Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
085fd3fb
Commit
085fd3fb
authored
Oct 09, 2017
by
Adam Procter
Committed by
GitHub
Oct 09, 2017
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into bob/warnings
parents
699924bd
ba8d13da
Hide whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
678 additions
and
27 deletions
+678
-27
CMakeLists.txt
src/ngraph/CMakeLists.txt
+1
-0
ngraph.hpp
src/ngraph/ngraph.hpp
+1
-0
broadcast.hpp
src/ngraph/ops/broadcast.hpp
+2
-2
op.hpp
src/ngraph/ops/op.hpp
+0
-25
reshape.cpp
src/ngraph/ops/reshape.cpp
+80
-0
reshape.hpp
src/ngraph/ops/reshape.hpp
+52
-0
matrix_transpose.hpp
src/ngraph/runtime/ngvm/eigen/matrix_transpose.hpp
+53
-0
external_function.cpp
src/ngraph/runtime/ngvm/external_function.cpp
+55
-0
execute.cpp
test/execute.cpp
+240
-0
type_prop.cpp
test/type_prop.cpp
+194
-0
No files found.
src/ngraph/CMakeLists.txt
View file @
085fd3fb
...
...
@@ -36,6 +36,7 @@ set (SRC
ops/op.cpp
ops/parameter.cpp
ops/reduce.cpp
ops/reshape.cpp
ops/select.cpp
ops/tuple.cpp
ops/unary_elementwise_arithmetic.cpp
...
...
src/ngraph/ngraph.hpp
View file @
085fd3fb
...
...
@@ -77,6 +77,7 @@
#include "ngraph/ops/power.hpp"
#include "ngraph/ops/reduce.hpp"
#include "ngraph/ops/remainder.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/select.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/tuple.hpp"
...
...
src/ngraph/ops/broadcast.hpp
View file @
085fd3fb
...
...
@@ -20,7 +20,7 @@ namespace ngraph
{
namespace
op
{
class
Broadcast
:
public
Index
Builtin
class
Broadcast
:
public
Builtin
{
public
:
///
...
...
@@ -32,7 +32,7 @@ namespace ngraph
Broadcast
(
const
std
::
shared_ptr
<
Node
>&
arg
,
const
Shape
&
shape
,
const
AxisSet
&
broadcast_axes
)
:
IndexBuiltin
(
arg
)
:
Builtin
({
arg
}
)
,
m_shape
(
shape
)
,
m_broadcast_axes
(
broadcast_axes
)
{
...
...
src/ngraph/ops/op.hpp
View file @
085fd3fb
...
...
@@ -38,31 +38,6 @@ namespace ngraph
}
};
/// Index ops create a new way to index the same tensor elements
class
IndexBuiltin
:
public
Builtin
{
protected
:
IndexBuiltin
(
const
std
::
shared_ptr
<
Node
>&
arg
)
:
Builtin
(
Nodes
{
arg
})
{
}
};
class
Reshape
:
public
IndexBuiltin
{
public
:
Reshape
(
const
std
::
shared_ptr
<
Node
>&
arg0
,
const
Shape
&
shape
)
:
IndexBuiltin
(
arg0
)
,
m_shape
(
shape
)
{
}
virtual
std
::
string
description
()
const
override
{
return
"Reshape"
;
}
//virtual void propagate_types() override;
protected
:
Shape
m_shape
;
};
/// Operations where the same element function is applied to each element
/// Op(X)[I] = op(X[I])
class
UnaryElementwiseBuiltin
:
public
Builtin
...
...
src/ngraph/ops/reshape.cpp
0 → 100644
View file @
085fd3fb
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#include "ngraph/ops/reshape.hpp"
#include "ngraph/function.hpp"
#include <algorithm>
using
namespace
std
;
using
namespace
ngraph
::
op
;
void
Reshape
::
propagate_types
()
{
if
(
m_arguments
.
size
()
!=
1
)
{
throw
ngraph_error
(
"Wrong number of arguments."
);
}
auto
arg_type
=
m_arguments
.
at
(
0
)
->
get_value_type
();
if
(
nullptr
==
arg_type
)
{
throw
ngraph_error
(
"Argument to reshape is missing type."
);
}
auto
arg_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
arg_type
);
if
(
nullptr
==
arg_type
)
{
throw
ngraph_error
(
"Argument to reshape is not a tensor view"
);
}
auto
arg_shape
=
arg_tensor_view_type
->
get_shape
();
auto
arg_rank
=
arg_shape
.
size
();
if
(
m_input_order
.
size
()
!=
arg_rank
)
{
throw
ngraph_error
(
"Input axis order for reshape is not a permutation of argument's axes"
);
}
for
(
size_t
i
=
0
;
i
<
arg_rank
;
i
++
)
{
auto
it
=
std
::
find
(
std
::
begin
(
m_input_order
),
std
::
end
(
m_input_order
),
i
);
if
(
std
::
end
(
m_input_order
)
==
it
)
{
throw
ngraph_error
(
"Input axis order for reshape is not a permutation of argument's axes"
);
}
}
size_t
arg_shape_product
=
1
;
for
(
auto
i
:
arg_shape
)
{
arg_shape_product
*=
i
;
}
size_t
output_shape_product
=
1
;
for
(
auto
i
:
m_output_shape
)
{
output_shape_product
*=
i
;
}
if
(
arg_shape_product
!=
output_shape_product
)
{
throw
ngraph_error
(
"Product of output shape dimensions does not match product of argument shape "
"dimensions for reshape"
);
}
set_value_type_checked
(
make_shared
<
TensorViewType
>
(
arg_tensor_view_type
->
get_element_type
(),
m_output_shape
));
}
src/ngraph/ops/reshape.hpp
0 → 100644
View file @
085fd3fb
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/ops/op.hpp"
namespace
ngraph
{
namespace
op
{
class
Reshape
:
public
Builtin
{
public
:
///
/// @param arg The tensor view to be reshaped.
/// @param input_order The order in which to iterate over input axes. (TODO: that needs more explanation)
/// This must be a permutation of the sequence (0,...,n-1) where n is the rank of the input tensor.
/// @param output_shape The output shape. If the input shape is (a0,...,ak-1) then the output shape must
/// be of the form (b0,...,bj-1) where product(ai) == product(bi).
///
Reshape
(
const
std
::
shared_ptr
<
Node
>&
arg
,
const
AxisVector
&
input_order
,
const
Shape
&
output_shape
)
:
Builtin
({
arg
})
,
m_input_order
(
input_order
)
,
m_output_shape
(
output_shape
)
{
}
virtual
std
::
string
description
()
const
override
{
return
"Reshape"
;
}
virtual
void
propagate_types
()
override
;
const
AxisVector
&
get_input_order
()
const
{
return
m_input_order
;
}
const
Shape
&
get_output_shape
()
const
{
return
m_output_shape
;
}
protected
:
const
AxisVector
m_input_order
;
const
Shape
m_output_shape
;
};
}
}
src/ngraph/runtime/ngvm/eigen/matrix_transpose.hpp
0 → 100644
View file @
085fd3fb
// ----------------------------------------------------------------------------
// Copyright 2017 Nervana Systems Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// ----------------------------------------------------------------------------
#pragma once
#include "ngraph/runtime/ngvm/call_frame.hpp"
#include "ngraph/runtime/ngvm/eigen/utils.hpp"
#include "ngraph/runtime/ngvm/instruction.hpp"
#include "ngraph/runtime/tensor_view.hpp"
namespace
ngraph
{
namespace
runtime
{
namespace
ngvm
{
namespace
eigen
{
template
<
typename
ET
>
class
MatrixTransposeInstruction
:
public
Instruction
{
public
:
MatrixTransposeInstruction
(
const
TensorViewInfo
&
arg
,
const
TensorViewInfo
&
out
)
:
m_arg
(
arg
)
,
m_out
(
out
)
{
}
virtual
void
execute
(
CallFrame
&
call_frame
)
const
override
{
EigenMatrix
<
ET
>
(
call_frame
,
m_out
)
=
EigenMatrix
<
ET
>
(
call_frame
,
m_arg
).
transpose
();
}
protected
:
TensorViewInfo
m_arg
;
TensorViewInfo
m_out
;
};
}
}
}
}
src/ngraph/runtime/ngvm/external_function.cpp
View file @
085fd3fb
...
...
@@ -44,6 +44,7 @@
#include "ngraph/ops/negative.hpp"
#include "ngraph/ops/not_equal.hpp"
#include "ngraph/ops/reduce.hpp"
#include "ngraph/ops/reshape.hpp"
#include "ngraph/ops/select.hpp"
#include "ngraph/ops/subtract.hpp"
#include "ngraph/ops/tuple.hpp"
...
...
@@ -71,6 +72,7 @@
#include "ngraph/runtime/ngvm/eigen/less_than.hpp"
#include "ngraph/runtime/ngvm/eigen/log.hpp"
#include "ngraph/runtime/ngvm/eigen/matrix_mult.hpp"
#include "ngraph/runtime/ngvm/eigen/matrix_transpose.hpp"
#include "ngraph/runtime/ngvm/eigen/matrix_vector_product.hpp"
#include "ngraph/runtime/ngvm/eigen/maximum.hpp"
#include "ngraph/runtime/ngvm/eigen/multiply.hpp"
...
...
@@ -777,6 +779,59 @@ ExternalFunction::OpMap& ExternalFunction::get_op_map()
}
};
REGISTER_TO_OP_MAP
(
op
::
Reshape
)
{
auto
reshape
=
static_cast
<
const
op
::
Reshape
*>
(
n
);
auto
arg_type
=
reshape
->
get_arguments
().
at
(
0
)
->
get_value_type
();
auto
arg_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
arg_type
);
assert
(
nullptr
!=
arg_tensor_view_type
);
auto
arg_shape
=
arg_tensor_view_type
->
get_shape
();
auto
arg_rank
=
arg_shape
.
size
();
auto
result_type
=
reshape
->
get_value_type
();
auto
result_tensor_view_type
=
dynamic_pointer_cast
<
const
TensorViewType
>
(
result_type
);
assert
(
nullptr
!=
result_tensor_view_type
);
auto
result_shape
=
result_tensor_view_type
->
get_shape
();
auto
&
result_element_type
=
result_tensor_view_type
->
get_element_type
();
auto
input_order
=
reshape
->
get_input_order
();
bool
same_layout
=
std
::
is_sorted
(
input_order
.
begin
(),
input_order
.
end
());
size_t
result_shape_product
=
1
;
for
(
auto
i
:
result_shape
)
{
result_shape_product
*=
i
;
}
// If there is no layout change or we are just going from 1^n to 1^m or a zero-size tensor, we can just copy.
if
(
same_layout
||
result_shape_product
<
2
)
{
PUSH_POLYMORPHIC_INSTRUCTION
(
result_element_type
,
"Reshape has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
CopyInstruction
,
in
.
at
(
0
).
get_index
(),
out
.
at
(
0
).
get_index
());
}
// If there *is* a layout change in the 2D case, we transpose the input.
else
if
(
arg_rank
==
2
)
{
PUSH_POLYMORPHIC_INSTRUCTION
(
result_element_type
,
"Reshape has unhandled element type"
,
runtime
::
ngvm
::
eigen
::
MatrixTransposeInstruction
,
in
[
0
],
out
[
0
]);
}
// Other cases (reordering of axes for tensors with rank>2) are not handled yet.
else
{
throw
ngraph_error
(
"Axis permutation in reshape is not implemented yet for tensors with rank>2 in "
"VM"
);
}
};
initialized
=
true
;
}
return
op_map
;
...
...
test/execute.cpp
View file @
085fd3fb
...
...
@@ -1620,3 +1620,243 @@ TEST(execute, reduce_matrix_to_scalar_zero_by_zero)
ASSERT_EQ
((
vector
<
float
>
{}),
a
->
get_vector
());
ASSERT_EQ
((
vector
<
float
>
{
99
}),
b
->
get_vector
());
}
TEST
(
type_prop
,
reshape_t2v_012
)
{
auto
shape_a
=
Shape
{
2
,
2
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
12
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
0
,
1
,
2
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_t2s_012
)
{
auto
shape_a
=
Shape
{
1
,
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
0
,
1
,
2
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
6
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
6
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_t2s_120
)
{
auto
shape_a
=
Shape
{
1
,
1
,
1
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
1
,
2
,
0
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
6
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
6
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_s2t
)
{
auto
shape_a
=
Shape
{};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
1
,
1
,
1
,
1
,
1
,
1
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
42
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
42
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_v2m_col
)
{
auto
shape_a
=
Shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
3
,
1
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
0
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_v2m_row
)
{
auto
shape_a
=
Shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
1
,
3
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
0
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_v2t_middle
)
{
auto
shape_a
=
Shape
{
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
1
,
3
,
1
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
0
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_m2m_same
)
{
auto
shape_a
=
Shape
{
3
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
3
,
3
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
0
,
1
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_m2m_transpose
)
{
auto
shape_a
=
Shape
{
3
,
3
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
3
,
3
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
1
,
0
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
4
,
7
,
2
,
5
,
8
,
3
,
6
,
9
}),
result
->
get_vector
());
}
TEST
(
type_prop
,
reshape_m2m_dim_change_transpose
)
{
auto
shape_a
=
Shape
{
3
,
2
};
auto
A
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_a
));
auto
shape_r
=
Shape
{
2
,
3
};
auto
rt
=
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
shape_r
);
auto
r
=
make_shared
<
op
::
Reshape
>
(
A
,
AxisVector
{
1
,
0
},
shape_r
);
auto
f
=
make_shared
<
Function
>
(
r
,
rt
,
op
::
Parameters
{
A
});
auto
manager
=
runtime
::
Manager
::
get
(
"NGVM"
);
auto
external
=
manager
->
compile
(
f
);
auto
backend
=
manager
->
allocate_backend
();
auto
cf
=
backend
->
make_call_frame
(
external
);
// Create some tensors for input/output
auto
a
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_a
);
*
a
=
vector
<
float
>
{
1
,
2
,
3
,
4
,
5
,
6
};
auto
result
=
ngraph
::
runtime
::
make_tensor
<
element
::
Float32
>
(
shape_r
);
(
*
cf
)({
a
},
{
result
});
ASSERT_EQ
((
vector
<
float
>
{
1
,
3
,
5
,
2
,
4
,
6
}),
result
->
get_vector
());
}
test/type_prop.cpp
View file @
085fd3fb
...
...
@@ -1041,3 +1041,197 @@ TEST(type_prop, function_call_deduce)
auto
r_p_r_vt
=
r_p_r
->
get_value_type
();
ASSERT_EQ
(
*
r_p_r_vt
,
TensorViewType
(
element
::
Float32
::
element_type
(),
shape
));
}
TEST
(
type_prop
,
reshape_deduce_s2v
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{},
Shape
{
1
});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
1
}));
}
TEST
(
type_prop
,
reshape_deduce_s2m
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{},
Shape
{
1
,
1
});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
1
,
1
}));
}
TEST
(
type_prop
,
reshape_deduce_s2t
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{},
Shape
{
1
,
1
,
1
});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
1
,
1
,
1
}));
}
TEST
(
type_prop
,
reshape_deduce_v2s
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
1
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
0
},
Shape
{});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{}));
}
TEST
(
type_prop
,
reshape_deduce_m2s
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
1
,
1
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
0
,
1
},
Shape
{});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{}));
}
TEST
(
type_prop
,
reshape_deduce_t2s
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
1
,
1
,
1
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
0
,
1
,
2
},
Shape
{});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{}));
}
TEST
(
type_prop
,
reshape_deduce_m2v_01
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
0
,
1
},
Shape
{
12
});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
12
}));
}
TEST
(
type_prop
,
reshape_deduce_m2v_10
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
1
,
0
},
Shape
{
12
});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
12
}));
}
TEST
(
type_prop
,
reshape_deduce_t2v_012
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
,
5
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
0
,
1
,
2
},
Shape
{
60
});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
60
}));
}
TEST
(
type_prop
,
reshape_deduce_t2v_120
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
,
5
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
1
,
2
,
0
},
Shape
{
60
});
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
60
}));
}
TEST
(
type_prop
,
reshape_deduce_correct_t2v_120
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
,
5
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
1
,
2
,
0
},
Shape
{
60
});
r
->
set_value_type
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
60
}));
r
->
propagate_types
();
ASSERT_EQ
(
*
(
r
->
get_value_type
()),
TensorViewType
(
element
::
Float32
::
element_type
(),
Shape
{
60
}));
}
TEST
(
type_prop
,
reshape_deduce_not_enough_axes
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
,
5
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
1
,
0
},
Shape
{
60
});
try
{
r
->
propagate_types
();
// Should have thrown, so fail if it didn't
FAIL
()
<<
"Not enough axes not detected"
;
}
catch
(
const
ngraph_error
&
error
)
{
EXPECT_EQ
(
error
.
what
(),
std
::
string
(
"Input axis order for reshape is not a permutation of argument's axes"
));
}
catch
(...)
{
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
TEST
(
type_prop
,
reshape_deduce_too_many_axes
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
,
5
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
1
,
2
,
0
,
3
},
Shape
{
60
});
try
{
r
->
propagate_types
();
// Should have thrown, so fail if it didn't
FAIL
()
<<
"Too many axes not detected"
;
}
catch
(
const
ngraph_error
&
error
)
{
EXPECT_EQ
(
error
.
what
(),
std
::
string
(
"Input axis order for reshape is not a permutation of argument's axes"
));
}
catch
(...)
{
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
TEST
(
type_prop
,
reshape_deduce_duplicate_axes
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
,
5
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
1
,
1
,
0
},
Shape
{
60
});
try
{
r
->
propagate_types
();
// Should have thrown, so fail if it didn't
FAIL
()
<<
"Too many axes not detected"
;
}
catch
(
const
ngraph_error
&
error
)
{
EXPECT_EQ
(
error
.
what
(),
std
::
string
(
"Input axis order for reshape is not a permutation of argument's axes"
));
}
catch
(...)
{
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
TEST
(
type_prop
,
reshape_deduce_wrong_output_shape
)
{
auto
param
=
make_shared
<
op
::
Parameter
>
(
make_shared
<
TensorViewType
>
(
element
::
Float32
::
element_type
(),
Shape
{
3
,
4
,
5
}));
auto
r
=
make_shared
<
op
::
Reshape
>
(
param
,
AxisVector
{
1
,
2
,
0
},
Shape
{
3
,
3
,
3
});
try
{
r
->
propagate_types
();
// Should have thrown, so fail if it didn't
FAIL
()
<<
"Too many axes not detected"
;
}
catch
(
const
ngraph_error
&
error
)
{
EXPECT_EQ
(
error
.
what
(),
std
::
string
(
"Product of output shape dimensions does not match "
"product of argument shape dimensions for reshape"
));
}
catch
(...)
{
FAIL
()
<<
"Deduced type check failed for unexpected reason"
;
}
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment