Commit 16e256fa authored by Robert Kimball's avatar Robert Kimball Committed by Scott Cyphers

Move CPU only unit tests to the cpu test file (#3919)

parent 7d66dbda
......@@ -352,7 +352,6 @@ set(MULTI_TEST_SRC
backend/sum.in.cpp
backend/tan.in.cpp
backend/tanh.in.cpp
backend/tensorview_custom_mem.in.cpp
backend/tile.in.cpp
backend/topk.in.cpp
backend/transpose.in.cpp
......@@ -434,7 +433,6 @@ if (NGRAPH_UNIT_TEST_OPENVINO_ENABLE)
backend/subtract.in.cpp
backend/tan.in.cpp
backend/tanh.in.cpp
backend/tensorview_custom_mem.in.cpp
backend/transpose.in.cpp
backend/validate_call.in.cpp
backend/zero_sized.in.cpp
......
......@@ -53,58 +53,6 @@ NGRAPH_TEST(${BACKEND_NAME}, create_tensor_1)
EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the three parameter version of create_tensor
// Testing using this tensor as a Function input
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_2_input)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape, av.data());
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape, bv.data());
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the three parameter version of create_tensor
// Testing using this tensor as a Function output
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_2_output)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
copy_data(a, av);
copy_data(b, bv);
vector<float> actual(4);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape, actual.data());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(actual, expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the copy_from for tensor
NGRAPH_TEST(${BACKEND_NAME}, tensor_copy_from)
{
......
......@@ -94,27 +94,6 @@ NGRAPH_TEST(${BACKEND_NAME}, one_hot_scalar_0_in_3)
EXPECT_EQ((vector<int32_t>{1, 0, 0}), read_vector<int32_t>(result));
}
NGRAPH_TEST(${BACKEND_NAME}, one_hot_scalar_oob_in_3)
{
Shape shape_a{};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_r{3};
auto r = make_shared<op::OneHot>(A, Shape{3}, 0);
auto f = make_shared<Function>(r, ParameterVector{A});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{3});
vector<int32_t> r_data(4);
auto result = backend->create_tensor(element::i32, shape_r, r_data.data());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ(r_data[3], 0);
}
NGRAPH_TEST(${BACKEND_NAME}, one_hot_vector_0)
{
Shape shape_a{8};
......
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/known_element_types.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
NGRAPH_TEST(${BACKEND_NAME}, tensorview_custom_mem)
{
auto backend = runtime::Backend::create("${BACKEND_NAME}");
Shape shape{2, 2};
auto make_external = [&]() {
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Divide>(A, B), ParameterVector{A, B});
return f;
};
auto f = make_external();
vector<float> av{2, 4, 8, 16};
vector<float> bv{1, 2, 4, 8};
// use custom mem with tensorview, no need to copy data
auto a = backend->create_tensor(element::f32, shape, av.data());
auto b = backend->create_tensor(element::f32, shape, bv.data());
// use custom mem with result tensorview
vector<float> rv{0, 0, 0, 0};
auto result = backend->create_tensor(element::f32, shape, rv.data());
// result should be in memory without needing explict read
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{2, 2, 2, 2}), rv, MIN_FLOAT_TOLERANCE_BITS));
}
......@@ -2222,3 +2222,108 @@ TEST(cpu_test, convolution_simple_bf16)
read_vector<bfloat16>(result));
}
#endif
// This tests a backend's implementation of the three parameter version of create_tensor
// Testing using this tensor as a Function input
TEST(cpu_test, create_tensor_2_input)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape, av.data());
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape, bv.data());
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the three parameter version of create_tensor
// Testing using this tensor as a Function output
TEST(cpu_test, create_tensor_2_output)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
copy_data(a, av);
copy_data(b, bv);
vector<float> actual(4);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape, actual.data());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(actual, expected, MIN_FLOAT_TOLERANCE_BITS));
}
TEST(cpu_test, tensorview_custom_mem)
{
auto backend = runtime::Backend::create("CPU");
Shape shape{2, 2};
auto make_external = [&]() {
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Divide>(A, B), ParameterVector{A, B});
return f;
};
auto f = make_external();
vector<float> av{2, 4, 8, 16};
vector<float> bv{1, 2, 4, 8};
// use custom mem with tensorview, no need to copy data
auto a = backend->create_tensor(element::f32, shape, av.data());
auto b = backend->create_tensor(element::f32, shape, bv.data());
// use custom mem with result tensorview
vector<float> rv{0, 0, 0, 0};
auto result = backend->create_tensor(element::f32, shape, rv.data());
// result should be in memory without needing explict read
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
EXPECT_TRUE(test::all_close_f((vector<float>{2, 2, 2, 2}), rv, MIN_FLOAT_TOLERANCE_BITS));
}
TEST(cpu_test, one_hot_scalar_oob_in_3)
{
Shape shape_a{};
auto A = make_shared<op::Parameter>(element::i32, shape_a);
Shape shape_r{3};
auto r = make_shared<op::OneHot>(A, Shape{3}, 0);
auto f = make_shared<Function>(r, ParameterVector{A});
auto backend = runtime::Backend::create("CPU");
// Create some tensors for input/output
auto a = backend->create_tensor(element::i32, shape_a);
copy_data(a, vector<int32_t>{3});
vector<int32_t> r_data(4);
auto result = backend->create_tensor(element::i32, shape_r, r_data.data());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a});
EXPECT_EQ(r_data[3], 0);
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment