Unverified Commit 015e1da8 authored by adstraw's avatar adstraw Committed by GitHub

more flexible tensor mask (#803)

parent 07cc9616
......@@ -19,7 +19,6 @@ set (SRC
builder/autobroadcast.cpp
builder/numpy_transpose.cpp
builder/reduce_ops.cpp
builder/tensor_mask.cpp
coordinate_transform.cpp
descriptor/input.cpp
descriptor/layout/dense_tensor_view_layout.cpp
......
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <numeric>
#include "ngraph/builder/tensor_mask.hpp"
#include "ngraph/op/broadcast.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/convert.hpp"
#include "ngraph/op/less.hpp"
#include "ngraph/op/reshape.hpp"
using namespace ngraph;
std::shared_ptr<Node> ngraph::builder::tensor_mask(const std::shared_ptr<Node>& sequence_lengths,
size_t sequence_axis,
size_t batch_axis,
Shape mask_shape)
{
if (sequence_axis >= mask_shape.size())
{
throw ngraph_error("Sequence axis must be in range 0..mask_shape rank");
}
if (batch_axis >= mask_shape.size())
{
throw ngraph_error("Sequence axis must be in range 0..mask_shape rank");
}
// all axes except the sequence axis
AxisSet non_sequence_axes;
// all axes except the batch axis
AxisSet non_batch_axes;
for (auto axis = 0; axis < mask_shape.size(); ++axis)
{
if (axis != sequence_axis)
{
non_sequence_axes.insert(axis);
}
if (axis != batch_axis)
{
non_batch_axes.insert(axis);
}
}
// broadcast sequence lengths to mask shape along all non-batch axes
auto broadcast_sequence_lengths =
std::make_shared<op::Broadcast>(sequence_lengths, mask_shape, non_batch_axes);
// create sequence data [0, ..., max_sequence_length]
auto max_sequence_length = mask_shape[sequence_axis];
std::vector<uint32_t> sequence_data(max_sequence_length);
std::iota(sequence_data.begin(), sequence_data.end(), 0);
// create sequence constant
auto sequence =
std::make_shared<op::Constant>(element::u32, Shape{max_sequence_length}, sequence_data);
// convert sequence to input type
auto convert_sequence =
std::make_shared<op::Convert>(sequence, sequence_lengths->get_element_type());
// broadcast sequence to mask shape along all non-sequence axes
auto broadcast_sequence =
std::make_shared<op::Broadcast>(convert_sequence, mask_shape, non_sequence_axes);
// mask = sequence_length < sequence
return std::make_shared<op::Less>(broadcast_sequence, broadcast_sequence_lengths);
}
......@@ -18,15 +18,82 @@
#include "ngraph/axis_set.hpp"
#include "ngraph/node.hpp"
#include "ngraph/op/broadcast.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/convert.hpp"
#include "ngraph/op/less.hpp"
#include "ngraph/op/reshape.hpp"
#include "ngraph/shape.hpp"
namespace ngraph
{
namespace builder
{
// batch_size = mask_shape on the batch_axis
// max_sequence_length = mask_shape on the sequence_axis
// sequence_lengths = list of lengths < max_sequence_length of shape batch_size
// a mask is created by...
// 1. creating a sequence starting at sequence_begin of shape max_sequence_length
// 2. broadcasting that sequence along all non-sequence axes to mask_shape
// 3. broadcasting sequence_lengths along all non-batch axes to mask_shape
// 4. returning the specified binary element-wise operation T #2 and #3
template <class T>
std::shared_ptr<Node> tensor_mask(const std::shared_ptr<Node>& sequence_lengths,
size_t sequence_axis,
size_t batch_axis,
Shape mask_shape);
ngraph::Shape mask_shape,
uint32_t sequence_begin)
{
if (sequence_axis >= mask_shape.size())
{
throw ngraph_error("Sequence axis must be in range 0..mask_shape rank");
}
if (batch_axis >= mask_shape.size())
{
throw ngraph_error("Sequence axis must be in range 0..mask_shape rank");
}
// all axes except the sequence axis
ngraph::AxisSet non_sequence_axes;
// all axes except the batch axis
ngraph::AxisSet non_batch_axes;
for (size_t axis = 0; axis < mask_shape.size(); ++axis)
{
if (axis != sequence_axis)
{
non_sequence_axes.insert(axis);
}
if (axis != batch_axis)
{
non_batch_axes.insert(axis);
}
}
// broadcast sequence lengths to mask shape along all non-batch axes
auto broadcast_sequence_lengths = std::make_shared<ngraph::op::Broadcast>(
sequence_lengths, mask_shape, non_batch_axes);
// create sequence data [0, ..., max_sequence_length]
auto max_sequence_length = mask_shape[sequence_axis];
std::vector<uint32_t> sequence_data(max_sequence_length);
std::iota(sequence_data.begin(), sequence_data.end(), sequence_begin);
// create sequence constant
auto sequence = std::make_shared<ngraph::op::Constant>(
element::u32, Shape{max_sequence_length}, sequence_data);
// convert sequence to input type
auto convert_sequence = std::make_shared<ngraph::op::Convert>(
sequence, sequence_lengths->get_element_type());
// broadcast sequence to mask shape along all non-sequence axes
auto broadcast_sequence = std::make_shared<ngraph::op::Broadcast>(
convert_sequence, mask_shape, non_sequence_axes);
// mask = sequence_length < sequence
return std::make_shared<T>(broadcast_sequence, broadcast_sequence_lengths);
}
}
}
......@@ -147,7 +147,8 @@ TEST(builder, tensor_mask)
auto sequence_lengths = make_shared<op::Parameter>(element::u32, max_sequence_length);
Shape mask_shape{3, 5};
auto f = make_shared<Function>(builder::tensor_mask(sequence_lengths, 1, 0, mask_shape),
auto f =
make_shared<Function>(builder::tensor_mask<op::Less>(sequence_lengths, 1, 0, mask_shape, 0),
op::ParameterVector{sequence_lengths});
auto manager = runtime::Manager::get("INTERPRETER");
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment