Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
134b0ae2
Commit
134b0ae2
authored
Aug 10, 2018
by
shssf
Committed by
Scott Cyphers
Aug 10, 2018
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
IntelGPU backend: BatchNorm, Dot, Pad operations optimization (#1393)
parent
9c1c5b59
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
58 additions
and
102 deletions
+58
-102
intelgpu_op_batchnorm.cpp
src/ngraph/runtime/intelgpu/intelgpu_op_batchnorm.cpp
+6
-33
intelgpu_op_custom_kernels.cpp
src/ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.cpp
+48
-69
intelgpu_op_custom_kernels.hpp
src/ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.hpp
+4
-0
No files found.
src/ngraph/runtime/intelgpu/intelgpu_op_batchnorm.cpp
View file @
134b0ae2
...
@@ -216,6 +216,7 @@ void runtime::intelgpu::do_batch_norm_operation(cldnn::topology& topology,
...
@@ -216,6 +216,7 @@ void runtime::intelgpu::do_batch_norm_operation(cldnn::topology& topology,
const
cldnn
::
layout
layout
=
IntelGPULayout
::
create_cldnn_layout
(
output_type
,
output_shape
);
const
cldnn
::
layout
layout
=
IntelGPULayout
::
create_cldnn_layout
(
output_type
,
output_shape
);
const
string
entry_point_name
=
"batch_norm_"
+
output_name
;
const
string
entry_point_name
=
"batch_norm_"
+
output_name
;
codegen
::
CodeWriter
writer
;
codegen
::
CodeWriter
writer
;
vector
<
size_t
>
gws
;
writer
<<
"__kernel void "
<<
entry_point_name
<<
"( const __global float input"
writer
<<
"__kernel void "
<<
entry_point_name
<<
"( const __global float input"
<<
array_dims
(
input_shape
)
<<
", const __global float gamma"
<<
array_dims
(
gamma_shape
)
<<
array_dims
(
input_shape
)
<<
", const __global float gamma"
<<
array_dims
(
gamma_shape
)
...
@@ -227,45 +228,17 @@ void runtime::intelgpu::do_batch_norm_operation(cldnn::topology& topology,
...
@@ -227,45 +228,17 @@ void runtime::intelgpu::do_batch_norm_operation(cldnn::topology& topology,
writer
.
block_begin
();
writer
.
block_begin
();
{
// Main function body
{
// Main function body
// Loop for Channel axis 1
gws
=
generate_loops
(
writer
,
output_shape
,
true
);
writer
<<
"for (uint i"
<<
channel_axis
<<
" = 0; i"
<<
channel_axis
<<
" < "
<<
output_shape
.
at
(
channel_axis
)
<<
"; ++i"
<<
channel_axis
<<
")
\n
"
;
writer
.
block_begin
();
{
size_t
var_idx
=
0
;
// Main loops
for
(
auto
const
&
i
:
output_shape
)
{
if
(
var_idx
!=
channel_axis
)
{
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
i
<<
"; ++i"
<<
var_idx
<<
")
\n
"
;
writer
.
block_begin
();
}
++
var_idx
;
}
writer
<<
"float normalized = (input"
<<
access_dims
(
input_shape
)
<<
" - mean[i"
writer
<<
"float normalized = (input"
<<
access_dims
(
input_shape
)
<<
" - mean[i"
<<
channel_axis
<<
"]) / ("
<<
channel_axis
<<
"]) / ("
<<
"sqrt(variance[i"
<<
channel_axis
<<
"] + "
<<
eps
<<
")"
<<
"sqrt(variance[i"
<<
channel_axis
<<
"] + "
<<
eps
<<
")"
<<
");
\n
"
;
<<
");
\n
"
;
writer
<<
"output"
<<
access_dims
(
output_shape
)
<<
" = normalized * gamma[i"
writer
<<
"output"
<<
access_dims
(
output_shape
)
<<
" = normalized * gamma[i"
<<
channel_axis
<<
channel_axis
<<
"] + beta[i"
<<
channel_axis
<<
"];
\n
"
;
<<
"] + beta[i"
<<
channel_axis
<<
"];
\n
"
;
var_idx
=
0
;
// Closing brackets for main loops
for
(
auto
const
&
i
:
output_shape
)
{
if
(
var_idx
!=
channel_axis
)
{
writer
.
block_end
();
}
++
var_idx
;
}
}
// Closing brackets for Channel axis loop
generate_loops
(
writer
,
output_shape
,
false
);
writer
.
block_end
();
}
// Main function body
}
// Main function body
writer
.
block_end
();
writer
.
block_end
();
...
@@ -279,6 +252,6 @@ void runtime::intelgpu::do_batch_norm_operation(cldnn::topology& topology,
...
@@ -279,6 +252,6 @@ void runtime::intelgpu::do_batch_norm_operation(cldnn::topology& topology,
get_kernel_args
(
5
,
1
),
get_kernel_args
(
5
,
1
),
""
,
""
,
layout
,
layout
,
{
1
}
);
gws
);
topology
.
add
(
op_batch_norm
);
topology
.
add
(
op_batch_norm
);
}
}
src/ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.cpp
View file @
134b0ae2
...
@@ -18,7 +18,6 @@
...
@@ -18,7 +18,6 @@
#include <CPP/custom_gpu_primitive.hpp>
#include <CPP/custom_gpu_primitive.hpp>
#include <CPP/reshape.hpp>
#include <CPP/reshape.hpp>
#include "ngraph/runtime/intelgpu/code_writer.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_layout.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_layout.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.hpp"
#include "ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.hpp"
...
@@ -88,7 +87,9 @@ string
...
@@ -88,7 +87,9 @@ string
return
buffer
;
return
buffer
;
}
}
static
vector
<
size_t
>
generate_loops
(
codegen
::
CodeWriter
&
writer
,
const
Shape
&
shape
,
bool
is_begin
)
vector
<
size_t
>
runtime
::
intelgpu
::
generate_loops
(
codegen
::
CodeWriter
&
writer
,
const
Shape
&
shape
,
bool
is_begin
)
{
{
const
size_t
cldnn_gws_lim
=
3
;
const
size_t
cldnn_gws_lim
=
3
;
vector
<
size_t
>
gws
;
vector
<
size_t
>
gws
;
...
@@ -170,6 +171,7 @@ void runtime::intelgpu::do_pad_operation(cldnn::topology& topology,
...
@@ -170,6 +171,7 @@ void runtime::intelgpu::do_pad_operation(cldnn::topology& topology,
{
{
const
string
entry_point_name
=
"op_pad_kernel_"
+
output_name
;
const
string
entry_point_name
=
"op_pad_kernel_"
+
output_name
;
codegen
::
CodeWriter
writer
;
codegen
::
CodeWriter
writer
;
vector
<
size_t
>
gws
;
// The kernel name and parameters
// The kernel name and parameters
writer
<<
"__kernel void "
<<
entry_point_name
<<
"(const __global float input"
writer
<<
"__kernel void "
<<
entry_point_name
<<
"(const __global float input"
...
@@ -179,26 +181,16 @@ void runtime::intelgpu::do_pad_operation(cldnn::topology& topology,
...
@@ -179,26 +181,16 @@ void runtime::intelgpu::do_pad_operation(cldnn::topology& topology,
writer
.
block_begin
();
writer
.
block_begin
();
{
{
// Loop for Broadcast scalar over full output tensor
// Loop for Broadcast scalar over full output tensor
size_t
var_idx
=
0
;
gws
=
runtime
::
intelgpu
::
generate_loops
(
writer
,
output_shape
,
true
);
for
(
auto
const
&
i
:
output_shape
)
{
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
i
<<
"; ++i"
<<
var_idx
<<
")
\n
"
;
writer
.
block_begin
();
++
var_idx
;
}
writer
<<
"output"
<<
access_dims
(
output_shape
)
<<
" = scalar[0];
\n
"
;
writer
<<
"output"
<<
access_dims
(
output_shape
)
<<
" = scalar[0];
\n
"
;
// Closing brackets for Broadcast loop
// Closing brackets for Broadcast loop
for
(
auto
const
&
i
:
output_shape
)
runtime
::
intelgpu
::
generate_loops
(
writer
,
output_shape
,
false
);
{
writer
.
block_end
();
}
// Loop for Copy input matrix into output matrix with padding.
// Loop for Copy input matrix into output matrix with padding.
// Padding include "pad_below" and "pad_interior" according nGraph documentation
// Padding include "pad_below" and "pad_interior" according nGraph documentation
var_idx
=
0
;
size_t
var_idx
=
0
;
for
(
auto
const
&
i
:
input_shape
)
for
(
auto
const
&
i
:
input_shape
)
{
{
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
i
<<
"; ++i"
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
i
<<
"; ++i"
...
@@ -220,15 +212,15 @@ void runtime::intelgpu::do_pad_operation(cldnn::topology& topology,
...
@@ -220,15 +212,15 @@ void runtime::intelgpu::do_pad_operation(cldnn::topology& topology,
writer
.
block_end
();
writer
.
block_end
();
const
cldnn
::
layout
layout
=
IntelGPULayout
::
create_cldnn_layout
(
output_type
,
output_shape
);
const
cldnn
::
layout
layout
=
IntelGPULayout
::
create_cldnn_layout
(
output_type
,
output_shape
);
const
cldnn
::
custom_gpu_primitive
op_
scalar
(
output_name
,
const
cldnn
::
custom_gpu_primitive
op_
pad
(
output_name
,
{
input_name
,
scalar_name
},
{
input_name
,
scalar_name
},
{
writer
.
get_code
()},
{
writer
.
get_code
()},
entry_point_name
,
entry_point_name
,
get_kernel_args
(
2
,
1
),
get_kernel_args
(
2
,
1
),
""
,
""
,
layout
,
layout
,
{
1
}
);
gws
);
topology
.
add
(
op_
scalar
);
topology
.
add
(
op_
pad
);
}
}
static
void
do_1d_scalar_mul
(
codegen
::
CodeWriter
&
writer
,
static
void
do_1d_scalar_mul
(
codegen
::
CodeWriter
&
writer
,
...
@@ -256,7 +248,7 @@ static void do_1d_scalar_mul(codegen::CodeWriter& writer,
...
@@ -256,7 +248,7 @@ static void do_1d_scalar_mul(codegen::CodeWriter& writer,
writer
.
block_end
();
writer
.
block_end
();
}
}
static
v
oid
do_2d_2d_mul
(
codegen
::
CodeWriter
&
writer
,
static
v
ector
<
size_t
>
do_2d_2d_mul
(
codegen
::
CodeWriter
&
writer
,
string
&
kernel_name
,
string
&
kernel_name
,
const
Shape
&
shapeA
,
const
Shape
&
shapeA
,
const
Shape
&
shapeB
,
const
Shape
&
shapeB
,
...
@@ -264,6 +256,7 @@ static void do_2d_2d_mul(codegen::CodeWriter& writer,
...
@@ -264,6 +256,7 @@ static void do_2d_2d_mul(codegen::CodeWriter& writer,
{
{
const
size_t
colrow
=
shapeA
.
at
(
1
);
const
size_t
colrow
=
shapeA
.
at
(
1
);
kernel_name
+=
"_do_2d_2d_mul"
;
kernel_name
+=
"_do_2d_2d_mul"
;
vector
<
size_t
>
gws
;
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
...
@@ -273,13 +266,7 @@ static void do_2d_2d_mul(codegen::CodeWriter& writer,
...
@@ -273,13 +266,7 @@ static void do_2d_2d_mul(codegen::CodeWriter& writer,
{
{
size_t
var_idx
=
0
;
size_t
var_idx
=
0
;
// Main loops
// Main loops
for
(
auto
const
&
i
:
shapeZ
)
gws
=
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
true
);
{
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
i
<<
"; ++i"
<<
var_idx
<<
")
\n
"
;
writer
.
block_begin
();
++
var_idx
;
}
// Inner loop
// Inner loop
writer
<<
"float sum = 0.0f;
\n
"
;
writer
<<
"float sum = 0.0f;
\n
"
;
...
@@ -292,15 +279,14 @@ static void do_2d_2d_mul(codegen::CodeWriter& writer,
...
@@ -292,15 +279,14 @@ static void do_2d_2d_mul(codegen::CodeWriter& writer,
writer
<<
"output[i0][i1] = sum;
\n
"
;
writer
<<
"output[i0][i1] = sum;
\n
"
;
// Closing brackets for main loops
// Closing brackets for main loops
for
(
auto
const
&
i
:
shapeZ
)
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
false
);
{
writer
.
block_end
();
}
}
}
writer
.
block_end
();
writer
.
block_end
();
return
gws
;
}
}
static
v
oid
do_3d_3d_mul
(
codegen
::
CodeWriter
&
writer
,
static
v
ector
<
size_t
>
do_3d_3d_mul
(
codegen
::
CodeWriter
&
writer
,
string
&
kernel_name
,
string
&
kernel_name
,
const
Shape
&
shapeA
,
const
Shape
&
shapeA
,
const
Shape
&
shapeB
,
const
Shape
&
shapeB
,
...
@@ -308,6 +294,7 @@ static void do_3d_3d_mul(codegen::CodeWriter& writer,
...
@@ -308,6 +294,7 @@ static void do_3d_3d_mul(codegen::CodeWriter& writer,
{
{
const
size_t
colrow
=
shapeA
.
back
();
const
size_t
colrow
=
shapeA
.
back
();
kernel_name
+=
"_do_3d_3d_mul"
;
kernel_name
+=
"_do_3d_3d_mul"
;
vector
<
size_t
>
gws
;
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
...
@@ -317,13 +304,7 @@ static void do_3d_3d_mul(codegen::CodeWriter& writer,
...
@@ -317,13 +304,7 @@ static void do_3d_3d_mul(codegen::CodeWriter& writer,
{
{
size_t
var_idx
=
0
;
size_t
var_idx
=
0
;
// Main loops
// Main loops
for
(
auto
const
&
i
:
shapeZ
)
gws
=
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
true
);
{
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
i
<<
"; ++i"
<<
var_idx
<<
")
\n
"
;
writer
.
block_begin
();
++
var_idx
;
}
// Inner loop
// Inner loop
writer
<<
"float sum = 0.0f;
\n
"
;
writer
<<
"float sum = 0.0f;
\n
"
;
...
@@ -336,15 +317,14 @@ static void do_3d_3d_mul(codegen::CodeWriter& writer,
...
@@ -336,15 +317,14 @@ static void do_3d_3d_mul(codegen::CodeWriter& writer,
writer
<<
"output[i0][i1][i2][i3] = sum;
\n
"
;
writer
<<
"output[i0][i1][i2][i3] = sum;
\n
"
;
// Closing brackets for main loops
// Closing brackets for main loops
for
(
auto
const
&
i
:
shapeZ
)
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
false
);
{
writer
.
block_end
();
}
}
}
writer
.
block_end
();
writer
.
block_end
();
return
gws
;
}
}
static
v
oid
do_3d_2d_mul
(
codegen
::
CodeWriter
&
writer
,
static
v
ector
<
size_t
>
do_3d_2d_mul
(
codegen
::
CodeWriter
&
writer
,
string
&
kernel_name
,
string
&
kernel_name
,
const
Shape
&
shapeA
,
const
Shape
&
shapeA
,
const
Shape
&
shapeB
,
const
Shape
&
shapeB
,
...
@@ -352,6 +332,7 @@ static void do_3d_2d_mul(codegen::CodeWriter& writer,
...
@@ -352,6 +332,7 @@ static void do_3d_2d_mul(codegen::CodeWriter& writer,
{
{
const
size_t
colrow
=
shapeA
.
back
();
const
size_t
colrow
=
shapeA
.
back
();
kernel_name
+=
"_do_3d_2d_mul"
;
kernel_name
+=
"_do_3d_2d_mul"
;
vector
<
size_t
>
gws
;
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
...
@@ -361,13 +342,7 @@ static void do_3d_2d_mul(codegen::CodeWriter& writer,
...
@@ -361,13 +342,7 @@ static void do_3d_2d_mul(codegen::CodeWriter& writer,
{
{
size_t
var_idx
=
0
;
size_t
var_idx
=
0
;
// Main loops
// Main loops
for
(
auto
const
&
i
:
shapeZ
)
gws
=
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
true
);
{
writer
<<
"for (uint i"
<<
var_idx
<<
" = 0; i"
<<
var_idx
<<
" < "
<<
i
<<
"; ++i"
<<
var_idx
<<
")
\n
"
;
writer
.
block_begin
();
++
var_idx
;
}
// Inner loop
// Inner loop
writer
<<
"float sum = 0.0f;
\n
"
;
writer
<<
"float sum = 0.0f;
\n
"
;
...
@@ -380,33 +355,34 @@ static void do_3d_2d_mul(codegen::CodeWriter& writer,
...
@@ -380,33 +355,34 @@ static void do_3d_2d_mul(codegen::CodeWriter& writer,
writer
<<
"output[i0][i1][i2] = sum;
\n
"
;
writer
<<
"output[i0][i1][i2] = sum;
\n
"
;
// Closing brackets for main loops
// Closing brackets for main loops
for
(
auto
const
&
i
:
shapeZ
)
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
false
);
{
writer
.
block_end
();
}
}
}
writer
.
block_end
();
writer
.
block_end
();
return
gws
;
}
}
static
v
oid
do_2d_1d_mul
(
codegen
::
CodeWriter
&
writer
,
static
v
ector
<
size_t
>
do_2d_1d_mul
(
codegen
::
CodeWriter
&
writer
,
string
&
kernel_name
,
string
&
kernel_name
,
const
Shape
&
shapeA
,
const
Shape
&
shapeA
,
const
Shape
&
shapeB
)
const
Shape
&
shapeB
,
const
Shape
&
shapeZ
)
{
{
const
size_t
rows
=
shapeA
.
at
(
0
);
const
size_t
colrow
=
shapeA
.
at
(
1
);
const
size_t
colrow
=
shapeA
.
at
(
1
);
kernel_name
+=
"_do_2d_1d_mul"
;
kernel_name
+=
"_do_2d_1d_mul"
;
vector
<
size_t
>
gws
;
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
writer
<<
"__kernel void "
<<
kernel_name
<<
"(const __global float inputA"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
<<
runtime
::
intelgpu
::
array_dims
(
shapeA
)
<<
", const __global float inputB"
<<
runtime
::
intelgpu
::
array_dims
(
shapeB
)
<<
", __global float output"
<<
runtime
::
intelgpu
::
array_dims
(
shapeB
)
<<
", __global float output"
<<
runtime
::
intelgpu
::
array_dims
({
rows
})
<<
")
\n
"
;
<<
runtime
::
intelgpu
::
array_dims
(
shapeZ
)
<<
")
\n
"
;
writer
.
block_begin
();
{
writer
<<
"for (uint i0 = 0; i0 < "
<<
rows
<<
"; ++i0)
\n
"
;
writer
.
block_begin
();
writer
.
block_begin
();
{
{
// Main loops
gws
=
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
true
);
writer
<<
"float sum = 0.0f;
\n
"
;
writer
<<
"float sum = 0.0f;
\n
"
;
// Inner loop
writer
<<
"for (uint i1 = 0; i1 < "
<<
colrow
<<
"; ++i1)
\n
"
;
writer
<<
"for (uint i1 = 0; i1 < "
<<
colrow
<<
"; ++i1)
\n
"
;
writer
.
block_begin
();
writer
.
block_begin
();
{
{
...
@@ -414,10 +390,13 @@ static void do_2d_1d_mul(codegen::CodeWriter& writer,
...
@@ -414,10 +390,13 @@ static void do_2d_1d_mul(codegen::CodeWriter& writer,
}
}
writer
.
block_end
();
writer
.
block_end
();
writer
<<
"output[i0] = sum;
\n
"
;
writer
<<
"output[i0] = sum;
\n
"
;
// Closing brackets for main loops
runtime
::
intelgpu
::
generate_loops
(
writer
,
shapeZ
,
false
);
}
}
writer
.
block_end
();
writer
.
block_end
();
}
writer
.
block_end
()
;
return
gws
;
}
}
static
void
do_scalar_scalar_mul
(
codegen
::
CodeWriter
&
writer
,
string
&
kernel_name
)
static
void
do_scalar_scalar_mul
(
codegen
::
CodeWriter
&
writer
,
string
&
kernel_name
)
...
@@ -473,6 +452,7 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
...
@@ -473,6 +452,7 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
const
cldnn
::
layout
layout
=
IntelGPULayout
::
create_cldnn_layout
(
output_type
,
output_shape
);
const
cldnn
::
layout
layout
=
IntelGPULayout
::
create_cldnn_layout
(
output_type
,
output_shape
);
string
entry_point_name
=
"dot_"
+
output_name
;
string
entry_point_name
=
"dot_"
+
output_name
;
codegen
::
CodeWriter
writer
;
codegen
::
CodeWriter
writer
;
vector
<
size_t
>
gws
=
{
1
};
const
bool
A_is_scalar
=
inputA_shape
.
empty
();
const
bool
A_is_scalar
=
inputA_shape
.
empty
();
const
bool
B_is_scalar
=
inputB_shape
.
empty
();
const
bool
B_is_scalar
=
inputB_shape
.
empty
();
...
@@ -494,19 +474,19 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
...
@@ -494,19 +474,19 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
{
{
if
(
inputA_shape
.
size
()
==
2
&&
inputB_shape
.
size
()
==
1
)
if
(
inputA_shape
.
size
()
==
2
&&
inputB_shape
.
size
()
==
1
)
{
{
do_2d_1d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB
_shape
);
gws
=
do_2d_1d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB_shape
,
output
_shape
);
}
}
else
if
(
inputA_shape
.
size
()
==
2
&&
inputB_shape
.
size
()
==
2
)
else
if
(
inputA_shape
.
size
()
==
2
&&
inputB_shape
.
size
()
==
2
)
{
{
do_2d_2d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB_shape
,
output_shape
);
gws
=
do_2d_2d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB_shape
,
output_shape
);
}
}
else
if
(
inputA_shape
.
size
()
==
3
&&
inputB_shape
.
size
()
==
3
)
else
if
(
inputA_shape
.
size
()
==
3
&&
inputB_shape
.
size
()
==
3
)
{
{
do_3d_3d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB_shape
,
output_shape
);
gws
=
do_3d_3d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB_shape
,
output_shape
);
}
}
else
if
(
inputA_shape
.
size
()
==
3
&&
inputB_shape
.
size
()
==
2
)
else
if
(
inputA_shape
.
size
()
==
3
&&
inputB_shape
.
size
()
==
2
)
{
{
do_3d_2d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB_shape
,
output_shape
);
gws
=
do_3d_2d_mul
(
writer
,
entry_point_name
,
inputA_shape
,
inputB_shape
,
output_shape
);
}
}
else
else
{
{
...
@@ -518,7 +498,6 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
...
@@ -518,7 +498,6 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
do_dot_operation_error
(
inputA_shape
,
inputB_shape
,
output_shape
);
do_dot_operation_error
(
inputA_shape
,
inputB_shape
,
output_shape
);
}
}
//cout << writer.get_code() << endl;
const
cldnn
::
custom_gpu_primitive
op_dot
(
output_name
,
const
cldnn
::
custom_gpu_primitive
op_dot
(
output_name
,
{
inputA_name
,
inputB_name
},
{
inputA_name
,
inputB_name
},
{
writer
.
get_code
()},
{
writer
.
get_code
()},
...
@@ -526,7 +505,7 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
...
@@ -526,7 +505,7 @@ void runtime::intelgpu::do_dot_operation(cldnn::topology& topology,
get_kernel_args
(
2
,
1
),
get_kernel_args
(
2
,
1
),
""
,
""
,
layout
,
layout
,
{
1
}
);
gws
);
topology
.
add
(
op_dot
);
topology
.
add
(
op_dot
);
}
}
...
...
src/ngraph/runtime/intelgpu/intelgpu_op_custom_kernels.hpp
View file @
134b0ae2
...
@@ -18,6 +18,8 @@
...
@@ -18,6 +18,8 @@
#include <CPP/topology.hpp>
#include <CPP/topology.hpp>
#include "ngraph/runtime/intelgpu/code_writer.hpp"
#include "ngraph/axis_set.hpp"
#include "ngraph/axis_set.hpp"
#include "ngraph/coordinate.hpp"
#include "ngraph/coordinate.hpp"
#include "ngraph/shape.hpp"
#include "ngraph/shape.hpp"
...
@@ -96,6 +98,8 @@ namespace ngraph
...
@@ -96,6 +98,8 @@ namespace ngraph
std
::
string
access_dims
(
const
Shape
&
dimentions
,
std
::
string
access_dims
(
const
Shape
&
dimentions
,
const
AxisSet
&
axis
=
{},
const
AxisSet
&
axis
=
{},
bool
is_reversed
=
false
);
bool
is_reversed
=
false
);
std
::
vector
<
size_t
>
generate_loops
(
codegen
::
CodeWriter
&
writer
,
const
Shape
&
shape
,
bool
is_begin
);
}
}
}
}
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment