Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
10a78dda
Unverified
Commit
10a78dda
authored
Feb 13, 2019
by
Robert Kimball
Committed by
GitHub
Feb 13, 2019
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
update hybrid to new api (#2428)
parent
b7484420
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
274 additions
and
206 deletions
+274
-206
CMakeLists.txt
src/ngraph/runtime/hybrid/CMakeLists.txt
+1
-0
hybrid_backend.cpp
src/ngraph/runtime/hybrid/hybrid_backend.cpp
+1
-181
hybrid_backend.hpp
src/ngraph/runtime/hybrid/hybrid_backend.hpp
+0
-25
hybrid_executable.cpp
src/ngraph/runtime/hybrid/hybrid_executable.cpp
+213
-0
hybrid_executable.hpp
src/ngraph/runtime/hybrid/hybrid_executable.hpp
+59
-0
No files found.
src/ngraph/runtime/hybrid/CMakeLists.txt
View file @
10a78dda
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
add_library
(
hybrid_base STATIC
add_library
(
hybrid_base STATIC
hybrid_backend.cpp
hybrid_backend.cpp
hybrid_executable.cpp
hybrid_util.cpp
hybrid_util.cpp
pass/default_placement.cpp
pass/default_placement.cpp
pass/dump.cpp
pass/dump.cpp
...
...
src/ngraph/runtime/hybrid/hybrid_backend.cpp
View file @
10a78dda
...
@@ -19,6 +19,7 @@
...
@@ -19,6 +19,7 @@
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/visualize_tree.hpp"
#include "ngraph/pass/visualize_tree.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/hybrid/hybrid_executable.hpp"
#include "ngraph/runtime/hybrid/hybrid_util.hpp"
#include "ngraph/runtime/hybrid/hybrid_util.hpp"
#include "ngraph/runtime/hybrid/pass/default_placement.hpp"
#include "ngraph/runtime/hybrid/pass/default_placement.hpp"
#include "ngraph/runtime/hybrid/pass/dump.hpp"
#include "ngraph/runtime/hybrid/pass/dump.hpp"
...
@@ -53,17 +54,6 @@ shared_ptr<runtime::Tensor> runtime::hybrid::HybridBackend::create_tensor(
...
@@ -53,17 +54,6 @@ shared_ptr<runtime::Tensor> runtime::hybrid::HybridBackend::create_tensor(
return
(
*
it
)
->
create_tensor
(
element_type
,
shape
,
memory_pointer
);
return
(
*
it
)
->
create_tensor
(
element_type
,
shape
,
memory_pointer
);
}
}
static
void
node_modifiers
(
const
Node
&
node
,
vector
<
string
>&
attributes
)
{
vector
<
string
>
colors
=
{
"
\"
#A0FFA0
\"
"
,
"
\"
#FFF790
\"
"
};
if
(
node
.
get_placement_index
()
<
colors
.
size
())
{
string
color
=
colors
[
node
.
get_placement_index
()];
attributes
.
push_back
(
"style=filled"
);
attributes
.
push_back
(
"fillcolor="
+
color
);
}
}
shared_ptr
<
runtime
::
Executable
>
shared_ptr
<
runtime
::
Executable
>
runtime
::
hybrid
::
HybridBackend
::
compile
(
shared_ptr
<
Function
>
func
,
runtime
::
hybrid
::
HybridBackend
::
compile
(
shared_ptr
<
Function
>
func
,
bool
enable_performance_collection
)
bool
enable_performance_collection
)
...
@@ -72,177 +62,7 @@ shared_ptr<runtime::Executable>
...
@@ -72,177 +62,7 @@ shared_ptr<runtime::Executable>
m_backend_list
,
func
,
enable_performance_collection
,
m_debug_enabled
);
m_backend_list
,
func
,
enable_performance_collection
,
m_debug_enabled
);
}
}
runtime
::
hybrid
::
HybridExecutable
::
HybridExecutable
(
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>&
backend_list
,
const
shared_ptr
<
Function
>&
func
,
bool
enable_performance_collection
,
bool
debug_enabled
)
:
m_function
{
func
}
,
m_backend_list
{
backend_list
}
,
m_debug_enabled
{
debug_enabled
}
{
{
// Run placement pass
ngraph
::
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
DefaultPlacement
>
(
m_backend_list
);
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
FixGetOutputElement
>
();
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
Liveness
>
();
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
Dump
>
(
"graph.dump"
);
// pass_manager.register_pass<runtime::hybrid::pass::MemoryLayout>();
if
(
m_debug_enabled
)
{
pass_manager
.
register_pass
<
ngraph
::
pass
::
VisualizeTree
>
(
"graph.png"
,
node_modifiers
);
}
pass_manager
.
run_passes
(
m_function
);
// Split function to sub_functions
tie
(
m_sub_functions
,
m_map_parameter_to_result
)
=
runtime
::
hybrid
::
split_function_by_placement
(
m_function
);
// Compile subfunctions in corresponding backends
size_t
subfunction_number
=
0
;
for
(
shared_ptr
<
Function
>&
sub_function
:
m_sub_functions
)
{
size_t
placement
=
sub_function
->
get_placement
();
if
(
m_debug_enabled
)
{
string
name
=
"subfunction_"
+
to_string
(
subfunction_number
++
);
ngraph
::
pass
::
Manager
pm
;
pm
.
register_pass
<
ngraph
::
pass
::
VisualizeTree
>
(
name
+
".png"
,
node_modifiers
);
pm
.
register_pass
<
runtime
::
hybrid
::
pass
::
Dump
>
(
name
+
".dump"
);
pm
.
run_passes
(
sub_function
);
}
auto
backend
=
m_backend_list
[
placement
];
shared_ptr
<
Executable
>
exec
=
backend
->
compile
(
sub_function
);
m_executable_map
[
sub_function
]
=
exec
;
// Compile will replace nodes so we need to make one more pass through all
// ops to reset placement
for
(
auto
op
:
sub_function
->
get_ops
())
{
op
->
set_placement_index
(
placement
);
}
}
}
set_parameters_and_results
(
*
func
);
}
bool
runtime
::
hybrid
::
HybridExecutable
::
call
(
const
vector
<
shared_ptr
<
runtime
::
Tensor
>>&
outputs
,
const
vector
<
shared_ptr
<
runtime
::
Tensor
>>&
inputs
)
{
bool
rc
=
true
;
using
node_map_t
=
unordered_map
<
shared_ptr
<
Node
>
,
shared_ptr
<
runtime
::
Tensor
>>
;
// Parameter and result node in sub_function maps to one Tensor
node_map_t
map_node_to_tensor
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
map_node_to_tensor
[
m_function
->
get_parameters
()[
i
]]
=
inputs
[
i
];
}
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
map_node_to_tensor
[
m_function
->
get_results
()[
i
]]
=
outputs
[
i
];
}
// Call subfunctions
for
(
const
shared_ptr
<
Function
>&
sub_function
:
m_sub_functions
)
{
// Init backend
size_t
placement
=
sub_function
->
get_placement
();
auto
backend
=
m_backend_list
[
placement
];
// Prepare parameter Tensors
vector
<
shared_ptr
<
runtime
::
Tensor
>>
parameters
;
for
(
const
shared_ptr
<
op
::
Parameter
>&
parameter_node
:
sub_function
->
get_parameters
())
{
auto
it
=
map_node_to_tensor
.
find
(
parameter_node
);
if
(
it
!=
map_node_to_tensor
.
end
())
{
if
(
it
->
second
->
get_parent
()
==
backend
.
get
())
{
parameters
.
push_back
(
it
->
second
);
}
else
{
auto
parameter
=
backend
->
create_tensor
(
parameter_node
->
get_element_type
(),
parameter_node
->
get_shape
());
parameter
->
copy_from
(
*
(
it
->
second
));
parameters
.
push_back
(
parameter
);
}
}
else
{
// Handle temporary tensors that go between subgraphs
auto
result_node
=
m_map_parameter_to_result
.
at
(
parameter_node
);
auto
result
=
map_node_to_tensor
.
at
(
result_node
);
auto
parameter
=
backend
->
create_tensor
(
parameter_node
->
get_element_type
(),
parameter_node
->
get_shape
());
parameter
->
copy_from
(
*
result
);
map_node_to_tensor
[
parameter_node
]
=
parameter
;
parameters
.
push_back
(
parameter
);
}
}
// Prepare result Tensors
vector
<
shared_ptr
<
runtime
::
Tensor
>>
results
;
map
<
runtime
::
Tensor
*
,
runtime
::
Tensor
*>
copy_back
;
for
(
const
shared_ptr
<
op
::
Result
>&
result_node
:
sub_function
->
get_results
())
{
auto
it
=
map_node_to_tensor
.
find
(
result_node
);
if
(
it
!=
map_node_to_tensor
.
end
())
{
if
(
it
->
second
->
get_parent
()
==
backend
.
get
())
{
results
.
push_back
(
it
->
second
);
}
else
{
auto
result
=
backend
->
create_tensor
(
result_node
->
get_element_type
(),
result_node
->
get_shape
());
results
.
push_back
(
result
);
copy_back
.
insert
({
result
.
get
(),
it
->
second
.
get
()});
}
}
else
{
// Handle temporary tensors that go between subgraphs
auto
result
=
backend
->
create_tensor
(
result_node
->
get_element_type
(),
result_node
->
get_shape
());
map_node_to_tensor
[
result_node
]
=
result
;
results
.
push_back
(
result
);
}
}
// Call
auto
exec
=
m_executable_map
[
sub_function
];
exec
->
call
(
results
,
parameters
);
// Need to copy any results to the correct device
for
(
const
auto
&
p
:
copy_back
)
{
p
.
second
->
copy_from
(
*
p
.
first
);
}
}
return
rc
;
}
bool
runtime
::
hybrid
::
HybridBackend
::
is_supported
(
const
Node
&
node
)
const
bool
runtime
::
hybrid
::
HybridBackend
::
is_supported
(
const
Node
&
node
)
const
{
{
return
true
;
return
true
;
}
}
size_t
runtime
::
hybrid
::
HybridExecutable
::
get_placement
(
const
runtime
::
Tensor
*
t
)
{
size_t
index
=
0
;
for
(
const
shared_ptr
<
ngraph
::
runtime
::
Backend
>&
be
:
m_backend_list
)
{
if
(
t
->
get_parent
()
==
be
.
get
())
{
return
index
;
}
index
++
;
}
return
-
1
;
}
src/ngraph/runtime/hybrid/hybrid_backend.hpp
View file @
10a78dda
...
@@ -30,7 +30,6 @@ namespace ngraph
...
@@ -30,7 +30,6 @@ namespace ngraph
namespace
hybrid
namespace
hybrid
{
{
class
HybridBackend
;
class
HybridBackend
;
class
HybridExecutable
;
}
}
}
}
}
}
...
@@ -59,27 +58,3 @@ private:
...
@@ -59,27 +58,3 @@ private:
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>
m_backend_list
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>
m_backend_list
;
bool
m_debug_enabled
=
false
;
bool
m_debug_enabled
=
false
;
};
};
class
ngraph
::
runtime
::
hybrid
::
HybridExecutable
:
public
runtime
::
Executable
{
public
:
HybridExecutable
(
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>&
backend_list
,
const
std
::
shared_ptr
<
Function
>&
func
,
bool
enable_performance_collection
=
false
,
bool
debug_enabled
=
false
);
bool
call
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>&
outputs
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>&
inputs
)
override
;
private
:
std
::
shared_ptr
<
ngraph
::
Function
>
m_function
;
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
Function
>>
m_sub_functions
;
std
::
unordered_map
<
std
::
shared_ptr
<
ngraph
::
op
::
Parameter
>
,
std
::
shared_ptr
<
ngraph
::
op
::
Result
>>
m_map_parameter_to_result
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>
m_backend_list
;
bool
m_debug_enabled
=
false
;
std
::
unordered_map
<
std
::
shared_ptr
<
Function
>
,
std
::
shared_ptr
<
Executable
>>
m_executable_map
;
size_t
get_placement
(
const
runtime
::
Tensor
*
t
);
};
src/ngraph/runtime/hybrid/hybrid_executable.cpp
0 → 100644
View file @
10a78dda
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "ngraph/runtime/hybrid/hybrid_executable.hpp"
#include "ngraph/graph_util.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/visualize_tree.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/hybrid/hybrid_backend.hpp"
#include "ngraph/runtime/hybrid/hybrid_util.hpp"
#include "ngraph/runtime/hybrid/pass/default_placement.hpp"
#include "ngraph/runtime/hybrid/pass/dump.hpp"
#include "ngraph/runtime/hybrid/pass/fix_get_output_element.hpp"
#include "ngraph/runtime/hybrid/pass/liveness.hpp"
#include "ngraph/runtime/hybrid/pass/memory_layout.hpp"
#include "ngraph/runtime/tensor.hpp"
using
namespace
ngraph
;
using
namespace
std
;
static
void
node_modifiers
(
const
Node
&
node
,
vector
<
string
>&
attributes
)
{
vector
<
string
>
colors
=
{
"
\"
#A0FFA0
\"
"
,
"
\"
#FFF790
\"
"
};
if
(
node
.
get_placement_index
()
<
colors
.
size
())
{
string
color
=
colors
[
node
.
get_placement_index
()];
attributes
.
push_back
(
"style=filled"
);
attributes
.
push_back
(
"fillcolor="
+
color
);
}
}
runtime
::
hybrid
::
HybridExecutable
::
HybridExecutable
(
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>&
backend_list
,
const
shared_ptr
<
Function
>&
func
,
bool
enable_performance_collection
,
bool
debug_enabled
)
:
m_function
{
func
}
,
m_backend_list
{
backend_list
}
,
m_debug_enabled
{
debug_enabled
}
{
{
// Run placement pass
ngraph
::
pass
::
Manager
pass_manager
;
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
DefaultPlacement
>
(
m_backend_list
);
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
FixGetOutputElement
>
();
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
Liveness
>
();
pass_manager
.
register_pass
<
runtime
::
hybrid
::
pass
::
Dump
>
(
"graph.dump"
);
// pass_manager.register_pass<runtime::hybrid::pass::MemoryLayout>();
if
(
m_debug_enabled
)
{
pass_manager
.
register_pass
<
ngraph
::
pass
::
VisualizeTree
>
(
"graph.png"
,
node_modifiers
);
}
pass_manager
.
run_passes
(
m_function
);
// Split function to sub_functions
tie
(
m_sub_functions
,
m_map_parameter_to_result
)
=
runtime
::
hybrid
::
split_function_by_placement
(
m_function
);
// Compile subfunctions in corresponding backends
size_t
subfunction_number
=
0
;
for
(
shared_ptr
<
Function
>&
sub_function
:
m_sub_functions
)
{
size_t
placement
=
sub_function
->
get_placement
();
if
(
m_debug_enabled
)
{
string
name
=
"subfunction_"
+
to_string
(
subfunction_number
++
);
ngraph
::
pass
::
Manager
pm
;
pm
.
register_pass
<
ngraph
::
pass
::
VisualizeTree
>
(
name
+
".png"
,
node_modifiers
);
pm
.
register_pass
<
runtime
::
hybrid
::
pass
::
Dump
>
(
name
+
".dump"
);
pm
.
run_passes
(
sub_function
);
}
auto
backend
=
m_backend_list
[
placement
];
shared_ptr
<
Executable
>
exec
=
backend
->
compile
(
sub_function
);
m_executable_map
[
sub_function
]
=
exec
;
// Compile will replace nodes so we need to make one more pass through all
// ops to reset placement
for
(
auto
op
:
sub_function
->
get_ops
())
{
op
->
set_placement_index
(
placement
);
}
}
}
set_parameters_and_results
(
*
func
);
}
bool
runtime
::
hybrid
::
HybridExecutable
::
call
(
const
vector
<
shared_ptr
<
runtime
::
Tensor
>>&
outputs
,
const
vector
<
shared_ptr
<
runtime
::
Tensor
>>&
inputs
)
{
bool
rc
=
true
;
using
node_map_t
=
unordered_map
<
shared_ptr
<
Node
>
,
shared_ptr
<
runtime
::
Tensor
>>
;
// Parameter and result node in sub_function maps to one Tensor
node_map_t
map_node_to_tensor
;
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
map_node_to_tensor
[
m_function
->
get_parameters
()[
i
]]
=
inputs
[
i
];
}
for
(
size_t
i
=
0
;
i
<
outputs
.
size
();
++
i
)
{
map_node_to_tensor
[
m_function
->
get_results
()[
i
]]
=
outputs
[
i
];
}
// Call subfunctions
for
(
const
shared_ptr
<
Function
>&
sub_function
:
m_sub_functions
)
{
// Init backend
size_t
placement
=
sub_function
->
get_placement
();
auto
backend
=
m_backend_list
[
placement
];
// Prepare parameter Tensors
vector
<
shared_ptr
<
runtime
::
Tensor
>>
parameters
;
for
(
const
shared_ptr
<
op
::
Parameter
>&
parameter_node
:
sub_function
->
get_parameters
())
{
auto
it
=
map_node_to_tensor
.
find
(
parameter_node
);
if
(
it
!=
map_node_to_tensor
.
end
())
{
if
(
it
->
second
->
get_parent
()
==
backend
.
get
())
{
parameters
.
push_back
(
it
->
second
);
}
else
{
auto
parameter
=
backend
->
create_tensor
(
parameter_node
->
get_element_type
(),
parameter_node
->
get_shape
());
parameter
->
copy_from
(
*
(
it
->
second
));
parameters
.
push_back
(
parameter
);
}
}
else
{
// Handle temporary tensors that go between subgraphs
auto
result_node
=
m_map_parameter_to_result
.
at
(
parameter_node
);
auto
result
=
map_node_to_tensor
.
at
(
result_node
);
auto
parameter
=
backend
->
create_tensor
(
parameter_node
->
get_element_type
(),
parameter_node
->
get_shape
());
parameter
->
copy_from
(
*
result
);
map_node_to_tensor
[
parameter_node
]
=
parameter
;
parameters
.
push_back
(
parameter
);
}
}
// Prepare result Tensors
vector
<
shared_ptr
<
runtime
::
Tensor
>>
results
;
map
<
runtime
::
Tensor
*
,
runtime
::
Tensor
*>
copy_back
;
for
(
const
shared_ptr
<
op
::
Result
>&
result_node
:
sub_function
->
get_results
())
{
auto
it
=
map_node_to_tensor
.
find
(
result_node
);
if
(
it
!=
map_node_to_tensor
.
end
())
{
if
(
it
->
second
->
get_parent
()
==
backend
.
get
())
{
results
.
push_back
(
it
->
second
);
}
else
{
auto
result
=
backend
->
create_tensor
(
result_node
->
get_element_type
(),
result_node
->
get_shape
());
results
.
push_back
(
result
);
copy_back
.
insert
({
result
.
get
(),
it
->
second
.
get
()});
}
}
else
{
// Handle temporary tensors that go between subgraphs
auto
result
=
backend
->
create_tensor
(
result_node
->
get_element_type
(),
result_node
->
get_shape
());
map_node_to_tensor
[
result_node
]
=
result
;
results
.
push_back
(
result
);
}
}
// Call
auto
exec
=
m_executable_map
[
sub_function
];
exec
->
call
(
results
,
parameters
);
// Need to copy any results to the correct device
for
(
const
auto
&
p
:
copy_back
)
{
p
.
second
->
copy_from
(
*
p
.
first
);
}
}
return
rc
;
}
size_t
runtime
::
hybrid
::
HybridExecutable
::
get_placement
(
const
runtime
::
Tensor
*
t
)
{
size_t
index
=
0
;
for
(
const
shared_ptr
<
ngraph
::
runtime
::
Backend
>&
be
:
m_backend_list
)
{
if
(
t
->
get_parent
()
==
be
.
get
())
{
return
index
;
}
index
++
;
}
return
-
1
;
}
src/ngraph/runtime/hybrid/hybrid_executable.hpp
0 → 100644
View file @
10a78dda
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#pragma once
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "ngraph/runtime/backend.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
hybrid
{
class
HybridExecutable
;
}
}
}
class
ngraph
::
runtime
::
hybrid
::
HybridExecutable
:
public
runtime
::
Executable
{
public
:
HybridExecutable
(
const
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>&
backend_list
,
const
std
::
shared_ptr
<
Function
>&
func
,
bool
enable_performance_collection
=
false
,
bool
debug_enabled
=
false
);
bool
call
(
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>&
outputs
,
const
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
runtime
::
Tensor
>>&
inputs
)
override
;
private
:
std
::
shared_ptr
<
ngraph
::
Function
>
m_function
;
std
::
vector
<
std
::
shared_ptr
<
ngraph
::
Function
>>
m_sub_functions
;
std
::
unordered_map
<
std
::
shared_ptr
<
ngraph
::
op
::
Parameter
>
,
std
::
shared_ptr
<
ngraph
::
op
::
Result
>>
m_map_parameter_to_result
;
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Backend
>>
m_backend_list
;
bool
m_debug_enabled
=
false
;
std
::
unordered_map
<
std
::
shared_ptr
<
Function
>
,
std
::
shared_ptr
<
Executable
>>
m_executable_map
;
size_t
get_placement
(
const
runtime
::
Tensor
*
t
);
};
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment