Commit 0611ae23 authored by Adam Procter's avatar Adam Procter Committed by Scott Cyphers

Enable ConstantFolding for Product, Reverse; add a couple of dynamic tests (#3187)

* Add a few more toy dynamic examples

* Enable constant folding for Reverse; enable reverse_shape test

* Add constant folding for Product, and enable two more tests
parent 6d349607
This diff is collapsed.
...@@ -40,7 +40,9 @@ public: ...@@ -40,7 +40,9 @@ public:
BINARY, BINARY,
QUANTIZE, QUANTIZE,
CONVERT, CONVERT,
SHAPE_OF SHAPE_OF,
REVERSE,
PRODUCT
}; };
ConstantFolding(const ngraph::BuildNodeExecutorMap& cfmap = ngraph::BuildNodeExecutorMap()) ConstantFolding(const ngraph::BuildNodeExecutorMap& cfmap = ngraph::BuildNodeExecutorMap())
...@@ -56,6 +58,8 @@ public: ...@@ -56,6 +58,8 @@ public:
construct_constant_dequantize(); construct_constant_dequantize();
construct_constant_convert(); construct_constant_convert();
construct_constant_shape_of(); construct_constant_shape_of();
construct_constant_reverse();
construct_constant_product();
} }
//this allows to specify the order in which matchers will be run //this allows to specify the order in which matchers will be run
...@@ -78,6 +82,8 @@ public: ...@@ -78,6 +82,8 @@ public:
case CFTransformations::QUANTIZE: construct_constant_quantize(); break; case CFTransformations::QUANTIZE: construct_constant_quantize(); break;
case CFTransformations::CONVERT: construct_constant_convert(); break; case CFTransformations::CONVERT: construct_constant_convert(); break;
case CFTransformations::SHAPE_OF: construct_constant_shape_of(); break; case CFTransformations::SHAPE_OF: construct_constant_shape_of(); break;
case CFTransformations::REVERSE: construct_constant_reverse(); break;
case CFTransformations::PRODUCT: construct_constant_product(); break;
} }
} }
} }
...@@ -92,6 +98,8 @@ private: ...@@ -92,6 +98,8 @@ private:
void construct_constant_dequantize(); void construct_constant_dequantize();
void construct_constant_convert(); void construct_constant_convert();
void construct_constant_shape_of(); void construct_constant_shape_of();
void construct_constant_reverse();
void construct_constant_product();
ngraph::BuildNodeExecutorMap m_cfmap; ngraph::BuildNodeExecutorMap m_cfmap;
}; };
...@@ -47,8 +47,9 @@ namespace ngraph ...@@ -47,8 +47,9 @@ namespace ngraph
{ {
Coordinate output_coord = reduce(input_coord, reduction_axes); Coordinate output_coord = reduce(input_coord, reduction_axes);
out[output_transform.index(output_coord)] *= size_t output_index = output_transform.index(output_coord);
arg[input_transform.index(input_coord)];
out[output_index] = out[output_index] * arg[input_transform.index(input_coord)];
} }
} }
} }
......
...@@ -358,6 +358,56 @@ TEST(constant_folding, shape_of_rank_dynamic) ...@@ -358,6 +358,56 @@ TEST(constant_folding, shape_of_rank_dynamic)
PartialShape{Dimension::dynamic()})); PartialShape{Dimension::dynamic()}));
} }
TEST(constant_folding, const_reverse)
{
Shape input_shape{3, 3};
vector<int32_t> values_in{1, 2, 3, 4, 5, 6, 7, 8, 9};
auto constant = op::Constant::create(element::i32, input_shape, values_in);
auto convert = make_shared<op::Reverse>(constant, AxisSet{1});
auto f = make_shared<Function>(convert, ParameterVector{});
pass::Manager pass_manager;
pass_manager.register_pass<pass::ConstantFolding>();
pass_manager.run_passes(f);
ASSERT_EQ(count_ops_of_type<op::Reverse>(f), 0);
ASSERT_EQ(count_ops_of_type<op::Constant>(f), 1);
auto new_const =
std::dynamic_pointer_cast<op::Constant>(f->get_results().at(0)->get_argument(0));
ASSERT_TRUE(new_const);
auto values_out = new_const->get_vector<int32_t>();
vector<int32_t> values_expected{3, 2, 1, 6, 5, 4, 9, 8, 7};
ASSERT_EQ(values_expected, values_out);
}
TEST(constant_folding, const_product)
{
Shape input_shape{3, 3};
vector<int32_t> values_in{1, 2, 3, 4, 5, 6, 7, 8, 9};
auto constant = op::Constant::create(element::i32, input_shape, values_in);
auto convert = make_shared<op::Product>(constant, AxisSet{1});
auto f = make_shared<Function>(convert, ParameterVector{});
pass::Manager pass_manager;
pass_manager.register_pass<pass::ConstantFolding>();
pass_manager.run_passes(f);
ASSERT_EQ(count_ops_of_type<op::Product>(f), 0);
ASSERT_EQ(count_ops_of_type<op::Constant>(f), 1);
auto new_const =
std::dynamic_pointer_cast<op::Constant>(f->get_results().at(0)->get_argument(0));
ASSERT_TRUE(new_const);
auto values_out = new_const->get_vector<int32_t>();
vector<int32_t> values_expected{6, 120, 504};
ASSERT_EQ(values_expected, values_out);
}
TEST(constant_folding, pass_property) TEST(constant_folding, pass_property)
{ {
auto pass = std::make_shared<ngraph::pass::ConstantFolding>(); auto pass = std::make_shared<ngraph::pass::ConstantFolding>();
......
...@@ -456,3 +456,190 @@ NGRAPH_TEST(dynamic_${BACKEND_NAME}, reshape) ...@@ -456,3 +456,190 @@ NGRAPH_TEST(dynamic_${BACKEND_NAME}, reshape)
ASSERT_EQ(results, data); ASSERT_EQ(results, data);
} }
} }
static void axpy_test(const PartialShape& input_pshape, const std::vector<Shape>& input_shapes)
{
auto a = make_shared<op::Parameter>(element::f32, input_pshape);
auto x = make_shared<op::Parameter>(element::f32, input_pshape);
auto y = make_shared<op::Parameter>(element::f32, input_pshape);
auto axpy = a * x + y;
auto f = make_shared<Function>(NodeVector{axpy}, ParameterVector{a, x, y});
auto backend = runtime::Backend::create("${BACKEND_NAME}", true);
auto ex = backend->compile(f);
auto t_r = backend->create_dynamic_tensor(element::f32, input_pshape);
for (auto& shape : input_shapes)
{
vector<float> inputs(shape_size(shape));
for (size_t i = 0; i < shape_size(shape); i++)
{
inputs[i] = i;
}
auto t_a = backend->create_tensor(element::f32, shape);
auto t_x = backend->create_tensor(element::f32, shape);
auto t_y = backend->create_tensor(element::f32, shape);
copy_data(t_a, inputs);
copy_data(t_x, inputs);
copy_data(t_y, inputs);
ex->call_with_validate({t_r}, {t_a, t_x, t_y});
ASSERT_EQ(t_r->get_shape(), shape);
auto results = read_vector<float>(t_r);
vector<float> expected_values(shape_size(shape));
for (size_t i = 0; i < shape_size(shape); i++)
{
expected_values[i] = (i * i) + i;
}
EXPECT_TRUE(test::all_close_f(results, expected_values));
}
}
NGRAPH_TEST(dynamic_${BACKEND_NAME}, axpy)
{
// Test with shape {?, 3, 3}.
axpy_test(PartialShape{Dimension::dynamic(), 3, 3}, {Shape{2, 3, 3}, Shape{5, 3, 3}});
// Test with shape {?, ?, ?}.
axpy_test(PartialShape::dynamic(3),
{Shape{2, 3, 3}, Shape{5, 3, 3}, Shape{2, 5, 2}, Shape{8, 1, 8}});
// Test with shape ?. (Rank unknown.)
axpy_test(PartialShape::dynamic(),
{Shape{2, 3, 3},
Shape{5, 3, 3},
Shape{2, 5, 2},
Shape{8, 1, 8},
Shape{5},
Shape{8, 2},
Shape{8, 2, 8, 2},
Shape{2, 3, 4, 5, 2}});
}
static void to_vector_test(const PartialShape& input_pshape, const std::vector<Shape>& input_shapes)
{
auto x = make_shared<op::Parameter>(element::f32, input_pshape);
shared_ptr<Node> x_new_shape = make_shared<op::ShapeOf>(x);
x_new_shape = make_shared<op::Product>(x_new_shape, AxisSet{0});
x_new_shape = make_shared<op::Reshape>(x_new_shape, AxisVector{}, Shape{1});
auto x_reshaped = make_shared<op::DynReshape>(x, x_new_shape);
auto f = make_shared<Function>(NodeVector{x_reshaped}, ParameterVector{x});
auto backend = runtime::Backend::create("${BACKEND_NAME}", true);
auto ex = backend->compile(f);
auto t_r = backend->create_dynamic_tensor(element::f32, PartialShape::dynamic(1));
for (auto& shape : input_shapes)
{
vector<float> inputs(shape_size(shape));
for (size_t i = 0; i < shape_size(shape); i++)
{
inputs[i] = i;
}
auto t_x = backend->create_tensor(element::f32, shape);
copy_data(t_x, inputs);
ex->call_with_validate({t_r}, {t_x});
ASSERT_EQ(t_r->get_shape(), (Shape{shape_size(shape)}));
auto results = read_vector<float>(t_r);
EXPECT_TRUE(test::all_close_f(results, inputs));
}
}
NGRAPH_TEST(dynamic_${BACKEND_NAME}, to_vector)
{
// Test with shape {?, 3, 3}.
to_vector_test(PartialShape{Dimension::dynamic(), 3, 3}, {Shape{2, 3, 3}, Shape{5, 3, 3}});
// Test with shape {?, ?, ?}.
to_vector_test(PartialShape::dynamic(3),
{Shape{2, 3, 3}, Shape{5, 3, 3}, Shape{2, 5, 2}, Shape{8, 1, 8}});
// Test with shape ?. (Rank unknown.)
to_vector_test(PartialShape::dynamic(),
{Shape{2, 3, 3},
Shape{5, 3, 3},
Shape{2, 5, 2},
Shape{8, 1, 8},
Shape{5},
Shape{8, 2},
Shape{8, 2, 8, 2},
Shape{2, 3, 4, 5, 2}});
}
static void reverse_shape_test(const PartialShape& input_pshape,
const std::vector<Shape>& input_shapes)
{
auto x = make_shared<op::Parameter>(element::f32, input_pshape);
shared_ptr<Node> x_new_shape = make_shared<op::ShapeOf>(x);
x_new_shape = make_shared<op::Reverse>(x_new_shape, AxisSet{0});
auto x_reshaped = make_shared<op::DynReshape>(x, x_new_shape);
auto f = make_shared<Function>(NodeVector{x_reshaped}, ParameterVector{x});
auto backend = runtime::Backend::create("${BACKEND_NAME}", true);
auto ex = backend->compile(f);
auto t_r = backend->create_dynamic_tensor(element::f32, PartialShape::dynamic());
for (auto& shape : input_shapes)
{
vector<float> inputs(shape_size(shape));
for (size_t i = 0; i < shape_size(shape); i++)
{
inputs[i] = i;
}
auto t_x = backend->create_tensor(element::f32, shape);
copy_data(t_x, inputs);
ex->call_with_validate({t_r}, {t_x});
Shape expected_shape = shape;
std::reverse(expected_shape.begin(), expected_shape.end());
ASSERT_EQ(t_r->get_shape(), expected_shape);
auto results = read_vector<float>(t_r);
EXPECT_TRUE(test::all_close_f(results, inputs));
}
}
NGRAPH_TEST(dynamic_${BACKEND_NAME}, reverse_shape)
{
// Test with shape {?, 3, 3}.
reverse_shape_test(PartialShape{Dimension::dynamic(), 3, 3}, {Shape{2, 3, 3}, Shape{5, 3, 3}});
// Test with shape {?, ?, ?}.
reverse_shape_test(PartialShape::dynamic(3),
{Shape{2, 3, 3}, Shape{5, 3, 3}, Shape{2, 5, 2}, Shape{8, 1, 8}});
// Test with shape ?. (Rank unknown.)
reverse_shape_test(PartialShape::dynamic(),
{Shape{2, 3, 3},
Shape{5, 3, 3},
Shape{2, 5, 2},
Shape{8, 1, 8},
Shape{5},
Shape{8, 2},
Shape{8, 2, 8, 2},
Shape{2, 3, 4, 5, 2}});
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment