Commit 1011f6c7 authored by Jaikrishnan Menon's avatar Jaikrishnan Menon Committed by Scott Cyphers

CPU Direct Execution: Implement product reductions (#1296)

parent 237c4803
...@@ -40,6 +40,7 @@ set(SRC ...@@ -40,6 +40,7 @@ set(SRC
builder/max.cpp builder/max.cpp
builder/max_pool.cpp builder/max_pool.cpp
builder/min.cpp builder/min.cpp
builder/product.cpp
builder/reshape.cpp builder/reshape.cpp
builder/reverse.cpp builder/reverse.cpp
builder/reverse_sequence.cpp builder/reverse_sequence.cpp
......
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <cstring>
#include "ngraph/op/product.hpp"
#include "ngraph/runtime/cpu/cpu_builder.hpp"
#include "ngraph/runtime/cpu/kernel/reduce_product.hpp"
#include "reduction.hpp"
using namespace std;
using namespace ngraph;
namespace ngraph
{
namespace runtime
{
namespace cpu
{
template <>
void Builder::BUILDER_DECL(ngraph::op::Product)
{
BUILD_REDUCTION_FUNCTOR(Product, product);
}
REGISTER_OP_BUILDER(Product);
}
}
}
/*******************************************************************************
* Copyright 2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#define EIGEN_USE_THREADS
#include <unsupported/Eigen/CXX11/Tensor>
#include "ngraph/runtime/cpu/kernel/eigen_thread_pool.hpp"
#include "ngraph/runtime/reference/product.hpp"
#include "ngraph/shape.hpp"
namespace ngraph
{
namespace runtime
{
namespace cpu
{
namespace kernel
{
template <typename ElementType, unsigned int Rank>
void reduce_product_all(void* input,
void* output,
const Shape& input_shape,
const Shape& output_shape)
{
Eigen::array<Eigen::Index, Rank> in_dims;
Eigen::array<Eigen::Index, 0> out_dims;
for (int i = 0; i < Rank; i++)
{
in_dims[i] = input_shape[i];
}
Eigen::TensorMap<Eigen::Tensor<ElementType, 0, Eigen::RowMajor>> out(
static_cast<ElementType*>(output), out_dims);
Eigen::TensorMap<Eigen::Tensor<ElementType, Rank, Eigen::RowMajor>> in(
static_cast<ElementType*>(input), in_dims);
out.device(eigen::global_thread_pool_device) = in.prod();
}
template <typename ElementType, unsigned int Rank, unsigned int ReductionDims>
void reduce_product(void* input,
void* output,
const Shape& input_shape,
const Shape& output_shape,
const AxisSet& reduction_axes)
{
Eigen::array<Eigen::Index, Rank> in_dims;
Eigen::array<Eigen::Index, Rank - ReductionDims> out_dims;
Eigen::array<Eigen::Index, ReductionDims> reduction_dims;
for (int i = 0; i < Rank; i++)
{
in_dims[i] = input_shape[i];
}
for (int i = 0; i < Rank - ReductionDims; i++)
{
out_dims[i] = output_shape[i];
}
int i = 0;
for (auto axis : reduction_axes)
{
reduction_dims[i++] = axis;
}
Eigen::TensorMap<
Eigen::Tensor<ElementType, Rank - ReductionDims, Eigen::RowMajor>>
out(static_cast<ElementType*>(output), out_dims);
Eigen::TensorMap<Eigen::Tensor<ElementType, Rank, Eigen::RowMajor>> in(
static_cast<ElementType*>(input), in_dims);
out.device(eigen::global_thread_pool_device) = in.prod(reduction_dims);
}
template <typename ElementType, unsigned int Rank>
void reduce_product_1rd(void* input,
void* output,
const Shape& input_shape,
const Shape& output_shape,
const AxisSet& reduction_axes)
{
reduce_product<ElementType, Rank, 1>(
input, output, input_shape, output_shape, reduction_axes);
}
template <typename ElementType>
void reduce_product_3d_2rd(void* input,
void* output,
const Shape& input_shape,
const Shape& output_shape,
const AxisSet& reduction_axes)
{
reduce_product<ElementType, 3, 2>(
input, output, input_shape, output_shape, reduction_axes);
}
template <typename ElementType>
void reduce_product_4d_2rd(void* input,
void* output,
const Shape& input_shape,
const Shape& output_shape,
const AxisSet& reduction_axes)
{
reduce_product<ElementType, 4, 2>(
input, output, input_shape, output_shape, reduction_axes);
}
template <typename ElementType>
void reduce_product_5d_2rd(void* input,
void* output,
const Shape& input_shape,
const Shape& output_shape,
const AxisSet& reduction_axes)
{
reduce_product<ElementType, 5, 2>(
input, output, input_shape, output_shape, reduction_axes);
}
template <typename ElementType>
void product(void* arg,
void* out,
const Shape& in_shape,
const Shape& out_shape,
const AxisSet& reduction_axes)
{
reference::product(static_cast<ElementType*>(arg),
static_cast<ElementType*>(out),
in_shape,
out_shape,
reduction_axes);
}
}
}
}
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment