Unverified Commit 0f05495c authored by Scott Cyphers's avatar Scott Cyphers Committed by GitHub

Merge branch 'master' into master

parents 1b5340c4 244c9fcf
......@@ -22,7 +22,7 @@ include(ExternalProject)
#------------------------------------------------------------------------------
set(CLDNN_GIT_REPO_URL https://github.com/intel/clDNN.git)
set(CLDNN_GIT_LABEL df28d2861716cac7a6a9eff4e49e47162959a748)
set(CLDNN_GIT_LABEL 02add7c4ce2baa81e2a32fa02d733dcc4f013108)
set(BOOST_VERSION 1.64.0)
set(OUT_DIR ${EXTERNAL_PROJECTS_ROOT}/cldnn/out)
......
......@@ -30,6 +30,7 @@
#include <CPP/crop.hpp>
#include <CPP/data.hpp>
#include <CPP/eltwise.hpp>
#include <CPP/gemm.hpp>
#include <CPP/input_layout.hpp>
#include <CPP/layout.hpp>
#include <CPP/lrn.hpp>
......@@ -675,6 +676,41 @@ bool runtime::intelgpu::IntelGPUBackend::compile(shared_ptr<Function> func)
{
arguments_check(op, 2, 1);
const shared_ptr<op::Dot> dot_inst = static_pointer_cast<op::Dot>(op);
const size_t axes_count = dot_inst->get_reduction_axes_count();
const Shape& input0_shape = get_input_shape(op, 0);
const Shape& input1_shape = get_input_shape(op, 1);
const size_t input0_elem_count = shape_size(input0_shape);
const size_t input1_elem_count = shape_size(input1_shape);
if (get_input_type(op) == element::f32 && get_input_type(op, 1) == element::f32 &&
get_output_type(op) == element::f32 && input0_elem_count && input1_elem_count &&
(axes_count == 1) && (input0_shape.size() < 3) && (input1_shape.size() < 3) &&
!input0_shape.empty() && !input1_shape.empty())
{
string input1_name = get_input_name(op, 1);
// If we have A[5] and B[5] here, in cldnn we have A[1, 1, 1, 5] and B[1, 1, 1, 5]
// it needs to be reshaped into A[1, 1, 1, 5] and B[1, 1, 5, 1]
if (!input0_shape.empty() && (input1_shape.size() == 1))
{
const string new_name = input1_name + "_reshaped";
Shape new_shape = input1_shape;
new_shape.push_back(1);
const cldnn::tensor reshaped_tensor =
intelgpu_space::create_cldnn_tensor(new_shape);
const cldnn::reshape reshape_op(new_name, input1_name, reshaped_tensor);
topology.add(reshape_op);
input1_name = new_name;
}
const cldnn::gemm dot_op(get_output_name(op), get_input_name(op, 0), input1_name);
topology.add(dot_op);
}
else
{
do_dot_operation(topology,
get_input_name(op, 0),
get_input_shape(op, 0),
......@@ -682,7 +718,9 @@ bool runtime::intelgpu::IntelGPUBackend::compile(shared_ptr<Function> func)
get_input_shape(op, 1),
get_output_name(op),
get_output_shape(op),
get_output_type(op));
get_output_type(op),
axes_count);
}
break;
}
case OP_TYPEID::MaxPool:
......
......@@ -72,7 +72,8 @@ namespace ngraph
const Shape& inputB_shape,
const std::string& output_name,
const Shape& output_shape,
const element::Type& output_type);
const element::Type& output_type,
size_t reduction_axes_count);
void do_slice_operation(cldnn::topology& topology,
const std::string& input_name,
......
avg_pool_2d_2channel_2image_padded_only_above_do_not_include_in_computation
avg_pool_2d_2channel_2image_padded_only_above_include_in_computation
avg_pool_3d_uneven_strided_padded
backwards_batch_norm_three_outputs
backwards_batch_norm_training
backwards_dot_scalar_tensor
backwards_dot_tensor3_tensor3
......@@ -9,7 +10,6 @@ backwards_dot_tensor_vector
backwards_exp
backwards_maxpool_n2_c1_hw5_3x3_str2_max
backwards_maxpool_n4_c1_hw4_2x2_max
backwards_relu
backwards_replace_slice
backwards_reverse_sequence_n3_c2_h3
backwards_reverse_sequence_n4d2c3h2w2
......@@ -21,41 +21,37 @@ batch_norm_training_0eps_f64
batch_norm_one_output
batch_norm_three_outputs
dequantize
dequantize_zero_offset
dequantize_axes
dequantize_int8
dequantize_int8_zero_offset
dequantize_int32
dequantize_int32_zero_offset
dequantize_int8
dequantize_int8_zero_offset
dequantize_zero_offset
divide_by_zero_int32
dot_3d_multi_axis
dot_4d_5d_multi_axis
dot_4d_5d_multi_axis_more
generate_mask
function_call
generate_mask
max_pool_3d
maxpool_bprop_larger_than_cache
numeric_double_inf
numeric_double_nan
quantize
quantize_zero_offset
quantize_axes
quantize_int8
quantize_int8_zero_offset
quantize_clamp_int32
quantize_clamp_int8
quantize_clamp_uint8
quantize_int32
quantize_int32_zero_offset
quantize_clamp_uint8
quantize_clamp_int8
quantize_clamp_int32
quantize_ROUND_NEAREST_TOWARD_ZERO
quantize_ROUND_NEAREST_TOWARD_INFINITY
quantize_ROUND_NEAREST_UPWARD
quantize_int8
quantize_int8_zero_offset
quantize_ROUND_DOWN
quantize_ROUND_NEAREST_DOWNWARD
quantize_ROUND_NEAREST_TOWARD_EVEN
quantize_ROUND_NEAREST_TOWARD_INFINITY
quantize_ROUND_NEAREST_TOWARD_ZERO
quantize_ROUND_NEAREST_UPWARD
quantize_ROUND_TOWARD_INFINITY
quantize_ROUND_TOWARD_ZERO
quantize_ROUND_UP
quantize_ROUND_DOWN
quantize_zero_offset
reduce_window_emulating_max_pool_1d_1channel_1image
reduce_window_emulating_max_pool_1d_1channel_2image
reduce_window_emulating_max_pool_1d_2channel_2image
......@@ -73,9 +69,14 @@ reverse_sequence_n2c3h4w2
reverse_sequence_n4c3h2w2
reverse_sequence_n4d2c3h2w2
select_and_scatter_3d_without_overlap
select_and_scatter_with_overlap
select_and_scatter_without_overlap
select_and_scatter_with_overlap
shape_of_5d
shape_of_matrix
shape_of_scalar
shape_of_vector
softmax_axis_3d_double
sum_stable_acc
topk_1d_max_all
topk_1d_max_one
topk_1d_max_partial
......@@ -88,17 +89,17 @@ topk_2d_max_partial
topk_2d_min_all
topk_2d_min_one
topk_2d_min_partial
topk_3d_large_input_max
topk_3d_large_input_min
topk_3d_max_all
topk_3d_max_one
topk_3d_max_partial
topk_3d_min_all
topk_3d_min_one
topk_3d_min_partial
topk_3d_single_output
topk_5d_max_partial
topk_int64
topk_3d_large_input_max
topk_3d_large_input_min
topk_3d_single_output
zero_sized_abs
zero_sized_acos
zero_sized_add
......@@ -145,3 +146,4 @@ max_3d_to_scalar_double
argmin_trivial_in_i32
argmax_4D_axis_3_i64_in_i32
argmin_trivial_in_double
maxpool_bprop_larger_than_cache
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment