Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
16ac55e3
Commit
16ac55e3
authored
Nov 21, 2018
by
Adam Rogowiec
Committed by
Michał Karzyński
Nov 21, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[ONNX] LSTM node (#1945)
parent
a3cab07b
Hide whitespace changes
Inline
Side-by-side
Showing
8 changed files
with
540 additions
and
43 deletions
+540
-43
CMakeLists.txt
src/ngraph/frontend/onnx_import/CMakeLists.txt
+2
-0
lstm.cpp
src/ngraph/frontend/onnx_import/op/lstm.cpp
+369
-0
lstm.hpp
src/ngraph/frontend/onnx_import/op/lstm.hpp
+39
-0
split.cpp
src/ngraph/frontend/onnx_import/op/split.cpp
+2
-43
ops_bridge.cpp
src/ngraph/frontend/onnx_import/ops_bridge.cpp
+2
-0
common.hpp
src/ngraph/frontend/onnx_import/utils/common.hpp
+36
-0
reshape.cpp
src/ngraph/frontend/onnx_import/utils/reshape.cpp
+61
-0
reshape.hpp
src/ngraph/frontend/onnx_import/utils/reshape.hpp
+29
-0
No files found.
src/ngraph/frontend/onnx_import/CMakeLists.txt
View file @
16ac55e3
...
@@ -88,6 +88,8 @@ add_library(onnx_import STATIC
...
@@ -88,6 +88,8 @@ add_library(onnx_import STATIC
op/log_softmax.hpp
op/log_softmax.hpp
op/lrn.cpp
op/lrn.cpp
op/lrn.hpp
op/lrn.hpp
op/lstm.cpp
op/lstm.hpp
op/matmul.cpp
op/matmul.cpp
op/matmul.hpp
op/matmul.hpp
op/max_pool.cpp
op/max_pool.cpp
...
...
src/ngraph/frontend/onnx_import/op/lstm.cpp
0 → 100644
View file @
16ac55e3
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <cstddef>
#include <cstdint>
#include <functional>
#include <iterator>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
#include "ngraph/node.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/concat.hpp"
#include "ngraph/op/dot.hpp"
#include "ngraph/op/multiply.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/sigmoid.hpp"
#include "ngraph/op/tanh.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/type/element_type.hpp"
#include "exceptions.hpp"
#include "lstm.hpp"
#include "utils/broadcasting.hpp"
#include "utils/common.hpp"
#include "utils/reshape.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
namespace
{
std
::
shared_ptr
<
ngraph
::
Node
>
add
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
lhs
,
const
std
::
shared_ptr
<
ngraph
::
Node
>&
rhs
)
{
auto
args
=
numpy_style_broadcast_for_binary_operation
(
lhs
,
rhs
);
return
{
std
::
make_shared
<
ngraph
::
op
::
Add
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
std
::
shared_ptr
<
ngraph
::
Node
>
mul
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
lhs
,
const
std
::
shared_ptr
<
ngraph
::
Node
>&
rhs
)
{
auto
args
=
numpy_style_broadcast_for_binary_operation
(
lhs
,
rhs
);
return
{
std
::
make_shared
<
ngraph
::
op
::
Multiply
>
(
args
.
at
(
0
),
args
.
at
(
1
))};
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ACTIVATION FUNCTIONS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
std
::
shared_ptr
<
ngraph
::
Node
>
sigmoid
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
arg
)
{
return
std
::
make_shared
<
ngraph
::
op
::
Sigmoid
>
(
arg
);
}
std
::
shared_ptr
<
ngraph
::
Node
>
tanh
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
arg
)
{
return
std
::
make_shared
<
ngraph
::
op
::
Tanh
>
(
arg
);
}
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ INPUT NODES PARSING ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
enum
class
LSTMInput
{
LSTM_INPUT_X
,
LSTM_INPUT_W
,
LSTM_INPUT_R
,
LSTM_INPUT_B
,
LSTM_INPUT_SEQ_LENGTHS
,
LSTM_INPUT_INIT_H
,
LSTM_INPUT_INIT_C
,
LSTM_INPUT_P
};
std
::
string
to_str
(
const
LSTMInput
&
in
)
{
switch
(
in
)
{
case
LSTMInput
:
:
LSTM_INPUT_X
:
return
"X"
;
case
LSTMInput
:
:
LSTM_INPUT_W
:
return
"W"
;
case
LSTMInput
:
:
LSTM_INPUT_R
:
return
"R"
;
case
LSTMInput
:
:
LSTM_INPUT_B
:
return
"B"
;
case
LSTMInput
:
:
LSTM_INPUT_SEQ_LENGTHS
:
return
"sequence_lens"
;
case
LSTMInput
:
:
LSTM_INPUT_INIT_H
:
return
"initial_h"
;
case
LSTMInput
:
:
LSTM_INPUT_INIT_C
:
return
"initial_c"
;
case
LSTMInput
:
:
LSTM_INPUT_P
:
return
"P"
;
default
:
return
"Unrecognized input value!"
;
}
}
struct
LSTMNgInputMap
{
using
container_type
=
std
::
map
<
LSTMInput
,
std
::
shared_ptr
<
ngraph
::
Node
>>
;
using
iterator
=
typename
container_type
::
iterator
;
explicit
LSTMNgInputMap
(
const
Node
&
node
)
{
const
auto
&
ng_inputs
=
node
.
get_ng_inputs
();
// We have input, output, forget and cell gates
constexpr
std
::
size_t
gates_count
{
4
};
// Peepholes add additional connections to input, output and forget gates.
constexpr
std
::
size_t
peepholes_count
{
3
};
// ----- Mandatory inputs ------
// Packed input sequences. Shape: [seq_length, batch_size, input_size]
m_map
[
LSTMInput
::
LSTM_INPUT_X
]
=
ng_inputs
.
at
(
0
);
// Weight tensor for the gates. Shape: [num_directions, 4*hidden_size, input_size]
m_map
[
LSTMInput
::
LSTM_INPUT_W
]
=
ng_inputs
.
at
(
1
);
// The recurrence weight tensor. Shape: [num_directions, 4*hidden_size, hidden_size]
m_map
[
LSTMInput
::
LSTM_INPUT_R
]
=
ng_inputs
.
at
(
2
);
const
std
::
size_t
hidden_size
=
m_map
[
LSTMInput
::
LSTM_INPUT_R
]
->
get_shape
().
back
();
const
std
::
size_t
batch_size
=
m_map
[
LSTMInput
::
LSTM_INPUT_X
]
->
get_shape
().
at
(
1
);
const
std
::
size_t
num_directions
=
m_map
[
LSTMInput
::
LSTM_INPUT_W
]
->
get_shape
().
front
();
// ------ Optional inputs ------
// The bias tensor for input gate. Shape [num_directions, 8*hidden_size]
if
(
ng_inputs
.
size
()
>=
4
)
{
m_map
[
LSTMInput
::
LSTM_INPUT_B
]
=
ng_inputs
.
at
(
3
);
}
else
{
m_map
[
LSTMInput
::
LSTM_INPUT_B
]
=
common
::
make_constant_node
<
float
>
(
element
::
f32
,
{
num_directions
,
2
*
gates_count
*
hidden_size
},
{
0.
f
});
}
// The lengths of the sequences in a batch. Shape [batch_size]
if
(
ng_inputs
.
size
()
>=
5
)
{
m_map
[
LSTMInput
::
LSTM_INPUT_SEQ_LENGTHS
]
=
ng_inputs
.
at
(
4
);
}
else
{
m_map
[
LSTMInput
::
LSTM_INPUT_SEQ_LENGTHS
]
=
common
::
make_constant_node
<
std
::
int32_t
>
(
element
::
i32
,
{
batch_size
},
{
static_cast
<
std
::
int32_t
>
(
m_map
[
LSTMInput
::
LSTM_INPUT_X
]
->
get_shape
().
at
(
0
))});
}
// The initial value of the hidden. Shape [num_directions, batch_size, hidden_size]
if
(
ng_inputs
.
size
()
>=
6
)
{
m_map
[
LSTMInput
::
LSTM_INPUT_INIT_H
]
=
ng_inputs
.
at
(
5
);
}
else
{
m_map
[
LSTMInput
::
LSTM_INPUT_INIT_H
]
=
common
::
make_constant_node
<
float
>
(
element
::
f32
,
{
num_directions
,
batch_size
,
hidden_size
},
{
0.
f
});
}
// The initial value of the cell. Shape [num_directions, batch_size, hidden_size]
if
(
ng_inputs
.
size
()
>=
7
)
{
m_map
[
LSTMInput
::
LSTM_INPUT_INIT_C
]
=
ng_inputs
.
at
(
6
);
}
else
{
m_map
[
LSTMInput
::
LSTM_INPUT_INIT_C
]
=
common
::
make_constant_node
<
float
>
(
element
::
f32
,
{
num_directions
,
batch_size
,
hidden_size
},
{
0.
f
});
}
// The weight tensor for peepholes. Shape [num_directions, 3*hidde_size]
if
(
ng_inputs
.
size
()
>=
8
)
{
m_map
[
LSTMInput
::
LSTM_INPUT_P
]
=
ng_inputs
.
at
(
7
);
}
else
{
m_map
[
LSTMInput
::
LSTM_INPUT_P
]
=
common
::
make_constant_node
<
float
>
(
element
::
f32
,
{
num_directions
,
peepholes_count
*
hidden_size
},
{
0.
f
});
}
}
std
::
shared_ptr
<
ngraph
::
Node
>&
at
(
const
LSTMInput
&
key
)
{
return
m_map
.
at
(
key
);
}
iterator
begin
()
{
return
m_map
.
begin
();
}
iterator
end
()
{
return
m_map
.
end
();
}
container_type
m_map
;
};
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ATTRIBUTES PARSING ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
enum
class
LSTMDirection
{
LSTM_DIRECTION_FORWARD
,
LSTM_DIRECTION_REVERSE
,
LSTM_DIRECTION_BIDIRECTIONAL
};
struct
LSTMAttributes
{
explicit
LSTMAttributes
(
const
Node
&
node
)
:
m_direction
{
LSTMDirection
::
LSTM_DIRECTION_FORWARD
}
,
m_hidden_size
{
node
.
get_attribute_value
<
std
::
int64_t
>
(
"hidden_size"
)}
{
}
// Currently only LSTM_DIRECTION_FORWARD is supported.
LSTMDirection
m_direction
;
std
::
int64_t
m_hidden_size
;
};
}
// anonymous namespace
namespace
set_1
{
NodeVector
lstm
(
const
Node
&
node
)
{
LSTMNgInputMap
input_map
{
node
};
LSTMAttributes
attributes
{
node
};
if
(
attributes
.
m_direction
==
LSTMDirection
::
LSTM_DIRECTION_FORWARD
)
{
// Since we have forward LSTM we can squeeze `num_directions` axis from inputs.
for
(
auto
&
ng_in
:
input_map
)
{
if
(
ng_in
.
first
!=
LSTMInput
::
LSTM_INPUT_X
&&
ng_in
.
first
!=
LSTMInput
::
LSTM_INPUT_SEQ_LENGTHS
)
{
ASSERT_VALID_ARGUMENT
(
node
,
ng_in
.
second
->
get_shape
().
at
(
0
)
==
1
)
<<
"Input: { "
<<
to_str
(
ng_in
.
first
)
<<
" } first axis has size different "
"from 1, while direction attribute set to 'forward'."
;
ng_in
.
second
=
reshape
::
squeeze
(
ng_in
.
second
);
}
}
}
// ------ VARIABLE'S NAMES AND ACRONYM DEFINITIONS ------
// The names used below are analogous to the one used in ONNX documentation.
//
// ------ INPUTS ------
// X - The input tensor. [seq_length, batch_size, input_size]
// W - The weight tensor. [num_directions, 4*hidden_size, input_size]
// R - The recurrence weight tensor. [num_directions, 4*hidden_size, hidden_size]
// B - The bias tensor for input gate. [num_directions, 8*hidden_size]
// P - The weight tensor forr peepholes. [num_directions, 3*hidde_size]
// ------ ACRONYMS ------
// i - input gate
// o - output gate
// f - forget gate
// c - cell gate
// t - time step (t-1 means previous time step)
// ------ VARIABLE NAMES ------
// W - W parameter weight matrix for input, output, forget, and
// cell gates.
// R - R recurrence weight matrix for input, output, forget, and
// cell gates.
// Wb - W bias vectors for input, output, forget, and cell gates.
// Rb - R bias vectors for input, output, forget, and cell gates.
// b_W_R - Bias vectors for input, output, forget, and cell gates.
// Concatenation of `[Wb, Rb]`.
// p_[iof] - P peephole weight vector for respectively: input, output,
// and forget gates.
// H_t - Hidden state vector at current time step.
// C_t - Cell state vector at current time step.
// h_list - The list of hidden states at all processed time steps.
//
// Xt_W - Input sequence multiplied by weights tensor at current time
// step.
// Ht_R - Hidden state multiplied by weights tensor at current time step.
NodeVector
p_iof
=
reshape
::
split
(
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_P
),
3
);
const
auto
&
p_i
=
p_iof
.
at
(
0
);
const
auto
&
p_o
=
p_iof
.
at
(
1
);
const
auto
&
p_f
=
p_iof
.
at
(
2
);
std
::
shared_ptr
<
ngraph
::
Node
>
H_t
{
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_INIT_H
)};
std
::
shared_ptr
<
ngraph
::
Node
>
C_t
{
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_INIT_C
)};
NodeVector
h_list
;
NodeVector
b_W_R
=
reshape
::
split
(
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_B
),
2
);
std
::
shared_ptr
<
ngraph
::
Node
>
bias
=
b_W_R
.
at
(
0
)
+
b_W_R
.
at
(
1
);
NodeVector
in_seqs
=
reshape
::
split
(
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_X
),
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_X
)
->
get_shape
().
at
(
0
));
for
(
auto
&
in_x
:
in_seqs
)
{
// remove first empty dim, after above split.
in_x
=
reshape
::
squeeze
(
in_x
);
}
for
(
const
auto
&
in_x
:
in_seqs
)
{
// (.) - Denotes element-wise multiplication.
// * - Denotes dot product.
// Xt*(W^T) -- for [iofc] gates.
auto
Xt_W
=
std
::
make_shared
<
ngraph
::
op
::
Dot
>
(
in_x
,
reshape
::
transpose
(
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_W
)));
// Ht-1*(R^T) -- for [iofc] gates.
auto
Ht_R
=
std
::
make_shared
<
ngraph
::
op
::
Dot
>
(
H_t
,
reshape
::
transpose
(
input_map
.
at
(
LSTMInput
::
LSTM_INPUT_R
)));
// Xt*(W^T) + Ht-1*(R^T) + Wb + Rb -- for [iofc] gates.
auto
gates
=
add
(
Xt_W
,
add
(
Ht_R
,
bias
));
NodeVector
split_gates
=
reshape
::
split
(
gates
,
4
,
-
1
);
auto
i
=
split_gates
.
at
(
0
);
auto
o
=
split_gates
.
at
(
1
);
auto
f
=
split_gates
.
at
(
2
);
auto
c
=
split_gates
.
at
(
3
);
// f(Xt*(Wi^T) + Ht-1*(Ri^T) + Pi (.) Ct-1 + Wbi + Rbi)
i
=
sigmoid
(
add
(
i
,
mul
(
p_i
,
C_t
)));
// f(Xt*(Wf^T) + Ht-1*(Rf^T) + Pf (.) Ct-1 + Wbf + Rbf)
f
=
sigmoid
(
add
(
f
,
mul
(
p_f
,
C_t
)));
// ft (.) Ct-1 + it (.) ct
auto
C
=
add
(
mul
(
f
,
C_t
),
mul
(
i
,
tanh
(
c
)));
// f(Xt*(Wo^T) + Ht-1*(Ro^T) + Po (.) Ct + Wbo + Rbo)
o
=
sigmoid
(
add
(
o
,
mul
(
p_o
,
C
)));
// ot (.) h(Ct)
auto
H
=
mul
(
o
,
tanh
(
C
));
h_list
.
push_back
(
H
);
H_t
=
H
;
C_t
=
C
;
}
// The tensor that concats all the intermediate output values of the hidden.
// It has shape [seq_length, batch_size, hidden_size]
NodeVector
exp_h_list
;
for
(
const
auto
&
ht
:
h_list
)
{
// Expand tensors with empty outermost dim, so we can later concatenate them.
exp_h_list
.
push_back
(
reshape
::
add_empty_axes
(
ht
));
}
std
::
shared_ptr
<
ngraph
::
Node
>
Y
{
std
::
make_shared
<
ngraph
::
op
::
Concat
>
(
exp_h_list
,
0
)};
// Expand Y so that it has expected shape:
// [seq_length, num_directions, batch_size, hidden_size]
if
(
attributes
.
m_direction
==
LSTMDirection
::
LSTM_DIRECTION_FORWARD
)
{
Shape
shape
{
Y
->
get_shape
()};
shape
.
insert
(
std
::
next
(
std
::
begin
(
shape
)),
1
);
Y
=
std
::
make_shared
<
ngraph
::
op
::
Reshape
>
(
Y
,
reshape
::
get_default_axis_vector
(
Y
->
get_shape
().
size
()),
shape
);
}
return
{
Y
,
exp_h_list
.
back
()};
}
}
// namespace set_1
}
//namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/lstm.hpp
0 → 100644
View file @
16ac55e3
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include "ngraph/node_vector.hpp"
#include "core/node.hpp"
namespace
ngraph
{
namespace
onnx_import
{
namespace
op
{
namespace
set_1
{
NodeVector
lstm
(
const
Node
&
node
);
}
// namespace set_1
}
//namespace op
}
// namespace onnx_import
}
// namespace ngraph
src/ngraph/frontend/onnx_import/op/split.cpp
View file @
16ac55e3
...
@@ -14,9 +14,8 @@
...
@@ -14,9 +14,8 @@
// limitations under the License.
// limitations under the License.
//*****************************************************************************
//*****************************************************************************
#include "ngraph/op/slice.hpp"
#include "op/split.hpp"
#include "op/split.hpp"
#include "utils/reshape.hpp"
namespace
ngraph
namespace
ngraph
{
{
...
@@ -82,37 +81,6 @@ namespace ngraph
...
@@ -82,37 +81,6 @@ namespace ngraph
{
{
namespace
set_1
namespace
set_1
{
{
namespace
detail
{
template
<
typename
T
>
inline
T
get_valid_array_index
(
T
left
,
T
right
)
{
return
(
left
>=
0
)
?
std
::
min
(
left
,
right
)
:
std
::
max
(
static_cast
<
T
>
(
0
),
right
+
left
);
}
inline
std
::
shared_ptr
<
ngraph
::
op
::
Slice
>
make_ng_slice
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
std
::
vector
<
std
::
size_t
>
axes
,
std
::
vector
<
std
::
size_t
>
starts
,
std
::
vector
<
std
::
size_t
>
ends
)
{
std
::
vector
<
std
::
size_t
>
upper_bounds
{
node
->
get_shape
()};
std
::
vector
<
std
::
size_t
>
lower_bounds
(
upper_bounds
.
size
());
for
(
std
::
size_t
index
{
0
};
index
<
axes
.
size
();
++
index
)
{
std
::
size_t
axis
{
axes
.
at
(
index
)};
lower_bounds
.
at
(
axis
)
=
get_valid_array_index
(
starts
.
at
(
index
),
node
->
get_shape
().
at
(
axis
));
upper_bounds
.
at
(
axis
)
=
get_valid_array_index
(
ends
.
at
(
index
),
node
->
get_shape
().
at
(
axis
));
}
return
std
::
make_shared
<
ngraph
::
op
::
Slice
>
(
node
,
lower_bounds
,
upper_bounds
);
}
}
// namespace detail
NodeVector
split
(
const
Node
&
node
)
NodeVector
split
(
const
Node
&
node
)
{
{
std
::
shared_ptr
<
ngraph
::
Node
>
input
=
node
.
get_ng_inputs
().
at
(
0
);
std
::
shared_ptr
<
ngraph
::
Node
>
input
=
node
.
get_ng_inputs
().
at
(
0
);
...
@@ -143,16 +111,7 @@ namespace ngraph
...
@@ -143,16 +111,7 @@ namespace ngraph
length_parts
.
assign
(
count_outputs
,
length_axis_to_split
/
count_outputs
);
length_parts
.
assign
(
count_outputs
,
length_axis_to_split
/
count_outputs
);
}
}
std
::
size_t
start_index
{
0
};
return
reshape
::
split
(
input
,
length_parts
,
axis_to_split
);
NodeVector
outputs
;
for
(
const
auto
&
length_part
:
length_parts
)
{
std
::
size_t
end_index
{
start_index
+
length_part
};
outputs
.
push_back
(
detail
::
make_ng_slice
(
input
,
{
axis_to_split
},
{
start_index
},
{
end_index
}));
start_index
=
end_index
;
}
return
outputs
;
}
}
}
// namespace set_1
}
// namespace set_1
...
...
src/ngraph/frontend/onnx_import/ops_bridge.cpp
View file @
16ac55e3
...
@@ -56,6 +56,7 @@
...
@@ -56,6 +56,7 @@
#include "op/log.hpp"
#include "op/log.hpp"
#include "op/log_softmax.hpp"
#include "op/log_softmax.hpp"
#include "op/lrn.hpp"
#include "op/lrn.hpp"
#include "op/lstm.hpp"
#include "op/matmul.hpp"
#include "op/matmul.hpp"
#include "op/max.hpp"
#include "op/max.hpp"
#include "op/max_pool.hpp"
#include "op/max_pool.hpp"
...
@@ -183,6 +184,7 @@ namespace ngraph
...
@@ -183,6 +184,7 @@ namespace ngraph
REGISTER_OPERATOR
(
"Log"
,
1
,
log
);
REGISTER_OPERATOR
(
"Log"
,
1
,
log
);
REGISTER_OPERATOR
(
"LogSoftmax"
,
1
,
log_softmax
);
REGISTER_OPERATOR
(
"LogSoftmax"
,
1
,
log_softmax
);
REGISTER_OPERATOR
(
"LRN"
,
1
,
lrn
);
REGISTER_OPERATOR
(
"LRN"
,
1
,
lrn
);
REGISTER_OPERATOR
(
"LSTM"
,
1
,
lstm
);
REGISTER_OPERATOR
(
"MatMul"
,
1
,
matmul
);
REGISTER_OPERATOR
(
"MatMul"
,
1
,
matmul
);
REGISTER_OPERATOR
(
"MaxPool"
,
1
,
max_pool
);
REGISTER_OPERATOR
(
"MaxPool"
,
1
,
max_pool
);
REGISTER_OPERATOR
(
"Max"
,
1
,
max
);
REGISTER_OPERATOR
(
"Max"
,
1
,
max
);
...
...
src/ngraph/frontend/onnx_import/utils/common.hpp
View file @
16ac55e3
...
@@ -19,9 +19,15 @@
...
@@ -19,9 +19,15 @@
#include <cmath> // std::floor
#include <cmath> // std::floor
#include <cstddef> // std::size_t
#include <cstddef> // std::size_t
#include <iterator> // std::begin, std::end
#include <iterator> // std::begin, std::end
#include <memory> // std::shared_ptr, std::make_shared
#include <type_traits> // std::enable_if, std::is_floating_point, std::is_integral
#include <type_traits> // std::enable_if, std::is_floating_point, std::is_integral
#include <vector>
#include <vector>
#include "ngraph/op/constant.hpp"
#include "ngraph/shape.hpp"
#include "utils/broadcasting.hpp"
namespace
ngraph
namespace
ngraph
{
{
namespace
onnx_import
namespace
onnx_import
...
@@ -100,6 +106,36 @@ namespace ngraph
...
@@ -100,6 +106,36 @@ namespace ngraph
return
range
;
return
range
;
}
}
/// \brief Makes a Constant Ngraph node.
///
/// \param[in] type The node element type.
/// \param[in] shape The tensor data shape.
/// \param[in] data The data to initialize node with.
///
/// \tparam T Input data value type.
///
/// \return The Ngraph node representing Constant data.
///
template
<
typename
T
>
std
::
shared_ptr
<
ngraph
::
Node
>
make_constant_node
(
const
ngraph
::
element
::
Type
&
type
,
const
ngraph
::
Shape
&
shape
,
const
std
::
vector
<
T
>&
data
)
{
std
::
shared_ptr
<
ngraph
::
Node
>
node
;
// Make constant node filled with single value.
if
(
data
.
size
()
==
1
)
{
node
=
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
type
,
ngraph
::
Shape
{},
data
);
node
=
make_broadcast_node
(
node
,
shape
);
}
else
{
node
=
std
::
make_shared
<
ngraph
::
op
::
Constant
>
(
type
,
shape
,
data
);
}
return
node
;
}
}
// namespace common
}
// namespace common
}
// namespace onnx_import
}
// namespace onnx_import
}
// namespace ngraph
}
// namespace ngraph
src/ngraph/frontend/onnx_import/utils/reshape.cpp
View file @
16ac55e3
...
@@ -15,11 +15,15 @@
...
@@ -15,11 +15,15 @@
//*****************************************************************************
//*****************************************************************************
#include <algorithm>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <functional>
#include <functional>
#include <iterator>
#include <iterator>
#include <numeric>
#include <numeric>
#include <vector>
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/op/slice.hpp"
#include "exceptions.hpp"
#include "exceptions.hpp"
#include "utils/common.hpp"
#include "utils/common.hpp"
...
@@ -31,6 +35,33 @@ namespace ngraph
...
@@ -31,6 +35,33 @@ namespace ngraph
{
{
namespace
reshape
namespace
reshape
{
{
namespace
{
inline
std
::
size_t
get_valid_array_index
(
std
::
size_t
idx
,
std
::
size_t
axis_size
)
{
return
std
::
min
(
idx
,
axis_size
);
}
std
::
shared_ptr
<
op
::
Slice
>
make_ng_slice
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
const
std
::
vector
<
std
::
size_t
>&
axes
,
const
std
::
vector
<
std
::
size_t
>&
starts
,
const
std
::
vector
<
std
::
size_t
>&
ends
)
{
std
::
vector
<
std
::
size_t
>
upper_bounds
{
node
->
get_shape
()};
std
::
vector
<
std
::
size_t
>
lower_bounds
(
upper_bounds
.
size
());
for
(
std
::
size_t
index
{
0
};
index
<
axes
.
size
();
++
index
)
{
std
::
size_t
axis
{
axes
.
at
(
index
)};
lower_bounds
.
at
(
axis
)
=
get_valid_array_index
(
starts
.
at
(
index
),
node
->
get_shape
().
at
(
axis
));
upper_bounds
.
at
(
axis
)
=
get_valid_array_index
(
ends
.
at
(
index
),
node
->
get_shape
().
at
(
axis
));
}
return
std
::
make_shared
<
op
::
Slice
>
(
node
,
lower_bounds
,
upper_bounds
);
}
}
// namespace anonymous
std
::
shared_ptr
<
ngraph
::
Node
>
flatten
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
std
::
shared_ptr
<
ngraph
::
Node
>
flatten
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
int
axis
)
int
axis
)
{
{
...
@@ -206,6 +237,36 @@ namespace ngraph
...
@@ -206,6 +237,36 @@ namespace ngraph
node
,
reshape
::
get_default_axis_vector
(
node
->
get_shape
().
size
()),
output_shape
);
node
,
reshape
::
get_default_axis_vector
(
node
->
get_shape
().
size
()),
output_shape
);
}
}
NodeVector
split
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
const
std
::
vector
<
std
::
size_t
>&
length_parts
,
std
::
size_t
axis
)
{
std
::
size_t
start_index
{
0
};
NodeVector
outputs
;
for
(
const
auto
&
length_part
:
length_parts
)
{
std
::
size_t
end_index
{
start_index
+
length_part
};
outputs
.
push_back
(
make_ng_slice
(
node
,
{
axis
},
{
start_index
},
{
end_index
}));
start_index
=
end_index
;
}
return
outputs
;
}
NodeVector
split
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
std
::
size_t
split_parts
,
int
axis
)
{
std
::
size_t
axis_to_split
{
static_cast
<
std
::
size_t
>
(
axis
)};
if
(
axis
<
0
)
{
axis_to_split
=
node
->
get_shape
().
size
()
+
axis
;
}
std
::
size_t
length_axis_to_split
{
node
->
get_shape
().
at
(
axis_to_split
)};
std
::
vector
<
std
::
size_t
>
length_parts
(
split_parts
,
length_axis_to_split
/
split_parts
);
return
split
(
node
,
length_parts
,
axis_to_split
);
}
}
// namespace reshape
}
// namespace reshape
}
// namespace onnx_import
}
// namespace onnx_import
}
// namespace ngraph
}
// namespace ngraph
src/ngraph/frontend/onnx_import/utils/reshape.hpp
View file @
16ac55e3
...
@@ -141,6 +141,35 @@ namespace ngraph
...
@@ -141,6 +141,35 @@ namespace ngraph
std
::
size_t
outermost_axes_count
=
1
,
std
::
size_t
outermost_axes_count
=
1
,
std
::
size_t
innermost_axes_count
=
0
);
std
::
size_t
innermost_axes_count
=
0
);
/// \brief Split node on specified axis into multiple parts.
///
/// \param[in] node The input node.
/// \param[in] length_parts The vector defining the lengts of each splitted part.
/// \param[in] axis The axis we split input node on. Default value is zero axis.
///
/// \return The vector containing multiple nodes we split input node into.
///
NodeVector
split
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
const
std
::
vector
<
std
::
size_t
>&
length_parts
,
std
::
size_t
axis
=
0
);
/// \brief Split node on specified axis into multiple parts.
///
/// \param[in] node The input node.
/// \param[in] split_parts The number of parts we want to split input node at given
/// axis. The length of the axis to split must be divisible by
/// this value.
/// \param[in] axis The axis we split input node on. Default value is zero axis.
///
/// \note This implementation supports negative `axis` values (similar to NumPy
/// indexing).
///
/// \return The vector containing multiple nodes we split input node into.
///
NodeVector
split
(
const
std
::
shared_ptr
<
ngraph
::
Node
>&
node
,
std
::
size_t
split_parts
,
int
axis
=
0
);
}
// namespace reshape
}
// namespace reshape
}
// namespace onnx_import
}
// namespace onnx_import
}
// namespace ngraph
}
// namespace ngraph
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment