Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
0dbeb06e
Commit
0dbeb06e
authored
Jul 09, 2019
by
Robert Kimball
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
wip
parent
f2a93568
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
167 additions
and
212 deletions
+167
-212
executable.cpp
src/ngraph/runtime/executable.cpp
+46
-0
executable.hpp
src/ngraph/runtime/executable.hpp
+5
-0
benchmark.cpp
src/tools/nbench/benchmark.cpp
+116
-116
CMakeLists.txt
test/CMakeLists.txt
+0
-1
async.cpp
test/async.cpp
+0
-95
No files found.
src/ngraph/runtime/executable.cpp
View file @
0dbeb06e
...
...
@@ -123,3 +123,49 @@ void runtime::Executable::save(std::ostream& output_stream)
{
throw
runtime_error
(
"save opertion unimplemented."
);
}
vector
<
shared_ptr
<
runtime
::
Tensor
>>
runtime
::
Executable
::
create_input_tensor
(
size_t
input_number
,
size_t
pipeline_depth
)
{
vector
<
shared_ptr
<
runtime
::
Tensor
>>
tensors
;
// if (m_backend)
// {
// const ParameterVector& parameters = get_parameters();
// if (index >= parameters.size())
// {
// throw runtime_error("create_tensor for input out of bounds");
// }
// shared_ptr<op::Parameter> parameter = parameters[index];
// tensor = m_backend->create_tensor(
// parameter->get_element_type(), parameter->get_shape(), memory_pointer);
// tensor->m_source_node = parameter;
// }
// else
// {
// throw runtime_error("Backend does not support Executable::create_tensor");
// }
return
tensors
;
}
vector
<
shared_ptr
<
runtime
::
Tensor
>>
runtime
::
Executable
::
create_output_tensor
(
size_t
input_number
,
size_t
pipeline_depth
)
{
vector
<
shared_ptr
<
runtime
::
Tensor
>>
tensors
;
// if (m_backend)
// {
// const ResultVector& results = get_results();
// if (index >= results.size())
// {
// throw runtime_error("create_tensor for input out of bounds");
// }
// shared_ptr<op::Result> result = results[index];
// tensor = m_backend->create_tensor(
// result->get_element_type(), result->get_shape(), memory_pointer);
// tensor->m_source_node = result;
// }
// else
// {
// throw runtime_error("Backend does not support Executable::create_tensor");
// }
return
tensors
;
}
src/ngraph/runtime/executable.hpp
View file @
0dbeb06e
...
...
@@ -73,6 +73,11 @@ public:
/// Saved stream may be read with Backend::load
virtual
void
save
(
std
::
ostream
&
output_stream
);
virtual
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Tensor
>>
create_input_tensor
(
size_t
input_number
,
size_t
pipeline_depth
=
1
);
virtual
std
::
vector
<
std
::
shared_ptr
<
runtime
::
Tensor
>>
create_output_tensor
(
size_t
input_number
,
size_t
pipeline_depth
=
1
);
protected
:
/// \brief Called at the end of compile to the values to be returned by get_parameters
/// and get_results
...
...
src/tools/nbench/benchmark.cpp
View file @
0dbeb06e
...
...
@@ -42,68 +42,68 @@ void set_denormals_flush_to_zero()
}
template
<
typename
T
>
void
init_int_t
ensor
(
shared_ptr
<
runtime
::
Tensor
>
tensor
,
T
min
,
T
max
)
void
init_int_t
v
(
shared_ptr
<
runtime
::
Tensor
>
tv
,
T
min
,
T
max
)
{
size_t
size
=
t
ensor
->
get_element_count
();
size_t
size
=
t
v
->
get_element_count
();
uniform_int_distribution
<
T
>
dist
(
min
,
max
);
vector
<
T
>
vec
(
size
);
for
(
T
&
element
:
vec
)
{
element
=
dist
(
s_random_engine
);
}
t
ensor
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
T
));
t
v
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
T
));
}
template
<>
void
init_int_t
ensor
<
char
>
(
shared_ptr
<
runtime
::
Tensor
>
tensor
,
char
min
,
char
max
)
void
init_int_t
v
<
char
>
(
shared_ptr
<
runtime
::
Tensor
>
tv
,
char
min
,
char
max
)
{
size_t
size
=
t
ensor
->
get_element_count
();
size_t
size
=
t
v
->
get_element_count
();
uniform_int_distribution
<
int16_t
>
dist
(
static_cast
<
short
>
(
min
),
static_cast
<
short
>
(
max
));
vector
<
char
>
vec
(
size
);
for
(
char
&
element
:
vec
)
{
element
=
static_cast
<
char
>
(
dist
(
s_random_engine
));
}
t
ensor
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
char
));
t
v
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
char
));
}
template
<>
void
init_int_t
ensor
<
int8_t
>
(
shared_ptr
<
runtime
::
Tensor
>
tensor
,
int8_t
min
,
int8_t
max
)
void
init_int_t
v
<
int8_t
>
(
shared_ptr
<
runtime
::
Tensor
>
tv
,
int8_t
min
,
int8_t
max
)
{
size_t
size
=
t
ensor
->
get_element_count
();
size_t
size
=
t
v
->
get_element_count
();
uniform_int_distribution
<
int16_t
>
dist
(
static_cast
<
short
>
(
min
),
static_cast
<
short
>
(
max
));
vector
<
int8_t
>
vec
(
size
);
for
(
int8_t
&
element
:
vec
)
{
element
=
static_cast
<
int8_t
>
(
dist
(
s_random_engine
));
}
t
ensor
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
int8_t
));
t
v
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
int8_t
));
}
template
<>
void
init_int_t
ensor
<
uint8_t
>
(
shared_ptr
<
runtime
::
Tensor
>
tensor
,
uint8_t
min
,
uint8_t
max
)
void
init_int_t
v
<
uint8_t
>
(
shared_ptr
<
runtime
::
Tensor
>
tv
,
uint8_t
min
,
uint8_t
max
)
{
size_t
size
=
t
ensor
->
get_element_count
();
size_t
size
=
t
v
->
get_element_count
();
uniform_int_distribution
<
int16_t
>
dist
(
static_cast
<
short
>
(
min
),
static_cast
<
short
>
(
max
));
vector
<
uint8_t
>
vec
(
size
);
for
(
uint8_t
&
element
:
vec
)
{
element
=
static_cast
<
uint8_t
>
(
dist
(
s_random_engine
));
}
t
ensor
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
uint8_t
));
t
v
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
uint8_t
));
}
template
<
typename
T
>
void
init_real_t
ensor
(
shared_ptr
<
runtime
::
Tensor
>
tensor
,
T
min
,
T
max
)
void
init_real_t
v
(
shared_ptr
<
runtime
::
Tensor
>
tv
,
T
min
,
T
max
)
{
size_t
size
=
t
ensor
->
get_element_count
();
size_t
size
=
t
v
->
get_element_count
();
uniform_real_distribution
<
T
>
dist
(
min
,
max
);
vector
<
T
>
vec
(
size
);
for
(
T
&
element
:
vec
)
{
element
=
dist
(
s_random_engine
);
}
t
ensor
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
T
));
t
v
->
write
(
vec
.
data
(),
vec
.
size
()
*
sizeof
(
T
));
}
static
void
random_init
(
shared_ptr
<
runtime
::
Tensor
>
tensor
)
...
...
@@ -116,17 +116,17 @@ static void random_init(shared_ptr<runtime::Tensor> tensor)
#endif
switch
(
et
.
get_type_enum
())
{
case
element
:
:
Type_t
::
boolean
:
init_int_t
ensor
<
char
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
f32
:
init_real_t
ensor
<
float
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
f64
:
init_real_t
ensor
<
double
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
i8
:
init_int_t
ensor
<
int8_t
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
i16
:
init_int_t
ensor
<
int16_t
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
i32
:
init_int_t
ensor
<
int32_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
i64
:
init_int_t
ensor
<
int64_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u8
:
init_int_t
ensor
<
uint8_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u16
:
init_int_t
ensor
<
uint16_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u32
:
init_int_t
ensor
<
uint32_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u64
:
init_int_t
ensor
<
uint64_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
boolean
:
init_int_t
v
<
char
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
f32
:
init_real_t
v
<
float
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
f64
:
init_real_t
v
<
double
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
i8
:
init_int_t
v
<
int8_t
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
i16
:
init_int_t
v
<
int16_t
>
(
tensor
,
-
1
,
1
);
break
;
case
element
:
:
Type_t
::
i32
:
init_int_t
v
<
int32_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
i64
:
init_int_t
v
<
int64_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u8
:
init_int_t
v
<
uint8_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u16
:
init_int_t
v
<
uint16_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u32
:
init_int_t
v
<
uint32_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
u64
:
init_int_t
v
<
uint64_t
>
(
tensor
,
0
,
1
);
break
;
case
element
:
:
Type_t
::
undefined
:
case
element
:
:
Type_t
::
dynamic
:
case
element
:
:
Type_t
::
bf16
:
...
...
@@ -245,99 +245,99 @@ vector<runtime::PerformanceCounter> run_benchmark_double_buffered(shared_ptr<Fun
cout
<<
"compile time: "
<<
timer
.
get_milliseconds
()
<<
"ms"
<<
endl
;
set_denormals_flush_to_zero
();
array
<
vector
<
shared_ptr
<
runtime
::
HostTensor
>>
,
2
>
args_data_set
;
array
<
vector
<
shared_ptr
<
runtime
::
Tensor
>>
,
2
>
args_set
;
array
<
vector
<
shared_ptr
<
runtime
::
HostTensor
>>
,
2
>
results_data_set
;
array
<
vector
<
shared_ptr
<
runtime
::
Tensor
>>
,
2
>
results_set
;
for
(
size_t
i
=
0
;
i
<
2
;
i
++
)
{
vector
<
shared_ptr
<
runtime
::
HostTensor
>>
args_data
;
vector
<
shared_ptr
<
runtime
::
Tensor
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
f
->
get_parameters
())
{
auto
tensor
=
backend
->
create_tensor
(
param
->
get_element_type
(),
param
->
get_shape
());
auto
tensor_data
=
make_shared
<
runtime
::
HostTensor
>
(
param
->
get_element_type
(),
param
->
get_shape
());
random_init
(
tensor_data
);
tensor
->
write
(
tensor_data
->
get_data_ptr
(),
tensor_data
->
get_element_count
()
*
tensor_data
->
get_element_type
().
size
());
args
.
push_back
(
tensor
);
args_data
.
push_back
(
tensor_data
);
}
args_set
[
i
]
=
args
;
args_data_set
[
i
]
=
args_data
;
vector
<
shared_ptr
<
runtime
::
Tensor
>>
results
;
vector
<
shared_ptr
<
runtime
::
HostTensor
>>
results_data
;
for
(
shared_ptr
<
Node
>
out
:
f
->
get_results
())
{
auto
result
=
backend
->
create_tensor
(
out
->
get_element_type
(),
out
->
get_shape
());
auto
result_data
=
make_shared
<
runtime
::
HostTensor
>
(
out
->
get_element_type
(),
out
->
get_shape
());
results
.
push_back
(
result
);
results_data
.
push_back
(
result_data
);
}
results_set
[
i
]
=
results
;
results_data_set
[
i
]
=
results_data
;
}
//
array<vector<shared_ptr<runtime::HostTensor>>, 2> args_data_set;
//
array<vector<shared_ptr<runtime::Tensor>>, 2> args_set;
//
array<vector<shared_ptr<runtime::HostTensor>>, 2> results_data_set;
//
array<vector<shared_ptr<runtime::Tensor>>, 2> results_set;
//
for (size_t i = 0; i < 2; i++)
//
{
//
vector<shared_ptr<runtime::HostTensor>> args_data;
//
vector<shared_ptr<runtime::Tensor>> args;
//
for (shared_ptr<op::Parameter> param : f->get_parameters())
//
{
//
auto tensor = backend->create_tensor(param->get_element_type(), param->get_shape());
//
auto tensor_data =
//
make_shared<runtime::HostTensor>(param->get_element_type(), param->get_shape());
//
random_init(tensor_data);
//
tensor->write(tensor_data->get_data_ptr(),
//
tensor_data->get_element_count() *
//
tensor_data->get_element_type().size());
//
args.push_back(tensor);
//
args_data.push_back(tensor_data);
//
}
//
args_set[i] = args;
//
args_data_set[i] = args_data;
//
vector<shared_ptr<runtime::Tensor>> results;
//
vector<shared_ptr<runtime::HostTensor>> results_data;
//
for (shared_ptr<Node> out : f->get_results())
//
{
//
auto result = backend->create_tensor(out->get_element_type(), out->get_shape());
//
auto result_data =
//
make_shared<runtime::HostTensor>(out->get_element_type(), out->get_shape());
//
results.push_back(result);
//
results_data.push_back(result_data);
//
}
//
results_set[i] = results;
//
results_data_set[i] = results_data;
//
}
stopwatch
t1
;
//
stopwatch t1;
// Before we start we write the first iteration's data
size_t
buffer_number
=
0
;
auto
args
=
args_set
[
buffer_number
];
auto
args_data
=
args_data_set
[
buffer_number
];
for
(
size_t
arg_index
=
0
;
arg_index
<
args
.
size
();
arg_index
++
)
{
const
shared_ptr
<
runtime
::
Tensor
>&
arg
=
args
[
arg_index
];
const
shared_ptr
<
runtime
::
HostTensor
>&
data
=
args_data
[
arg_index
];
arg
->
begin_write
(
data
->
get_data_ptr
(),
data
->
get_element_count
()
*
data
->
get_element_type
().
size
(),
buffer_number
);
}
//
//
Before we start we write the first iteration's data
//
size_t buffer_number = 0;
//
auto args = args_set[buffer_number];
//
auto args_data = args_data_set[buffer_number];
//
for (size_t arg_index = 0; arg_index < args.size(); arg_index++)
//
{
//
const shared_ptr<runtime::Tensor>& arg = args[arg_index];
//
const shared_ptr<runtime::HostTensor>& data = args_data[arg_index];
//
arg->begin_write(data->get_data_ptr(),
//
data->get_element_count() * data->get_element_type().size(),
//
buffer_number);
//
}
const
vector
<
shared_ptr
<
runtime
::
Tensor
>>&
results
=
results_set
[
buffer_number
];
const
vector
<
shared_ptr
<
runtime
::
HostTensor
>>&
results_data
=
results_data_set
[
buffer_number
];
for
(
size_t
i
=
0
;
i
<
iterations
+
warmup_iterations
;
i
++
)
{
if
(
i
==
warmup_iterations
)
{
t1
.
start
();
}
future
<
void
>
exec_future
=
compiled_func
->
begin_execute
(
results
,
args
);
if
(
i
>
0
)
{
for
(
size_t
result_index
=
0
;
result_index
<
results
.
size
();
result_index
++
)
{
const
shared_ptr
<
runtime
::
HostTensor
>&
data
=
results_data
[
result_index
];
const
shared_ptr
<
runtime
::
Tensor
>&
result
=
results
[
result_index
];
result
->
begin_read
(
data
->
get_data_ptr
(),
data
->
get_element_count
()
*
data
->
get_element_type
().
size
(),
(
buffer_number
-
1
)
&
1
);
}
}
buffer_number
=
(
buffer_number
+
1
)
&
1
;
for
(
size_t
arg_index
=
0
;
arg_index
<
args
.
size
();
arg_index
++
)
{
const
shared_ptr
<
runtime
::
Tensor
>&
arg
=
args
[
arg_index
];
const
shared_ptr
<
runtime
::
HostTensor
>&
data
=
args_data
[
arg_index
];
arg
->
begin_write
(
data
->
get_data_ptr
(),
data
->
get_element_count
()
*
data
->
get_element_type
().
size
(),
buffer_number
);
}
exec_future
.
get
();
}
for
(
size_t
result_index
=
0
;
result_index
<
results
.
size
();
result_index
++
)
{
const
shared_ptr
<
runtime
::
HostTensor
>&
data
=
results_data
[
result_index
];
const
shared_ptr
<
runtime
::
Tensor
>&
result
=
results
[
result_index
];
result
->
begin_read
(
data
->
get_data_ptr
(),
data
->
get_element_count
()
*
data
->
get_element_type
().
size
(),
(
buffer_number
-
1
)
&
1
);
}
t1
.
stop
();
float
time
=
t1
.
get_milliseconds
();
cout
<<
time
/
iterations
<<
"ms per iteration"
<<
endl
;
//
const vector<shared_ptr<runtime::Tensor>>& results = results_set[buffer_number];
//
const vector<shared_ptr<runtime::HostTensor>>& results_data = results_data_set[buffer_number];
//
for (size_t i = 0; i < iterations + warmup_iterations; i++)
//
{
//
if (i == warmup_iterations)
//
{
//
t1.start();
//
}
//
future<void> exec_future = compiled_func->begin_execute(results, args);
//
if (i > 0)
//
{
//
for (size_t result_index = 0; result_index < results.size(); result_index++)
//
{
//
const shared_ptr<runtime::HostTensor>& data = results_data[result_index];
//
const shared_ptr<runtime::Tensor>& result = results[result_index];
//
result->begin_read(data->get_data_ptr(),
//
data->get_element_count() * data->get_element_type().size(),
//
(buffer_number - 1) & 1);
//
}
//
}
//
buffer_number = (buffer_number + 1) & 1;
//
for (size_t arg_index = 0; arg_index < args.size(); arg_index++)
//
{
//
const shared_ptr<runtime::Tensor>& arg = args[arg_index];
//
const shared_ptr<runtime::HostTensor>& data = args_data[arg_index];
//
arg->begin_write(data->get_data_ptr(),
//
data->get_element_count() * data->get_element_type().size(),
//
buffer_number);
//
}
//
exec_future.get();
//
}
//
for (size_t result_index = 0; result_index < results.size(); result_index++)
//
{
//
const shared_ptr<runtime::HostTensor>& data = results_data[result_index];
//
const shared_ptr<runtime::Tensor>& result = results[result_index];
//
result->begin_read(data->get_data_ptr(),
//
data->get_element_count() * data->get_element_type().size(),
//
(buffer_number - 1) & 1);
//
}
//
t1.stop();
//
float time = t1.get_milliseconds();
//
cout << time / iterations << "ms per iteration" << endl;
vector
<
runtime
::
PerformanceCounter
>
perf_data
=
compiled_func
->
get_performance_data
();
return
perf_data
;
...
...
test/CMakeLists.txt
View file @
0dbeb06e
...
...
@@ -95,7 +95,6 @@ set_source_files_properties(includes.cpp PROPERTIES COMPILE_DEFINITIONS
if
(
NGRAPH_INTERPRETER_ENABLE
)
list
(
APPEND SRC
async.cpp
backend_debug_api.cpp
builder.cpp
backend_api.cpp
)
...
...
test/async.cpp
deleted
100644 → 0
View file @
f2a93568
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <gtest/gtest.h>
#include "ngraph/op/add.hpp"
#include "ngraph/runtime/backend.hpp"
#include "ngraph/util.hpp"
#include "util/test_tools.hpp"
using
namespace
ngraph
;
using
namespace
std
;
TEST
(
async
,
execute
)
{
Shape
shape
{
100000
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
A
,
B
),
ParameterVector
{
A
,
B
});
auto
backend
=
runtime
::
Backend
::
create
(
"INTERPRETER"
);
vector
<
float
>
data
(
shape_size
(
shape
),
2
);
vector
<
float
>
result_data
(
shape_size
(
shape
),
0
);
// Create some tensors for input/output
shared_ptr
<
runtime
::
Tensor
>
a
=
backend
->
create_tensor
(
element
::
f32
,
shape
,
data
.
data
());
shared_ptr
<
runtime
::
Tensor
>
b
=
backend
->
create_tensor
(
element
::
f32
,
shape
,
data
.
data
());
shared_ptr
<
runtime
::
Tensor
>
r
=
backend
->
create_tensor
(
element
::
f32
,
shape
,
result_data
.
data
());
auto
handle
=
backend
->
compile
(
f
);
auto
future
=
handle
->
begin_execute
({
r
},
{
a
,
b
});
ASSERT_TRUE
(
future
.
valid
());
future
.
get
();
for
(
float
x
:
result_data
)
{
ASSERT_EQ
(
x
,
4
);
}
}
TEST
(
async
,
tensor_read_write
)
{
chrono
::
milliseconds
ten_ms
(
100
);
Shape
shape
{
100000
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
B
=
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape
);
auto
f
=
make_shared
<
Function
>
(
make_shared
<
op
::
Add
>
(
A
,
B
),
ParameterVector
{
A
,
B
});
auto
backend
=
runtime
::
Backend
::
create
(
"INTERPRETER"
);
auto
handle
=
backend
->
compile
(
f
);
vector
<
float
>
data
(
shape_size
(
shape
),
2
);
vector
<
float
>
data_r
(
shape_size
(
shape
),
0
);
// Create some tensors for input/output
shared_ptr
<
runtime
::
Tensor
>
a
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
Tensor
>
b
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
shared_ptr
<
runtime
::
Tensor
>
r
=
backend
->
create_tensor
(
element
::
f32
,
shape
);
auto
future_a
=
a
->
begin_write
(
data
.
data
(),
data
.
size
()
*
sizeof
(
float
),
0
);
auto
future_b
=
b
->
begin_write
(
data
.
data
(),
data
.
size
()
*
sizeof
(
float
),
0
);
ASSERT_TRUE
(
future_a
.
valid
());
ASSERT_TRUE
(
future_b
.
valid
());
auto
future
=
handle
->
begin_execute
({
r
},
{
a
,
b
});
// get() waits for the result to be ready
future
.
get
();
auto
future_r
=
r
->
begin_read
(
data_r
.
data
(),
data_r
.
size
()
*
sizeof
(
float
),
0
);
ASSERT_TRUE
(
future_r
.
valid
());
EXPECT_EQ
(
future_a
.
wait_for
(
ten_ms
),
future_status
::
ready
);
EXPECT_EQ
(
future_b
.
wait_for
(
ten_ms
),
future_status
::
ready
);
EXPECT_EQ
(
future_r
.
wait_for
(
ten_ms
),
future_status
::
ready
);
for
(
float
x
:
data_r
)
{
ASSERT_EQ
(
x
,
4
);
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment