Commit 122db5ff authored by Adam Procter's avatar Adam Procter Committed by Scott Cyphers

Convolution forward prop (#294)

* Test GitHub-JIRA integration, nothing useful in this commit

NGTF-388 #comment Testing JIRA integration

* WIP on convolution

* Type checking for convolution

* Docstrings for convolution

* Add convolution reference kernel; it works on some unit tests copied and pasted from my old branch.

* Bugfix for dilated conv, and improvement to conv test generation

* Remove get_arguments calls from convolution stuff

* Add convolution to CPU; also a few fixes to the test generation stuff

* Add copyright header to convolution ref script

* Move copyright header to the correct place

* A few more tests

* Remove fallback behavior of blanking out the convolution ref file, since we're not generating it from the build system anymore

* Delete stale comment

* Merge stuff for the convolution ref script

* Clean up rebase mess

* Review comments

* Review comment (n_foo -> foo_count)
parent 3b84d91a
......@@ -39,6 +39,7 @@ set (SRC
ops/concatenate.cpp
ops/constant.cpp
ops/convert.cpp
ops/convolution.cpp
ops/cos.cpp
ops/cosh.cpp
ops/divide.cpp
......
......@@ -21,15 +21,10 @@
#include "ngraph/common.hpp"
#include "ngraph/coordinate_transform.hpp"
#include "ngraph/except.hpp"
#include "ngraph/util.hpp"
using namespace ngraph;
template <typename T>
inline T ceil_div(T x, T y)
{
return (x == 0 ? 0 : (1 + (x - 1) / y));
}
CoordinateTransform::CoordinateTransform(const Shape& source_shape,
const Coordinate& source_start_corner,
const Coordinate& source_end_corner,
......
......@@ -69,6 +69,7 @@
#include "ngraph/ops/concatenate.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/convert.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/cos.hpp"
#include "ngraph/ops/cosh.hpp"
#include "ngraph/ops/divide.hpp"
......
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ops/convolution.hpp"
#include "ngraph/util.hpp"
using namespace std;
using namespace ngraph;
op::Convolution::Convolution(const std::shared_ptr<Node>& image_batch,
const std::shared_ptr<Node>& filters,
const Strides& window_movement_strides,
const Strides& window_dilation_strides)
: RequiresTensorViewArgs("Convolution", {image_batch, filters})
, m_window_movement_strides(window_movement_strides)
, m_window_dilation_strides(window_dilation_strides)
{
auto image_batch_tensor_view_type = get_inputs().at(0).get_tensor_view_type();
auto& image_batch_shape = image_batch_tensor_view_type->get_shape();
auto filters_tensor_view_type = get_inputs().at(1).get_tensor_view_type();
auto& filters_shape = filters_tensor_view_type->get_shape();
//
// Make sure image_batch: NCiDi for some Di of rank>0, N != 0, Ci != 0.
//
if (image_batch_shape.size() < 3)
{
throw ngraph_error(
"Convolution image batch input must have rank of at least 3 (one batch axis, one "
"input-channel axis, at least one image dimension).");
}
m_batch_size = image_batch_shape[0];
if (m_batch_size == 0)
{
throw ngraph_error("Convolution image batch size is zero.");
}
m_input_channel_count = image_batch_shape[1];
if (m_input_channel_count == 0)
{
throw ngraph_error("Convolution requires at least one input channel.");
}
m_image_dimension_count = image_batch_shape.size() - 2;
//
// Make sure filters: CoCiWv for some Co>0, rank of W = rank of Di.
//
if (filters_shape.size() != 2 + m_image_dimension_count)
{
throw ngraph_error("Convolution filter input must have rank of 2 + n_image_dimensions.");
}
m_output_channel_count = filters_shape[0];
if (m_output_channel_count == 0)
{
throw ngraph_error("Convolution requires at least one output channel.");
}
if (filters_shape[1] != m_input_channel_count)
{
throw ngraph_error("Convolution image batch and filter input channel counts do not match.");
}
//
// Make sure window movement strides and window dilation strades have same rank as Di.
//
if (m_window_movement_strides.size() != m_image_dimension_count)
{
throw ngraph_error(
"Convolution window movement stride rank does not match number of image dimensions.");
}
if (m_window_dilation_strides.size() != m_image_dimension_count)
{
throw ngraph_error(
"Convolution window dilation stride rank does not match number of image dimensions.");
}
//
// Extract input image shape Di and make sure all dimensions are larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
{
m_input_image_shape.push_back(image_batch_shape[1 + 1 + +i]);
if (m_input_image_shape[i] == 0)
{
throw ngraph_error("Convolution input image dimension is zero.");
}
}
//
// Extract the virtual shape Wv of the convolution window, *not* including dilation, from the filter dimensions.
// At the same time, make sure window shape dimensions are all larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
{
m_window_virtual_shape.push_back(filters_shape[1 + 1 + i]);
if (m_window_virtual_shape[i] == 0)
{
throw ngraph_error("Convolution window shape has a zero-length axis.");
}
}
//
// Compute physical shape Wp of the convolution window, *including* dilation. At the same time, make sure all
// window dilation strides are larger than 0, and that the dilated filter fits within the image dimensions.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
{
if (m_window_dilation_strides[i] == 0)
{
throw ngraph_error("Convolution window axis dilation stride is zero.");
}
m_window_physical_shape.push_back(
(m_window_virtual_shape[i] - 1) * m_window_dilation_strides[i] + 1);
if (m_window_physical_shape[i] > m_input_image_shape[i])
{
throw ngraph_error("Convolution window after dilation is larger than the image.");
}
}
//
// Compute image output shape Do, checking at the same time that all window movement strides are larger than 0.
//
for (size_t i = 0; i < m_image_dimension_count; i++)
{
if (m_window_movement_strides[i] == 0)
{
throw ngraph_error("Convolution window axis movement stride is zero.");
}
m_output_image_shape.push_back(ceil_div(
m_input_image_shape[i] - m_window_physical_shape[i] + 1, m_window_movement_strides[i]));
}
//
// Construct result shape: NCoDo.
//
Shape result_shape(1 + 1 + m_image_dimension_count);
result_shape[0] = m_batch_size;
result_shape[1] = m_output_channel_count;
std::copy(m_output_image_shape.begin(), m_output_image_shape.end(), result_shape.begin() + 2);
set_value_type_checked(make_shared<TensorViewType>(
image_batch_tensor_view_type->get_element_type(), result_shape));
}
Strides default_strides(const std::shared_ptr<Node>& image_batch)
{
auto image_batch_value_type = image_batch->get_value_type();
auto image_batch_tensor_view_type =
dynamic_pointer_cast<const TensorViewType>(image_batch_value_type);
if (image_batch_tensor_view_type == nullptr)
{
throw ngraph_error("Convolution image batch argument has non-tensor view type");
}
auto& image_batch_shape = image_batch_tensor_view_type->get_shape();
if (image_batch_shape.size() < 3)
{
// For consistency we should throw the same error message here that we throw in the constructor.
throw ngraph_error(
"Convolution image batch input must have rank of at least 3 (one batch axis, one "
"input-channel axis, at least one image dimension).");
}
return Strides(image_batch_shape.size() - 2, 1);
}
op::Convolution::Convolution(const std::shared_ptr<Node>& image_batch,
const std::shared_ptr<Node>& filters,
const Strides& window_movement_strides)
: Convolution(image_batch, filters, window_movement_strides, default_strides(image_batch))
{
}
op::Convolution::Convolution(const std::shared_ptr<Node>& image_batch,
const std::shared_ptr<Node>& filters)
: Convolution(image_batch, filters, default_strides(image_batch), default_strides(image_batch))
{
}
std::shared_ptr<Node>
op::Convolution::copy_with_new_args(const std::vector<std::shared_ptr<Node>>& new_args) const
{
if (new_args.size() != 2)
{
throw ngraph_error("Incorrect number of new arguments");
}
return std::make_shared<Convolution>(
new_args.at(0), new_args.at(1), m_window_movement_strides, m_window_dilation_strides);
}
/*
void op::Convolution::generate_adjoints(autodiff::Adjoints& adjoints, const std::shared_ptr<Node>& delta)
{
}
*/
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/ops/op.hpp"
namespace ngraph
{
namespace op
{
/// \brief Batched convolution operation, with optional window dilation and stride.
///
/// Convolution takes two inputs:
///
/// 1. <i>(the image batch)</i> a tensor of shape \f$(N,C_\textit{in},d_1,\dots,d_n)\f$ where \f$n > 0\f$, every \f$d_i > 0\f$, and where \f$N\f$ is the batch size
/// (number of images) and \f$C_\textit{in} > 0\f$ is the number of input channels (sometimes called features); and
/// 2. <i>(the filters)</i> a tensor of shape \f$(C_\textit{out},C_\textit{in},d^f_1,\dots,d^f_n)\f$, where \f$C_\textit{out} > 0\f$ is the number of output channels
/// (sometimes called features) and \f$(d^f_1,\dots,d^f_n)\f$ are the filter dimensions. It is required that for all \f$i\f$, \f$0 < l_i(d^f_i - 1) + 1 \le d_i\f$.
/// (See below for the definition of the dilation \f$l_i\f$);
///
/// and two optional parameters:
///
/// 3. <i>(the window movement strides)</i> a vector of positive integers \f$(s_1,\dots,s_n)\f$, and
/// 4. <i>(the window dilation strides)</i> a vector of positive integers \f$(l_1,\dots,l_n)\f$.
///
/// Define the <i>physical window size</i> as the vector \f$(p_1,\dots,p_n)\f$ where \f$p_i = l_i(d^f_i - 1) + 1\f$.
///
/// The output has the shape \f$(N,C_\textit{out},d'_1,\dots,d'_n)\f$, where \f$d'_n = \lceil \frac{d_i - p_i + 1}{s_i} \rceil\f$.
///
/// Given an input image batch tensor \f$T_\textit{in}\f$ and an input filter tensor \f$T_\textit{filt}\f$, the output tensor is defined by the equation (TODO: I'm sure
/// I messed something up here)
///
/// \f[
/// T_\textit{out}[a,c_\textit{out},i_1,\dots,i_n] = \sum_{c_\textit{in}=0,j_1=0,\dots,j_n=0}^{c_\textit{in}=C_\textit{in}-1,j_1=d^f_1-1,\dots,j_n=d^f_n-1} (T_\textit{filt}[c_\textit{out},c_\textit{in},j_1,\dots,j_n] \cdot T_\textit{in}[a,c_\textit{in},s_1i_1+l_1j_1,\dots,s_ni_n+l_nj_n])
/// \f]
///
class Convolution : public RequiresTensorViewArgs
{
public:
/// \brief Constructs a batched convolution operation.
///
/// \param image_batch The node producing the input image batch tensor.
/// \param filters The node producing the filters tensor.
/// \param window_movement_strides The window movement strides.
/// \param window_dilation_strides The window dilation strides.
Convolution(const std::shared_ptr<Node>& image_batch,
const std::shared_ptr<Node>& filters,
const Strides& window_movement_strides,
const Strides& window_dilation_strides);
/// \brief Constructs a batched convolution operation with no window dilation (i.e., all dilation strides are 1).
///
/// \param image_batch The node producing the input image batch tensor.
/// \param filters The node producing the filters tensor.
/// \param window_movement_strides The window movement strides.
Convolution(const std::shared_ptr<Node>& image_batch,
const std::shared_ptr<Node>& filters,
const Strides& window_movement_strides);
/// \brief Constructs a batched convolution operation with no window dilation or movement stride (i.e., all dilation and movement strides are 1).
///
/// \param image_batch The node producing the input image batch tensor.
/// \param filters The node producing the filters tensor.
Convolution(const std::shared_ptr<Node>& image_batch,
const std::shared_ptr<Node>& filters);
virtual std::shared_ptr<Node> copy_with_new_args(
const std::vector<std::shared_ptr<Node>>& new_args) const override;
/// \return The window movement strides.
const Strides& get_window_movement_strides() const { return m_window_movement_strides; }
/// \return The window dilation strides.
const Strides& get_window_dilation_strides() const { return m_window_dilation_strides; }
/// \return The number of input channels.
size_t get_input_channel_count() const { return m_input_channel_count; }
/// \return The number of output channels.
size_t get_output_channel_count() const { return m_output_channel_count; }
/// \return The input image shape.
Shape get_input_image_shape() const { return m_input_image_shape; }
/// \return The output image shape.
Shape get_output_image_shape() const { return m_output_image_shape; }
/// \return The physical window shape.
Shape get_window_physical_shape() const { return m_window_physical_shape; }
/// \return The virtual window shape.
Shape get_window_virtual_shape() const { return m_window_virtual_shape; }
/// \return The batch size.
size_t get_batch_size() const { return m_batch_size; }
/// \return The number of image dimensions.
size_t get_image_dimension_count() const { return m_image_dimension_count; }
protected:
Strides m_window_movement_strides;
Strides m_window_dilation_strides;
size_t m_input_channel_count;
size_t m_output_channel_count;
Shape m_input_image_shape;
Shape m_output_image_shape;
Shape m_window_physical_shape;
Shape m_window_virtual_shape;
size_t m_batch_size;
size_t m_image_dimension_count;
};
}
}
......@@ -24,6 +24,7 @@
#include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/concatenate.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/dot.hpp"
#include "ngraph/ops/function_call.hpp"
#include "ngraph/ops/get_output_element.hpp"
......@@ -1652,6 +1653,28 @@ void runtime::cpu::CPU_Emitter::EmitSqrt(const ngraph::Node* n,
m_out << "}\n";
}
void runtime::cpu::CPU_Emitter::EmitConvolution(const ngraph::Node* n,
const vector<runtime::cpu::TensorViewWrapper>& args,
const vector<runtime::cpu::TensorViewWrapper>& out)
{
auto convolution = static_cast<const op::Convolution*>(n);
auto arg0_shape = args[0].get_shape();
auto arg1_shape = args[1].get_shape();
auto result_shape = out[0].get_shape();
m_out << "kernel::convolution<" << out[0].get_type() << ">(" << args[0].get_name() << ",\n";
m_out << " " << args[1].get_name() << ",\n";
m_out << " " << out[0].get_name() << ",\n";
m_out << " {" << join(arg0_shape) << "},\n";
m_out << " {" << join(arg1_shape) << "},\n";
m_out << " {" << join(result_shape) << "},\n";
m_out << " {" << join(convolution->get_window_movement_strides())
<< "},\n";
m_out << " {" << join(convolution->get_window_dilation_strides())
<< "});\n";
}
//------------------------------------------------------------------------------------------------
// Utility methods
//------------------------------------------------------------------------------------------------
......
......@@ -102,6 +102,7 @@ namespace ngraph
void EMITTER_DECL(EmitFloor);
void EMITTER_DECL(EmitCeiling);
void EMITTER_DECL(EmitSqrt);
void EMITTER_DECL(EmitConvolution);
private:
void generate_call(const std::vector<TensorViewWrapper>& args,
......
......@@ -40,6 +40,7 @@
#include "ngraph/ops/concatenate.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/convert.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/cos.hpp"
#include "ngraph/ops/cosh.hpp"
#include "ngraph/ops/divide.hpp"
......@@ -166,6 +167,7 @@ static const runtime::cpu::OpMap dispatcher{
{TI(ngraph::op::Floor), &runtime::cpu::CPU_Emitter::EmitFloor},
{TI(ngraph::op::Ceiling), &runtime::cpu::CPU_Emitter::EmitCeiling},
{TI(ngraph::op::Sqrt), &runtime::cpu::CPU_Emitter::EmitSqrt},
{TI(ngraph::op::Convolution), &runtime::cpu::CPU_Emitter::EmitConvolution},
};
runtime::cpu::CPU_ExternalFunction::CPU_ExternalFunction(
......@@ -209,6 +211,7 @@ void runtime::cpu::CPU_ExternalFunction::compile()
#include "ngraph/runtime/cpu/cpu_kernels.hpp"
#include "ngraph/runtime/kernel/broadcast.hpp"
#include "ngraph/runtime/kernel/concat.hpp"
#include "ngraph/runtime/kernel/convolution.hpp"
#include "ngraph/runtime/kernel/dot.hpp"
#include "ngraph/runtime/kernel/one_hot.hpp"
#include "ngraph/runtime/kernel/reduce.hpp"
......
......@@ -23,6 +23,7 @@
#include "ngraph/ops/broadcast.hpp"
#include "ngraph/ops/concatenate.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/dot.hpp"
#include "ngraph/ops/one_hot.hpp"
#include "ngraph/ops/reduce.hpp"
......@@ -44,6 +45,7 @@
#include "ngraph/runtime/kernel/concat.hpp"
#include "ngraph/runtime/kernel/constant.hpp"
#include "ngraph/runtime/kernel/convert.hpp"
#include "ngraph/runtime/kernel/convolution.hpp"
#include "ngraph/runtime/kernel/copy.hpp"
#include "ngraph/runtime/kernel/cos.hpp"
#include "ngraph/runtime/kernel/cosh.hpp"
......@@ -269,6 +271,18 @@ private:
reinterpret_cast<S*>(out[0]->get_data_ptr()),
out[0]->get_element_count());
}
else if (node_op == "Convolution")
{
auto c = static_cast<const op::Convolution*>(&node);
kernel::convolution<T>(reinterpret_cast<T*>(args[0]->get_data_ptr()),
reinterpret_cast<T*>(args[1]->get_data_ptr()),
reinterpret_cast<T*>(out[0]->get_data_ptr()),
args[0]->get_shape(),
args[1]->get_shape(),
out[0]->get_shape(),
c->get_window_movement_strides(),
c->get_window_dilation_strides());
}
else if (node_op == "Cos")
{
kernel::cos<T>(reinterpret_cast<T*>(args[0]->get_data_ptr()),
......
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include <cmath>
#include "ngraph/common.hpp"
#include "ngraph/coordinate_transform.hpp"
namespace ngraph
{
namespace runtime
{
namespace kernel
{
template <typename T>
void convolution(T* arg0,
T* arg1,
T* out,
const Shape& arg0_shape,
const Shape& arg1_shape,
const Shape& out_shape,
const Strides& window_movement_strides,
const Strides& window_dilation_strides)
{
// At the outermost level we will walk over every output coordinate O.
CoordinateTransform output_transform(out_shape);
for (Coordinate out_coord : output_transform)
{
// Our output coordinate O will have the form:
//
// (img,chan_out,i_1,...,i_n)
size_t img_index = out_coord[0];
size_t output_channel = out_coord[1];
// For the input images we need to iterate the coordinate:
//
// I:
//
// over the range (noninclusive on the right):
//
// (img,0,s_1*i_1,s_2*i_2,...,s_n*i_n) ->
//
// (img+1,chans_in_count,s_1*i_1 + l_1*filter_dims_1,...,s_n*i_n + l_n*filter_dims_n)
//
// with strides:
//
// (1,l_1,...,l_n).
size_t n_image_dimensions = arg0_shape.size() - 2;
size_t n_input_channels = arg0_shape[1];
Shape input_batch_transform_start(2 + n_image_dimensions);
Shape input_batch_transform_end(2 + n_image_dimensions);
Shape input_batch_transform_strides(2 + n_image_dimensions, 1);
input_batch_transform_start[0] = img_index;
input_batch_transform_end[0] = img_index + 1;
input_batch_transform_start[1] = 0;
input_batch_transform_end[1] = n_input_channels;
for (size_t i = 2; i < n_image_dimensions + 2; i++)
{
size_t dilation_stride = window_dilation_strides[i - 2];
size_t movement_stride = window_movement_strides[i - 2];
input_batch_transform_start[i] = movement_stride * out_coord[i];
input_batch_transform_end[i] = input_batch_transform_start[i] +
(arg1_shape[i] - 1) * dilation_stride + 1;
input_batch_transform_strides[i] = dilation_stride;
}
CoordinateTransform input_batch_transform(arg0_shape,
input_batch_transform_start,
input_batch_transform_end,
input_batch_transform_strides);
// Simultaneously with iterating I, for the filters we need to iterate the coordinate:
//
// F
//
// over the range (noninclusive on the right):
//
// (chan_out,0,0,...,0) -> (chan_out+1,chans_in_count,filter_dims_1,...,filter_dims_n)
//
// with unit stride.
Shape filter_transform_start(2 + n_image_dimensions);
Shape filter_transform_end(2 + n_image_dimensions);
filter_transform_start[0] = output_channel;
filter_transform_end[0] = output_channel + 1;
filter_transform_start[1] = 0;
filter_transform_end[1] = n_input_channels;
for (size_t i = 2; i < n_image_dimensions + 2; i++)
{
filter_transform_start[i] = 0;
filter_transform_end[i] = arg1_shape[i];
}
CoordinateTransform filter_transform(
arg1_shape, filter_transform_start, filter_transform_end);
// As we go, we sum up:
//
// output[O] += arg0[I] * arg1[F].
T result = 0;
CoordinateTransform::Iterator input_it = input_batch_transform.begin();
CoordinateTransform::Iterator filter_it = filter_transform.begin();
while (input_it != input_batch_transform.end() &&
filter_it != filter_transform.end())
{
Coordinate input_batch_coord = *input_it++;
Coordinate filter_coord = *filter_it++;
result += arg0[input_batch_transform.index(input_batch_coord)] *
arg1[filter_transform.index(filter_coord)];
}
out[output_transform.index(out_coord)] = result;
}
}
}
}
}
......@@ -33,6 +33,7 @@
#include "ngraph/ops/concatenate.hpp"
#include "ngraph/ops/constant.hpp"
#include "ngraph/ops/convert.hpp"
#include "ngraph/ops/convolution.hpp"
#include "ngraph/ops/cos.hpp"
#include "ngraph/ops/cosh.hpp"
#include "ngraph/ops/divide.hpp"
......@@ -83,6 +84,7 @@
#include "ngraph/runtime/ngvm/instruction/concat.hpp"
#include "ngraph/runtime/ngvm/instruction/constant.hpp"
#include "ngraph/runtime/ngvm/instruction/convert.hpp"
#include "ngraph/runtime/ngvm/instruction/convolution.hpp"
#include "ngraph/runtime/ngvm/instruction/copy.hpp"
#include "ngraph/runtime/ngvm/instruction/copy_by_index.hpp"
#include "ngraph/runtime/ngvm/instruction/cos.hpp"
......@@ -540,6 +542,35 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
#undef REGISTER_CONVERT
};
REGISTER_TO_OP_MAP(op::Convolution)
{
auto convolution = static_cast<const op::Convolution*>(n);
auto arg0_tensor_type = n->get_inputs().at(0).get_tensor_view_type();
auto arg0_shape = arg0_tensor_type->get_shape();
auto arg1_tensor_type = n->get_inputs().at(1).get_tensor_view_type();
auto arg1_shape = arg1_tensor_type->get_shape();
auto result_tensor_type =
dynamic_pointer_cast<const TensorViewType>(n->get_value_type());
assert(nullptr != result_tensor_type);
auto result_shape = result_tensor_type->get_shape();
auto& result_element_type = result_tensor_type->get_element_type();
PUSH_POLYMORPHIC_INSTRUCTION(result_element_type,
"Convolution has unhandled element type",
instruction::ConvolutionInstruction,
in[0],
in[1],
out[0],
arg0_shape,
arg1_shape,
result_shape,
convolution->get_window_movement_strides(),
convolution->get_window_dilation_strides());
};
REGISTER_TO_OP_MAP(op::Dot)
{
auto dot = static_cast<const op::Dot*>(n);
......
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/kernel/convolution.hpp"
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/ngvm/utils.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace ngraph
{
namespace runtime
{
namespace ngvm
{
namespace instruction
{
template <typename ET>
class ConvolutionInstruction : public Instruction
{
public:
ConvolutionInstruction(const TensorViewInfo& arg0,
const TensorViewInfo& arg1,
const TensorViewInfo& out,
const Shape& arg0_shape,
const Shape& arg1_shape,
const Shape& out_shape,
const Strides& window_movement_strides,
const Strides& window_dilation_strides)
: m_arg0(arg0)
, m_arg1(arg1)
, m_out(out)
, m_arg0_shape(arg0_shape)
, m_arg1_shape(arg1_shape)
, m_out_shape(out_shape)
, m_window_movement_strides(window_movement_strides)
, m_window_dilation_strides(window_dilation_strides)
{
}
virtual void execute(CallFrame& call_frame) const override
{
typename ET::type* arg0 = get_tensor_data_ptr<ET>(call_frame, m_arg0);
typename ET::type* arg1 = get_tensor_data_ptr<ET>(call_frame, m_arg1);
typename ET::type* out = get_tensor_data_ptr<ET>(call_frame, m_out);
kernel::convolution<typename ET::type>(arg0,
arg1,
out,
m_arg0_shape,
m_arg1_shape,
m_out_shape,
m_window_movement_strides,
m_window_dilation_strides);
}
protected:
TensorViewInfo m_arg0;
TensorViewInfo m_arg1;
TensorViewInfo m_out;
Shape m_arg0_shape;
Shape m_arg1_shape;
Shape m_out_shape;
Strides m_window_movement_strides;
Strides m_window_dilation_strides;
};
}
}
}
}
......@@ -223,6 +223,12 @@ namespace ngraph
return a * b;
}
template <typename T>
T ceil_div(const T& x, const T& y)
{
return (x == 0 ? 0 : (1 + (x - 1) / y));
}
void traverse_nodes(Function* p, std::function<void(std::shared_ptr<Node>)> f);
void traverse_nodes(std::shared_ptr<Function> p, std::function<void(std::shared_ptr<Node>)> f);
void traverse_functions(std::shared_ptr<Function> p,
......
......@@ -82,7 +82,9 @@ endif()
foreach(BACKEND_NAME ${BACKEND_NAMES})
configure_file(backend_test.in.cpp backend_test_${BACKEND_NAME}.cpp)
configure_file(convolution_test.in.cpp convolution_test_${BACKEND_NAME}.cpp)
set(SRC ${SRC} ${CMAKE_CURRENT_BINARY_DIR}/backend_test_${BACKEND_NAME}.cpp)
set(SRC ${SRC} ${CMAKE_CURRENT_BINARY_DIR}/convolution_test_${BACKEND_NAME}.cpp)
message(STATUS "Adding unit test for backend ${BACKEND_NAME}")
endforeach()
......
This source diff could not be displayed because it is too large. You can view the blob instead.
#!/usr/bin/env python
# ----------------------------------------------------------------------------
# Copyright 2017 Nervana Systems Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# ----------------------------------------------------------------------------
import sys
import numpy as np
import math
from operator import mul
# Imposes the shape on the given 1-D array to produce a C-style-indexed n-D array.
def shaped_from_flat(shape,flat):
total_elems = reduce(mul,shape)
assert(len(flat) == total_elems)
arr = np.array(flat)
arr.shape = shape
return arr
# Creates a linspaced array from 1 to n where n is the number of elements in the shape, then
# imposes the shape on the array to produce a C-style-indexed n-D array.
def shaped_linspace(shape):
total_elems = reduce(mul,shape)
flat = np.linspace(1,total_elems,total_elems)
return shaped_from_flat(shape,flat)
# Elementwise addition on tuples.
def tuple_plus(t1,t2):
assert(len(t1) == len(t2))
res = ()
for (x,y) in zip(list(t1),list(t2)):
res = res + (x+y,)
return res
# Elementwise multiplication on tuples.
def tuple_times(t1,t2):
assert(len(t1) == len(t2))
res = ()
for (x,y) in zip(list(t1),list(t2)):
res = res + (x*y,)
return res
#
# Convolution reference
#
# Arguments:
# img_batch : [N ][Ci][D1]...[Dn], n > 0
# filter : [Co][Ci][W1]...[Wn]
# move_strides = (s1,...,sn)
# dilation_strides = (l1,...,ln)
#
# Returns:
# output_batch : [N ][Co][D'1]...[D'n]
#
# Where the D's are computed according to TensorFlow-style "valid" convolution rules.
# See https://www.tensorflow.org/api_docs/python/tf/nn/convolution.
#
def convolution_ref(img_batch, filter, move_strides, dilation_strides):
assert(len(img_batch.shape) == len(filter.shape))
assert(len(img_batch.shape) > 2)
assert(img_batch.shape[1] == filter.shape[1])
assert(len(move_strides) == len(img_batch.shape) - 2)
assert(len(dilation_strides) == len(img_batch.shape) - 2)
img_count = img_batch.shape[0] # N
ci_count = img_batch.shape[1] # Ci
co_count = filter.shape[0] # Co
input_img_shape = list(img_batch.shape[2:]) # D1, ..., Dn
window_virtual_shape = list(filter.shape[2:]) # W1, ..., Wn
# This is not used in computation but we will calculate it for a check to make sure the window fits.
window_physical_shape = []
for (d_in,d_virt,dil) in zip(input_img_shape,window_virtual_shape,dilation_strides):
d_phys = (d_virt - 1) * dil + 1
assert(d_phys <= input_img_shape)
window_physical_shape.append(d_phys)
output_img_shape = [] # D'1,...,D'n
for (d_in,d_win,dil,mov) in zip (input_img_shape,window_virtual_shape,dilation_strides,move_strides):
d_out = int(math.ceil((float(d_in) - (float(d_win) - 1.0) * float(dil))/float(mov))) # Formula is taken from TF's definition for VALID convolution.
assert(d_out > 0)
output_img_shape.append(d_out)
output_shape = [img_count,co_count]+output_img_shape # N,Co,D'1,...,D'n
output_batch = np.zeros(output_shape)
# Walk over the output batch space.
output_it = np.nditer(output_batch, flags=['multi_index'])
while not output_it.finished:
# Break up the output coordinate to figure out where we are in terms of image index, output channel, and image shape position.
output_index = output_it.multi_index
img, co, output_pos = output_index[0], output_index[1], output_index[2:]
# Walk over the filter for the current output channel.
filter_it = np.nditer(filter[co], flags=['multi_index'])
while not filter_it.finished:
# Break up the filter coordinate to figure out where we are in terms of input channel and filter shape position.
filter_index = filter_it.multi_index
ci, filter_pos = filter_index[0], filter_index[1:]
# Build up the coordinate within the space N,Ci,D1,...,Dn that we need to read from in the input batch.
input_index = (img,ci) + (tuple_plus(tuple_times(output_pos,move_strides),tuple_times(filter_pos,dilation_strides)))
# Add to the sum-of-products.
output_batch[output_index] = output_batch[output_index] + filter[(co,) + filter_index] * img_batch[input_index]
filter_it.iternext()
output_it.iternext()
return output_batch
def shape_str(shape):
result = ''
first = True
for d in shape:
if first:
result = ('%d' % d)
first = False
else:
result = result + (',%d' % d)
return result
def data_str(data):
result = ''
first = True
for x in np.nditer(data):
if first:
result = ('%.1000g' % x)
first = False
else:
result = result + (',%.1000g' % x)
return result
def emit_test(t,f):
test_name, input_batch_data, filter_data, move_strides, dilation_strides = t
print ("Generating convolution test '%s'..." % test_name)
output_batch_data = convolution_ref(input_batch_data,filter_data,move_strides,dilation_strides)
template = '''
TEST (${BACKEND_NAME}, %s)
{
auto shape_a = Shape{%s};
auto A = make_shared<op::Parameter>(element::Float64::element_type(), shape_a);
auto shape_b = Shape{%s};
auto B = make_shared<op::Parameter>(element::Float64::element_type(), shape_b);
auto shape_r = Shape{%s};
auto result_type = make_shared<TensorViewType>(element::Float64::element_type(), shape_r);
auto f = make_shared<Function>(
make_shared<op::Convolution>(A, B, Strides{%s}, Strides{%s}), result_type, op::Parameters{A, B});
auto manager = runtime::Manager::get("${BACKEND_NAME}");
auto external = manager->compile(f);
auto backend = manager->allocate_backend();
auto cf = backend->make_call_frame(external);
// Create some tensors for input/output
auto a = backend->make_primary_tensor_view(element::Float64::element_type(), shape_a);
copy_data(a, vector<double>{%s});
auto b = backend->make_primary_tensor_view(element::Float64::element_type(), shape_b);
copy_data(b, vector<double>{%s});
auto result = backend->make_primary_tensor_view(element::Float64::element_type(), shape_r);
vector<double> expected_result{%s};
cf->call({a, b}, {result});
EXPECT_TRUE(all_close_d(vector<double>{expected_result},
result->get_vector<double>()));
}
'''
f.write (template % (test_name,
shape_str(input_batch_data.shape),
shape_str(filter_data.shape),
shape_str(output_batch_data.shape),
shape_str(move_strides),
shape_str(dilation_strides),
data_str(input_batch_data),
data_str(filter_data),
data_str(output_batch_data)));
# test name input image batch filters stride dilation
tests = [
("convolution_2d_1image", shaped_linspace((1,1,3,5)), shaped_linspace((2,1,2,2)), (1,1), (1,1)),
("convolution_2d_2images", shaped_linspace((2,1,3,5)), shaped_linspace((2,1,2,2)), (1,1), (1,1)),
("convolution_2d_2images_strided", shaped_linspace((2,1,3,5)), shaped_linspace((2,1,2,2)), (2,2), (1,1)),
("convolution_2d_2images_dilated", shaped_linspace((2,1,3,5)), shaped_linspace((2,1,2,2)), (1,1), (2,2)),
("convolution_3d_2images", shaped_linspace((2,1,3,5,8)), shaped_linspace((2,1,2,2,3)), (1,1,1), (1,1,1)),
("convolution_4d_2images", shaped_linspace((2,1,3,5,8,7)),shaped_linspace((2,1,2,2,3,1)),(1,1,1,1),(1,1,1,1)),
("convolution_4d_4images", shaped_linspace((4,3,3,5,8,7)),shaped_linspace((4,3,2,2,3,1)),(1,1,1,1),(1,1,1,1)),
("convolution_4d_4images_strided", shaped_linspace((4,3,3,5,8,7)),shaped_linspace((4,3,2,2,3,1)),(2,1,3,2),(1,1,1,1)),
("convolution_4d_4images_dilated", shaped_linspace((4,3,3,5,8,7)),shaped_linspace((4,3,2,2,3,1)),(1,1,1,1),(2,1,3,2)),
("convolution_4d_4images_strided_dilated",shaped_linspace((4,3,8,8,8,8)),shaped_linspace((4,3,2,2,3,1)),(3,2,2,3),(2,1,3,2)),
]
def main():
assert(len(sys.argv)>1)
f = open(sys.argv[1],'w')
f.write('''
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
//
// !!!!!!!!!!!!!!THIS FILE IS AUTOGENERATED OUTSIDE OF THE BUILD PROCESS!!!!!!!!!!!!!!
//
// It takes quite awhile to compute the results, so doing it at cmake time is not a good option.
//
// If you want to add new tests, you should edit test/ref_generators/generate_convolution_ref.py
// and regenerate this file.
//
// To regenerate (NOTE: this script will run apply-code-format.sh and reformat all source files
// in your tree):
//
// $ cd <ngraph source dir>/test
// $ ./update_reference.sh
//
// !!!!!!!!!!!!!!THIS FILE IS AUTOGENERATED OUTSIDE OF THE BUILD PROCESS!!!!!!!!!!!!!!
//
#include <cmath>
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
using namespace std;
using namespace ngraph;
template <typename T>
static void copy_data(shared_ptr<runtime::TensorView> tv, const vector<T>& data)
{
size_t data_size = data.size() * sizeof(T);
tv->write(data.data(), 0, data_size);
}
static bool all_close_d(const std::vector<double>& a,
const std::vector<double>& b,
double rtol = 1e-5,
double atol = 1e-8)
{
assert(a.size() == b.size());
for (size_t i = 0; i < a.size(); ++i)
{
if (std::abs(a[i] - b[i]) > atol + rtol * std::abs(b[i]))
{
return false;
}
}
return true;
}
''')
for t in tests:
emit_test(t,f)
f.close()
if __name__ == "__main__":
main()
......@@ -1949,3 +1949,646 @@ TEST(type_prop, one_hot_deduce_shape_incompatible)
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_1d_deduce)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 100});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 10});
auto conv = make_shared<op::Convolution>(param0, param1);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 91}));
EXPECT_EQ(conv->get_window_movement_strides(), Strides{1});
EXPECT_EQ(conv->get_window_dilation_strides(), Strides{1});
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), Shape{100});
EXPECT_EQ(conv->get_output_image_shape(), Shape{91});
EXPECT_EQ(conv->get_window_physical_shape(), Shape{10});
EXPECT_EQ(conv->get_window_virtual_shape(), Shape{10});
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 1);
}
TEST(type_prop, conv_1d_deduce_strided)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 100});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 10});
auto move_strides = Strides{2};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 46}));
EXPECT_EQ(conv->get_window_movement_strides(), Strides{2});
EXPECT_EQ(conv->get_window_dilation_strides(), Strides{1});
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), Shape{100});
EXPECT_EQ(conv->get_output_image_shape(), Shape{46});
EXPECT_EQ(conv->get_window_physical_shape(), Shape{10});
EXPECT_EQ(conv->get_window_virtual_shape(), Shape{10});
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 1);
}
TEST(type_prop, conv_1d_deduce_strided_small_uneven)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 5});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 2});
auto move_strides = Strides{2};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 2}));
EXPECT_EQ(conv->get_window_movement_strides(), Strides{2});
EXPECT_EQ(conv->get_window_dilation_strides(), Strides{1});
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), Shape{5});
EXPECT_EQ(conv->get_output_image_shape(), Shape{2});
EXPECT_EQ(conv->get_window_physical_shape(), Shape{2});
EXPECT_EQ(conv->get_window_virtual_shape(), Shape{2});
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 1);
}
TEST(type_prop, conv_1d_deduce_strided_small_even)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 6});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 2});
auto move_strides = Strides{2};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 3}));
EXPECT_EQ(conv->get_window_movement_strides(), Strides{2});
EXPECT_EQ(conv->get_window_dilation_strides(), Strides{1});
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), Shape{6});
EXPECT_EQ(conv->get_output_image_shape(), Shape{3});
EXPECT_EQ(conv->get_window_physical_shape(), Shape{2});
EXPECT_EQ(conv->get_window_virtual_shape(), Shape{2});
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 1);
}
TEST(type_prop, conv_1d_deduce_dilated)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 100});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 10});
auto move_strides = Strides{1};
auto dilate_strides = Strides{2};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides, dilate_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 82}));
EXPECT_EQ(conv->get_window_movement_strides(), Strides{1});
EXPECT_EQ(conv->get_window_dilation_strides(), Strides{2});
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), Shape{100});
EXPECT_EQ(conv->get_output_image_shape(), Shape{82});
EXPECT_EQ(conv->get_window_physical_shape(), Shape{19});
EXPECT_EQ(conv->get_window_virtual_shape(), Shape{10});
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 1);
}
TEST(type_prop, conv_2d_deduce)
{
// Deduce type
auto param0 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 100, 150});
auto param1 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 10, 20});
auto conv = make_shared<op::Convolution>(param0, param1);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 91, 131}));
EXPECT_EQ(conv->get_window_movement_strides(), (Strides{1, 1}));
EXPECT_EQ(conv->get_window_dilation_strides(), (Strides{1, 1}));
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), (Shape{100, 150}));
EXPECT_EQ(conv->get_output_image_shape(), (Shape{91, 131}));
EXPECT_EQ(conv->get_window_physical_shape(), (Shape{10, 20}));
EXPECT_EQ(conv->get_window_virtual_shape(), (Shape{10, 20}));
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 2);
}
TEST(type_prop, conv_2d_deduce_strided)
{
// Deduce type
auto param0 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 100, 150});
auto param1 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 10, 20});
auto move_strides = Strides{2, 3};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 46, 44}));
EXPECT_EQ(conv->get_window_movement_strides(), (Strides{2, 3}));
EXPECT_EQ(conv->get_window_dilation_strides(), (Strides{1, 1}));
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), (Shape{100, 150}));
EXPECT_EQ(conv->get_output_image_shape(), (Shape{46, 44}));
EXPECT_EQ(conv->get_window_physical_shape(), (Shape{10, 20}));
EXPECT_EQ(conv->get_window_virtual_shape(), (Shape{10, 20}));
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 2);
}
TEST(type_prop, conv_2d_deduce_strided_dilated)
{
// Deduce type
auto param0 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 100, 150});
auto param1 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 10, 20});
auto move_strides = Strides{2, 3};
auto dilate_strides = Strides{3, 2};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides, dilate_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 37, 38}));
EXPECT_EQ(conv->get_window_movement_strides(), (Strides{2, 3}));
EXPECT_EQ(conv->get_window_dilation_strides(), (Strides{3, 2}));
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), (Shape{100, 150}));
EXPECT_EQ(conv->get_output_image_shape(), (Shape{37, 38}));
EXPECT_EQ(conv->get_window_physical_shape(), (Shape{28, 39}));
EXPECT_EQ(conv->get_window_virtual_shape(), (Shape{10, 20}));
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 2);
}
TEST(type_prop, conv_2d_deduce_strided_dilated_small)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 7, 8});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 2, 3});
auto move_strides = Strides{2, 3};
auto dilate_strides = Strides{3, 2};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides, dilate_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 2, 2}));
EXPECT_EQ(conv->get_window_movement_strides(), (Strides{2, 3}));
EXPECT_EQ(conv->get_window_dilation_strides(), (Strides{3, 2}));
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), (Shape{7, 8}));
EXPECT_EQ(conv->get_output_image_shape(), (Shape{2, 2}));
EXPECT_EQ(conv->get_window_physical_shape(), (Shape{4, 5}));
EXPECT_EQ(conv->get_window_virtual_shape(), (Shape{2, 3}));
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 2);
}
TEST(type_prop, conv_3d_deduce_strided_dilated_small)
{
// Deduce type
auto param0 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{64, 3, 7, 8, 10});
auto param1 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{128, 3, 2, 3, 2});
auto move_strides = Strides{2, 3, 4};
auto dilate_strides = Strides{3, 2, 2};
auto conv = make_shared<op::Convolution>(param0, param1, move_strides, dilate_strides);
auto conv_vt = conv->get_value_type();
EXPECT_EQ(*conv_vt, TensorViewType(element::Float32::element_type(), Shape{64, 128, 2, 2, 2}));
EXPECT_EQ(conv->get_window_movement_strides(), (Strides{2, 3, 4}));
EXPECT_EQ(conv->get_window_dilation_strides(), (Strides{3, 2, 2}));
EXPECT_EQ(conv->get_input_channel_count(), 3);
EXPECT_EQ(conv->get_output_channel_count(), 128);
EXPECT_EQ(conv->get_input_image_shape(), (Shape{7, 8, 10}));
EXPECT_EQ(conv->get_output_image_shape(), (Shape{2, 2, 2}));
EXPECT_EQ(conv->get_window_physical_shape(), (Shape{4, 5, 3}));
EXPECT_EQ(conv->get_window_virtual_shape(), (Shape{2, 3, 2}));
EXPECT_EQ(conv->get_batch_size(), 64);
EXPECT_EQ(conv->get_image_dimension_count(), 3);
}
TEST(type_prop, conv_invalid_0d_input)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid 0D input not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(),
std::string("Convolution image batch input must have rank of at "
"least 3 (one batch axis, one input-channel axis, at "
"least one image dimension)."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_1d_input)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{2});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{2});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid 1D input not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(),
std::string("Convolution image batch input must have rank of at "
"least 3 (one batch axis, one input-channel axis, at "
"least one image dimension)."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_2d_input)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{2, 6});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{2, 6});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid 2D input not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(),
std::string("Convolution image batch input must have rank of at "
"least 3 (one batch axis, one input-channel axis, at "
"least one image dimension)."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_0_batch_size)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{0, 6, 1});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{0, 6, 1});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with 0 batch size not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(), std::string("Convolution image batch size is zero."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_0_input_channels)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 0, 1});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{5, 0, 1});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with 0 input channels not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(), std::string("Convolution requires at least one input channel."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_wrong_number_of_filter_dimensions_too_many)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 =
make_shared<op::Parameter>(element::Float32::element_type(), Shape{5, 2, 3, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with too many filter dimensions not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(
error.what(),
std::string("Convolution filter input must have rank of 2 + n_image_dimensions."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_wrong_number_of_filter_dimensions_too_few)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{5, 2, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with too few filter dimensions not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(
error.what(),
std::string("Convolution filter input must have rank of 2 + n_image_dimensions."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_0_output_channels)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{0, 2, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with 0 output channels not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(), std::string("Convolution requires at least one output channel."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_input_channel_mismatch)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 3, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with channel count mismatch not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(
error.what(),
std::string("Convolution image batch and filter input channel counts do not match."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_movement_stride_rank)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1, Strides{2, 3, 8});
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with wrong movement stride rank not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(),
std::string("Convolution window movement stride rank does not "
"match number of image dimensions."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_dilation_stride_rank)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1, Strides{2, 3}, Strides{2, 3, 8});
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with wrong dilation stride rank not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(),
std::string("Convolution window dilation stride rank does not "
"match number of image dimensions."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_input_image_size_0)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 0, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with zero-length image axis not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(), std::string("Convolution input image dimension is zero."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_window_size_0)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 3, 0});
try
{
auto conv = make_shared<op::Convolution>(param0, param1);
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with zero-length window axis not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(), std::string("Convolution window shape has a zero-length axis."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_dilation_stride_0)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1, Strides{2, 3}, Strides{2, 0});
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with wrong 0-length dilation stride axis not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(), std::string("Convolution window axis dilation stride is zero."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_dilated_window_too_large)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 8, 8});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1, Strides{1, 1}, Strides{4, 4});
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with oversized dilated window not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(),
std::string("Convolution window after dilation is larger than the image."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
TEST(type_prop, conv_invalid_movement_stride_0)
{
// Deduce type
auto param0 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 10, 10});
auto param1 = make_shared<op::Parameter>(element::Float32::element_type(), Shape{6, 2, 3, 3});
try
{
auto conv = make_shared<op::Convolution>(param0, param1, Strides{0, 1});
// Should have thrown, so fail if it didn't
FAIL() << "Invalid input with wrong 0-length movement stride axis not detected";
}
catch (const ngraph_error& error)
{
EXPECT_EQ(error.what(), std::string("Convolution window axis movement stride is zero."));
}
catch (...)
{
FAIL() << "Deduced type check failed for unexpected reason";
}
}
#!/bin/bash
declare THIS_SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
python ${THIS_SCRIPT_DIR}/ref_generators/generate_convolution_ref.py ${THIS_SCRIPT_DIR}/convolution_test.in.cpp
${THIS_SCRIPT_DIR}/../maint/apply-code-format.sh
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment