Skip to content
Projects
Groups
Snippets
Help
Loading...
Sign in / Register
Toggle navigation
N
ngraph
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Packages
Packages
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
submodule
ngraph
Commits
0028f173
Unverified
Commit
0028f173
authored
Jun 19, 2019
by
Scott Cyphers
Committed by
GitHub
Jun 19, 2019
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' into pruthvi/mutex_for_cpu_backend
parents
351d09c0
b9dc7fa9
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
178 additions
and
18 deletions
+178
-18
conftest.py
python/test/conftest.py
+21
-16
test_ops_unary.py
python/test/ngraph/test_ops_unary.py
+16
-2
test_ops.py
python/test/test_ops.py
+1
-0
cpu_fusion.cpp
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
+26
-0
cpu_fusion.cpp
test/cpu_fusion.cpp
+114
-0
No files found.
python/test/conftest.py
View file @
0028f173
...
...
@@ -19,7 +19,7 @@ import test
def
pytest_addoption
(
parser
):
parser
.
addoption
(
'--backend'
,
default
=
'INTERPRETER'
,
choices
=
[
'INTERPRETER'
,
'CPU'
,
'GPU'
,
'NNP'
,
'PlaidML'
],
choices
=
[
'INTERPRETER'
,
'CPU'
,
'GPU'
,
'NNP'
,
'PlaidML'
,
'INTELGPU'
],
help
=
'Select from available backends'
)
...
...
@@ -31,20 +31,25 @@ def pytest_configure(config):
def
pytest_collection_modifyitems
(
config
,
items
):
backend_name
=
config
.
getvalue
(
'backend'
)
gpu_skip
=
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the GPU backend.'
)
cpu_skip
=
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the CPU backend.'
)
nnp_skip
=
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the NNP backend.'
)
interpreter_skip
=
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the INTERPRETER backend.'
)
plaidml_skip
=
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the PlaidML backend.'
)
keywords
=
{
'GPU'
:
'skip_on_gpu'
,
'CPU'
:
'skip_on_cpu'
,
'NNP'
:
'skip_on_nnp'
,
'INTERPRETER'
:
'skip_on_interpreter'
,
'PlaidML'
:
'skip_on_plaidml'
,
'INTELGPU'
:
'skip_on_intelgpu'
,
}
skip_markers
=
{
'GPU'
:
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the GPU backend.'
),
'CPU'
:
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the CPU backend.'
),
'NNP'
:
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the NNP backend.'
),
'INTERPRETER'
:
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the INTERPRETER backend.'
),
'PlaidML'
:
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the PlaidML backend.'
),
'INTELGPU'
:
pytest
.
mark
.
skip
(
reason
=
'Skipping test on the INTELGPU backend.'
),
}
for
item
in
items
:
if
backend_name
==
'GPU'
and
'skip_on_gpu'
in
item
.
keywords
:
item
.
add_marker
(
gpu_skip
)
if
backend_name
==
'CPU'
and
'skip_on_cpu'
in
item
.
keywords
:
item
.
add_marker
(
cpu_skip
)
if
backend_name
==
'NNP'
and
'skip_on_nnp'
in
item
.
keywords
:
item
.
add_marker
(
nnp_skip
)
if
backend_name
==
'INTERPRETER'
and
'skip_on_interpreter'
in
item
.
keywords
:
item
.
add_marker
(
interpreter_skip
)
if
backend_name
==
'PlaidML'
and
'skip_on_plaidml'
in
item
.
keywords
:
item
.
add_marker
(
plaidml_skip
)
skip_this_backend
=
keywords
[
backend_name
]
if
skip_this_backend
in
item
.
keywords
:
item
.
add_marker
(
skip_markers
[
backend_name
])
python/test/ngraph/test_ops_unary.py
View file @
0028f173
...
...
@@ -33,7 +33,6 @@ from test.ngraph.util import run_op_numeric_data, run_op_node
(
ng
.
exp
,
np
.
exp
,
-
100.
,
100.
),
(
ng
.
floor
,
np
.
floor
,
-
100.
,
100.
),
(
ng
.
log
,
np
.
log
,
0
,
100.
),
(
ng
.
logical_not
,
np
.
logical_not
,
-
10
,
10
),
(
ng
.
relu
,
lambda
x
:
np
.
maximum
(
0
,
x
),
-
100.
,
100.
),
(
ng
.
sign
,
np
.
sign
,
-
100.
,
100.
),
(
ng
.
sin
,
np
.
sin
,
-
100.
,
100.
),
...
...
@@ -68,7 +67,6 @@ def test_unary_op_array(ng_api_fn, numpy_fn, range_start, range_end):
(
ng
.
exp
,
np
.
exp
,
np
.
float32
(
1.5
)),
(
ng
.
floor
,
np
.
floor
,
np
.
float32
(
1.5
)),
(
ng
.
log
,
np
.
log
,
np
.
float32
(
1.5
)),
(
ng
.
logical_not
,
np
.
logical_not
,
np
.
int32
(
0
)),
(
ng
.
relu
,
lambda
x
:
np
.
maximum
(
0
,
x
),
np
.
float32
(
-
0.125
)),
(
ng
.
sign
,
np
.
sign
,
np
.
float32
(
0.
)),
(
ng
.
sin
,
np
.
sin
,
np
.
float32
(
np
.
pi
/
4.0
)),
...
...
@@ -86,3 +84,19 @@ def test_unary_op_scalar(ng_api_fn, numpy_fn, input_data):
result
=
run_op_numeric_data
(
input_data
,
ng_api_fn
)
assert
np
.
allclose
(
result
,
expected
)
@pytest.mark.parametrize
(
'input_data'
,
[
(
np
.
array
([
True
,
False
,
True
,
False
])),
(
np
.
array
(
True
)),
(
np
.
array
(
False
)),
])
@pytest.mark.skip_on_gpu
def
test_logical_not
(
input_data
):
expected
=
np
.
logical_not
(
input_data
)
result
=
run_op_node
([
input_data
],
ng
.
logical_not
)[
0
]
assert
np
.
array_equal
(
result
,
expected
)
result
=
run_op_numeric_data
(
input_data
,
ng
.
logical_not
)[
0
]
assert
np
.
array_equal
(
result
,
expected
)
python/test/test_ops.py
View file @
0028f173
...
...
@@ -818,6 +818,7 @@ def test_slice():
@pytest.mark.skip_on_gpu
@pytest.mark.skip_on_intelgpu
def
test_replace_slice
():
element_type
=
Type
.
f32
...
...
src/ngraph/runtime/cpu/pass/cpu_fusion.cpp
View file @
0028f173
...
...
@@ -2222,6 +2222,32 @@ void ngraph::runtime::cpu::pass::CPUQuantFusion::construct_qconvb_add()
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Add
>
(
m
.
get_match_root
()
->
get_argument
(
0
));
auto
dq_l_m
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Dequantize
>
(
pattern_map
[
dq_l_label
]);
auto
dq_r_m
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Dequantize
>
(
pattern_map
[
dq_r_label
]);
// both left and right are QuantizedConvolutionBias
if
(
dq_r_m
->
get_argument
(
0
)
->
description
()
==
"QuantizedConvolutionBias"
)
{
for
(
auto
user
:
m
.
get_match_root
()
->
get_users
())
{
auto
q_m
=
std
::
dynamic_pointer_cast
<
ngraph
::
op
::
Quantize
>
(
user
);
if
(
q_m
)
{
auto
q_m_scale
=
q_m
->
get_argument
(
1
);
auto
dq_l_m_scale
=
dq_l_m
->
get_argument
(
1
);
auto
dq_r_m_scale
=
dq_r_m
->
get_argument
(
1
);
if
(
!
ngraph
::
compare_constants
(
q_m_scale
,
dq_l_m_scale
)
&&
ngraph
::
compare_constants
(
q_m_scale
,
dq_r_m_scale
))
{
NGRAPH_DEBUG
<<
"Scales of Q and DQ of right branch match"
;
// switch left and right branch
auto
temp
=
dq_l_m
;
dq_l_m
=
dq_r_m
;
dq_r_m
=
temp
;
}
break
;
}
}
}
auto
qconv
=
std
::
static_pointer_cast
<
ngraph
::
op
::
QuantizedConvolutionBias
>
(
dq_l_m
->
get_argument
(
0
));
auto
inplace_input
=
dq_r_m
->
get_argument
(
0
);
...
...
test/cpu_fusion.cpp
View file @
0028f173
...
...
@@ -3683,6 +3683,120 @@ TEST(cpu_quant_fusion, qconvba)
EXPECT_TRUE
(
test
::
all_close
(
cpu1_results
.
at
(
0
),
cpu2_results
.
at
(
0
)));
}
TEST
(
cpu_quant_fusion
,
qconvba_q
)
{
auto
make_function
=
[]()
{
Shape
shape_input
{
1
,
2
,
2
,
2
};
Shape
shape_weights
{
1
,
2
,
1
,
1
};
Shape
shape_summand
{
1
,
1
,
2
,
2
};
auto
input_l
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_input
);
auto
weights_l
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_weights
);
auto
bias_l
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
shape_weights
[
0
]});
auto
input_r
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_input
);
auto
weights_r
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
shape_weights
);
auto
bias_r
=
std
::
make_shared
<
op
::
Parameter
>
(
element
::
f32
,
Shape
{
shape_weights
[
0
]});
auto
input_scale_l
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
2.0
f
});
auto
weights_scale_l
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
2.0
f
});
auto
output_scale_l
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
4.0
f
});
auto
input_scale_r
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
5.0
f
});
auto
weights_scale_r
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
5.0
f
});
auto
output_scale_r
=
op
::
Constant
::
create
(
element
::
f32
,
Shape
{},
{
20.0
f
});
auto
int8_zero
=
op
::
Constant
::
create
(
element
::
i8
,
Shape
{},
{
0
});
auto
int32_zero
=
op
::
Constant
::
create
(
element
::
i32
,
Shape
{},
{
0
});
auto
uint8_zero
=
op
::
Constant
::
create
(
element
::
u8
,
Shape
{},
{
0
});
op
::
Quantize
::
RoundMode
round_mode
=
op
::
Quantize
::
RoundMode
::
ROUND_NEAREST_TOWARD_EVEN
;
auto
q_input_l
=
std
::
make_shared
<
op
::
Quantize
>
(
input_l
,
input_scale_l
,
uint8_zero
,
element
::
u8
,
AxisSet
{},
round_mode
);
auto
q_weights_l
=
std
::
make_shared
<
op
::
Quantize
>
(
weights_l
,
weights_scale_l
,
int8_zero
,
element
::
i8
,
AxisSet
{},
round_mode
);
auto
q_bias_l
=
std
::
make_shared
<
op
::
Quantize
>
(
bias_l
,
input_scale_l
*
weights_scale_l
,
int32_zero
,
element
::
i32
,
AxisSet
{},
round_mode
);
auto
q_input_r
=
std
::
make_shared
<
op
::
Quantize
>
(
input_r
,
input_scale_r
,
uint8_zero
,
element
::
u8
,
AxisSet
{},
round_mode
);
auto
q_weights_r
=
std
::
make_shared
<
op
::
Quantize
>
(
weights_r
,
weights_scale_r
,
int8_zero
,
element
::
i8
,
AxisSet
{},
round_mode
);
auto
q_bias_r
=
std
::
make_shared
<
op
::
Quantize
>
(
bias_r
,
input_scale_r
*
weights_scale_r
,
int32_zero
,
element
::
i32
,
AxisSet
{},
round_mode
);
// Left Graph
auto
requant_scale_l
=
(
input_scale_l
*
weights_scale_l
)
/
output_scale_l
;
auto
conv_l
=
std
::
make_shared
<
op
::
QuantizedConvolutionBias
>
(
q_input_l
,
q_weights_l
,
q_bias_l
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
0
,
0
},
CoordinateDiff
{
0
,
0
},
Strides
{
1
,
1
},
requant_scale_l
);
auto
dq_l
=
std
::
make_shared
<
op
::
Dequantize
>
(
conv_l
,
output_scale_l
,
int8_zero
,
element
::
f32
,
AxisSet
{});
auto
r_l
=
std
::
make_shared
<
op
::
Reshape
>
(
dq_l
,
AxisVector
{
0
,
1
,
2
,
3
},
Shape
{
1
,
2
,
2
});
auto
b_l
=
std
::
make_shared
<
op
::
Broadcast
>
(
r_l
,
Shape
{
1
,
1
,
2
,
2
},
AxisSet
{
0
});
// Right Graph
auto
requant_scale_r
=
(
input_scale_r
*
weights_scale_r
)
/
output_scale_r
;
auto
conv_r
=
std
::
make_shared
<
op
::
QuantizedConvolutionBias
>
(
q_input_r
,
q_weights_r
,
q_bias_r
,
Strides
{
1
,
1
},
Strides
{
1
,
1
},
CoordinateDiff
{
0
,
0
},
CoordinateDiff
{
0
,
0
},
Strides
{
1
,
1
},
requant_scale_r
);
auto
dq_r
=
std
::
make_shared
<
op
::
Dequantize
>
(
conv_r
,
output_scale_r
,
int8_zero
,
element
::
f32
,
AxisSet
{});
auto
r_r
=
std
::
make_shared
<
op
::
Reshape
>
(
dq_r
,
AxisVector
{
0
,
1
,
2
,
3
},
Shape
{
1
,
2
,
2
});
auto
b_r
=
std
::
make_shared
<
op
::
Broadcast
>
(
r_r
,
Shape
{
1
,
1
,
2
,
2
},
AxisSet
{
0
});
auto
add
=
b_l
+
b_r
;
auto
relu
=
std
::
make_shared
<
op
::
Relu
>
(
add
);
auto
q
=
std
::
make_shared
<
op
::
Quantize
>
(
relu
,
output_scale_r
,
uint8_zero
,
element
::
u8
,
AxisSet
{},
round_mode
);
auto
dq
=
std
::
make_shared
<
op
::
Dequantize
>
(
q
,
output_scale_r
,
uint8_zero
,
element
::
f32
,
AxisSet
{});
return
make_shared
<
Function
>
(
NodeVector
{
dq
},
ParameterVector
{
input_l
,
weights_l
,
bias_l
,
input_r
,
weights_r
,
bias_r
});
};
auto
cpu_f1
=
make_function
();
auto
cpu_f2
=
make_function
();
test
::
Uniform
<
float
>
rng
(
2.0
f
,
2.0
f
);
vector
<
vector
<
float
>>
args
;
for
(
shared_ptr
<
op
::
Parameter
>
param
:
cpu_f1
->
get_parameters
())
{
vector
<
float
>
tensor_val
(
shape_size
(
param
->
get_shape
()));
rng
.
initialize
(
tensor_val
);
args
.
push_back
(
tensor_val
);
}
// Disable CPUQuantFusion
set_environment
(
"NGRAPH_PASS_ENABLES"
,
"CPUQuantFusion:0"
,
1
);
auto
cpu1_results
=
execute
(
cpu_f1
,
args
,
"CPU"
);
// Enable CPUQuantFusion
set_environment
(
"NGRAPH_PASS_ENABLES"
,
"CPUQuantFusion:1"
,
1
);
auto
cpu2_results
=
execute
(
cpu_f2
,
args
,
"CPU"
);
EXPECT_TRUE
(
test
::
all_close
(
cpu1_results
.
at
(
0
),
cpu2_results
.
at
(
0
)));
auto
backend
=
runtime
::
Backend
::
create
(
"CPU"
);
auto
fuse
=
make_function
();
backend
->
compile
(
fuse
);
ASSERT_EQ
(
count_ops_of_type
<
op
::
Quantize
>
(
fuse
),
6
);
}
#ifndef NGRAPH_JSON_DISABLE
// Tests that rely on deserializing json files
TEST
(
cpu_fusion
,
fuse_conv_bias
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment