shape
<
T
,
N
>
(
initial_value
))
{
init
::
flatten
<
typename
std
::
vector
<
T
>::
iterator
,
T
,
N
>
(
NDArrayBase
<
T
>::
m_elements
.
begin
(),
NDArrayBase
<
T
>::
m_shape
,
initial_value
);
}
};
}
}
src/ngraph/runtime/parameterized_tensor_view.hpp
View file @
1b3f0e07
...
@@ -14,12 +14,16 @@
...
@@ -14,12 +14,16 @@
#pragma once
#pragma once
#include <algorithm>
#include <cassert>
#include <cstring>
#include <cstring>
#include <memory>
#include <memory>
#include <type_traits>
#include <vector>
#include <vector>
#include "ngraph/descriptor/layout/dense_tensor_view_layout.hpp"
#include "ngraph/descriptor/layout/dense_tensor_view_layout.hpp"
#include "ngraph/descriptor/primary_tensor_view.hpp"
#include "ngraph/descriptor/primary_tensor_view.hpp"
#include "ngraph/runtime/ndarray.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/types/element_type.hpp"
#include "ngraph/types/element_type.hpp"
...
@@ -60,8 +64,17 @@ namespace ngraph
...
@@ -60,8 +64,17 @@ namespace ngraph
return
*
this
;
return
*
this
;
}
}
template
<
typename
T
,
size_t
N
>
ParameterizedTensorView
<
ET
>&
operator
=
(
const
NDArray
<
T
,
N
>&
ndarray
)
{
assert
(
ndarray
.
get_shape
()
==
get_shape
());
std
::
copy
(
ndarray
.
begin
(),
ndarray
.
end
(),
m_vector
.
begin
());
return
*
this
;
}
// For getting the data out
// For getting the data out
storage_type
&
get_vector
()
{
return
m_vector
;
}
storage_type
&
get_vector
()
{
return
m_vector
;
}
const
storage_type
&
get_vector
()
const
{
return
m_vector
;
}
virtual
void
write
(
const
void
*
p
,
size_t
tensor_offset
,
size_t
n
)
override
virtual
void
write
(
const
void
*
p
,
size_t
tensor_offset
,
size_t
n
)
override
{
{
size_t
elt_offset
=
tensor_offset
/
sizeof
(
typename
ET
::
type
);
size_t
elt_offset
=
tensor_offset
/
sizeof
(
typename
ET
::
type
);
...
@@ -104,6 +117,11 @@ namespace ngraph
...
@@ -104,6 +117,11 @@ namespace ngraph
std
::
memcpy
(
p
,
&
m_vector
[
elt_offset
],
n
);
std
::
memcpy
(
p
,
&
m_vector
[
elt_offset
],
n
);
}
}
bool
operator
==
(
const
NDArrayBase
<
typename
ET
::
type
>&
ndarray
)
const
{
return
get_shape
()
==
ndarray
.
get_shape
()
&&
get_vector
()
==
ndarray
.
get_vector
();
}
protected
:
protected
:
storage_type
m_vector
;
storage_type
m_vector
;
};
};
...
...
test/execute.cpp
View file @
1b3f0e07
...
@@ -37,21 +37,21 @@ TEST(execute, abc)
...
@@ -37,21 +37,21 @@ TEST(execute, abc)
// Create some tensors for input/output
// Create some tensors for input/output
auto
a
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
auto
a
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
}
;
*
a
=
runtime
::
NDArray
<
float
,
2
>
({{
1
,
2
},
{
3
,
4
}})
;
auto
b
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
auto
b
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
*
b
=
vector
<
float
>
{
5
,
6
,
7
,
8
}
;
*
b
=
runtime
::
NDArray
<
float
,
2
>
({{
5
,
6
},
{
7
,
8
}})
;
auto
c
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
auto
c
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
*
c
=
vector
<
float
>
{
9
,
10
,
11
,
12
}
;
*
c
=
runtime
::
NDArray
<
float
,
2
>
({{
9
,
10
},
{
11
,
12
}})
;
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
auto
result
=
backend
->
make_parameterized_tensor_view
<
element
::
Float32
>
(
shape
);
(
*
cf
)({
a
,
b
,
c
},
{
result
});
(
*
cf
)({
a
,
b
,
c
},
{
result
});
ASSERT_EQ
(
(
vector
<
float
>
{
54
,
80
,
110
,
144
}),
result
->
get_vector
(
));
ASSERT_EQ
(
*
result
,
(
runtime
::
NDArray
<
float
,
2
>
({{
54
,
80
},
{
110
,
144
}})
));
(
*
cf
)({
b
,
a
,
c
},
{
result
});
(
*
cf
)({
b
,
a
,
c
},
{
result
});
ASSERT_EQ
(
(
vector
<
float
>
{
54
,
80
,
110
,
144
}),
result
->
get_vector
(
));
ASSERT_EQ
(
*
result
,
(
runtime
::
NDArray
<
float
,
2
>
({{
54
,
80
},
{
110
,
144
}})
));
(
*
cf
)({
a
,
c
,
b
},
{
result
});
(
*
cf
)({
a
,
c
,
b
},
{
result
});
ASSERT_EQ
(
(
vector
<
float
>
{
50
,
72
,
98
,
128
}),
result
->
get_vector
(
));
ASSERT_EQ
(
*
result
,
(
runtime
::
NDArray
<
float
,
2
>
({{
50
,
72
},
{
98
,
128
}})
));
}
}
TEST
(
execute
,
abc_int64
)
TEST
(
execute
,
abc_int64
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment