1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <random>
#include <sstream>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/runtime/interpreter/int_backend.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
TEST(INTERPRETER, nan_check_input)
{
Shape shape{4};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Divide>(A, B), op::ParameterVector{A, B});
auto backend = runtime::Backend::create("INTERPRETER");
shared_ptr<runtime::interpreter::INTBackend> ibackend =
static_pointer_cast<runtime::interpreter::INTBackend>(backend);
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{2, 4, NAN, 16});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 1, 8});
auto result = backend->create_tensor(element::f32, shape);
ibackend->set_nan_check(f, true);
EXPECT_ANY_THROW(ibackend->call_with_validate(f, {result}, {a, b}));
}
TEST(INTERPRETER, nan_check_output)
{
Shape shape{4};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Divide>(A, B), op::ParameterVector{A, B});
auto backend = runtime::Backend::create("INTERPRETER");
shared_ptr<runtime::interpreter::INTBackend> ibackend =
static_pointer_cast<runtime::interpreter::INTBackend>(backend);
// Create some tensors for input/output
auto a = backend->create_tensor(element::f32, shape);
copy_data(a, vector<float>{2, 4, 0, 16});
auto b = backend->create_tensor(element::f32, shape);
copy_data(b, vector<float>{1, 2, 0, 8});
auto result = backend->create_tensor(element::f32, shape);
ibackend->set_nan_check(f, true);
EXPECT_ANY_THROW(ibackend->call_with_validate(f, {result}, {a, b}));
}