1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <bitset>
#include <cmath>
#include <limits>
#include <sstream>
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close_f.hpp"
using namespace std;
using namespace ngraph;
union FloatUnion {
float f;
uint32_t i;
};
string float_to_bits(float f)
{
FloatUnion fu{f};
stringstream ss;
ss << bitset<32>(fu.i);
return ss.str();
}
float bits_to_float(const string& s)
{
if (s.size() != 32)
{
throw ngraph_error("Input length must be 32");
}
bitset<32> bs(s);
FloatUnion fu;
fu.i = static_cast<uint32_t>(bs.to_ulong());
return fu.f;
}
// Test the exact bounds near +0.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
// Targeted bit
// |
// v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 |
// | 2 |<=
//
// [Upper bound]
// Add 1 at this bit
// |
// v
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Minus 1 at this bit
// |
// v
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Convert to 2's compliment
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Mask the sign bit
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_0)
{
// 0.f, the ground-truth value
float expected = bits_to_float("00000000000000000000000000000000");
float computed;
// ~3.67342E-40, the exact upper bound
computed = bits_to_float("00000000000001000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// ~3.67343E-40, the next representable number bigger than upper bound
computed = bits_to_float("00000000000001000000000000000001");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
// ~-3.67342E-40, the exact lower bound
computed = bits_to_float("10000000000001000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// ~-3.67343E-40, the next representable number smaller than lower bound
computed = bits_to_float("10000000000001000000000000000001");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}
// Test the exact bounds near -0.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
// Targeted bit
// |
// v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 |
// | 2 |<=
//
// [Upper bound]
// Minus 1 at this bit
// |
// v
// 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Convert to 2's compliment
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Mask off sign bit
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Add 1 at this bit
// |
// v
// 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_n0)
{
// 0.f, the ground-truth value
float expected = bits_to_float("10000000000000000000000000000000");
float computed;
// ~3.67342E-40, the exact upper bound
computed = bits_to_float("00000000000001000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// ~3.67343E-40, the next representable number bigger than upper bound
computed = bits_to_float("00000000000001000000000000000001");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
// ~-3.67342E-40, the exact lower bound
computed = bits_to_float("10000000000001000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// ~-3.67343E-40, the next representable number smaller than lower bound
computed = bits_to_float("10000000000001000000000000000001");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}
// Test the exact bounds near 1.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
// Targeted bit
// |
// v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 |
// | 2 |<=
//
// [Upper bound]
// Add 1 at this bit to get upper bound
// |
// v
// 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Minus 1 at this bit to get lower bound
// |
// v
// 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_1)
{
// 1.f, the ground-truth value
float expected = bits_to_float("00111111100000000000000000000000");
float computed;
// 1.03125f, the exact upper bound
computed = bits_to_float("00111111100001000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// 1.031250119f, the next representable number bigger than upper bound
computed = bits_to_float("00111111100001000000000000000001");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
// 0.984375f, the exact lower bound
computed = bits_to_float("00111111011111000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// 0.9843749404f, the next representable number smaller than lower bound
computed = bits_to_float("00111111011110111111111111111111");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}
// Test the exact bounds near -1.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
// Targeted bit
// |
// v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 |
// | 2 |<=
//
// [Upper bound]
// Minus 1 at this bit
// |
// v
// 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// - 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
// Add 1 at this bit
// |
// v
// 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// + 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_n1)
{
// -1.f, the ground-truth value
float expected = bits_to_float("10111111100000000000000000000000");
float computed;
// -0.984375f, the exact upper bound
computed = bits_to_float("10111111011111000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// -0.984374940395355224609375f, the next representable number bigger than upper bound
computed = bits_to_float("10111111011110111111111111111111");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
// -1.03125f, the exact lower bound
computed = bits_to_float("10111111100001000000000000000000");
EXPECT_TRUE(test::close_f(expected, computed, 8, 2));
// -1.03125011920928955078125f, the next representable number smaller than lower bound
computed = bits_to_float("10111111100001000000000000000001");
EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}
// For intuitive understanding of tightness of bounds in decimal
// Test bounds near 0, 1, 10, 100, 1000 with mantissa_bits = 8, tolerance_bits = 2
//
// Targeted bit
// |
// v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 8 |
// | 2 |<=
TEST(all_close_f, mantissa_8_near_0_1_10_100_1000)
{
float expected;
float upper_bound;
float bigger_than_upper_bound;
float lower_bound;
float smaller_than_lower_bound;
// Bounds around 0: 0 +- 3.67e-40
expected = 0.f; // 00000000000000000000000000000000
upper_bound = 3.67342e-40f; // 00000000000001000000000000000000, approximated
bigger_than_upper_bound = 3.67343e-40f; // 00000000000001000000000000000001, approximated
lower_bound = -3.67342e-40f; // 10000000000001000000000000000000, approximated
smaller_than_lower_bound = 3.67343e-40f; // 10000000000001000000000000000001, approximated
EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));
// Bounds around 1: 1 +- 0.03
expected = 1.f; // 00111111100000000000000000000000
upper_bound = 1.03125f; // 00111111100001000000000000000000
bigger_than_upper_bound = 1.031250119f; // 00111111100001000000000000000001
lower_bound = 0.984375f; // 00111111011111000000000000000000
smaller_than_lower_bound = 0.9843749404f; // 00111111011110111111111111111111
EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));
// Bounds around 10: 10 +- 0.25
expected = 10.f; // 01000001001000000000000000000000
upper_bound = 10.25f; // 01000001001001000000000000000000
bigger_than_upper_bound = 10.25000095367431640625f; // 01000001001001000000000000000001
lower_bound = 9.75f; // 01000001000111000000000000000000
smaller_than_lower_bound = 9.74999904632568359375f; // 01000001000110111111111111111111
EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));
// Bounds around 100: 100 +- 2
expected = 100.f; // 01000010110010000000000000000000
upper_bound = 102.f; // 01000010110011000000000000000000
bigger_than_upper_bound = 102.00000762939453125f; // 01000010110011000000000000000001
lower_bound = 98.0f; // 01000010110001000000000000000000
smaller_than_lower_bound = 97.99999237060546875f; // 01000010110000111111111111111111
EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));
// Bounds around 1000: 1000 +- 16
expected = 1000.f; // 01000100011110100000000000000000
upper_bound = 1016.f; // 01000100011111100000000000000000
bigger_than_upper_bound = 1016.00006103515625f; // 01000100011111100000000000000001
lower_bound = 984.0f; // 01000100011101100000000000000000
smaller_than_lower_bound = 983.99993896484375f; // 01000100011101011111111111111111
EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));
}
// For intuitive understanding of tightness of bounds in decimal
// Test bounds near 0, 1, 10, 100, 1000 with mantissa_bits = 24, tolerance_bits = 2
//
// Targeted bit
// |
// v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
// =>| 24 |
// | 2 |<=
TEST(all_close_f, mantissa_24_near_0_1_10_100_1000)
{
float expected;
float upper_bound;
float bigger_than_upper_bound;
float lower_bound;
float smaller_than_lower_bound;
// Bounds around 0: 0 +- 5.6e-45
expected = 0.f;
upper_bound = bits_to_float("00000000000000000000000000000100");
bigger_than_upper_bound = bits_to_float("00000000000000000000000000000101");
lower_bound = bits_to_float("10000000000000000000000000000100");
smaller_than_lower_bound = bits_to_float("10000000000000000000000000000101");
EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));
// Bounds around 1: 1 +- 4.77e-7
expected = 1.f;
upper_bound = bits_to_float("00111111100000000000000000000100");
bigger_than_upper_bound = bits_to_float("00111111100000000000000000000101");
lower_bound = bits_to_float("00111111011111111111111111111100");
smaller_than_lower_bound = bits_to_float("00111111011111111111111111111011");
EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));
// Bounds around 10: 10 +- 3.81e-6
expected = 10.f;
upper_bound = bits_to_float("01000001001000000000000000000100");
bigger_than_upper_bound = bits_to_float("01000001001000000000000000000101");
lower_bound = bits_to_float("01000001000111111111111111111100");
smaller_than_lower_bound = bits_to_float("01000001000111111111111111111011");
EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));
// Bounds around 100: 100 +- 3.05e-5
expected = 100.f;
upper_bound = bits_to_float("01000010110010000000000000000100");
bigger_than_upper_bound = bits_to_float("01000010110010000000000000000101");
lower_bound = bits_to_float("01000010110001111111111111111100");
smaller_than_lower_bound = bits_to_float("01000010110001111111111111111011");
EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));
// Bounds around 1000: 1000 +- 2.44e-4
expected = 1000.f;
upper_bound = bits_to_float("01000100011110100000000000000100");
bigger_than_upper_bound = bits_to_float("01000100011110100000000000000101");
lower_bound = bits_to_float("01000100011110011111111111111100");
smaller_than_lower_bound = bits_to_float("01000100011110011111111111111011");
EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));
}
TEST(all_close_f, inf_nan)
{
float zero = 0.f;
float infinity = numeric_limits<float>::infinity();
float neg_infinity = -numeric_limits<float>::infinity();
float quiet_nan = numeric_limits<float>::quiet_NaN();
float signaling_nan = numeric_limits<float>::signaling_NaN();
EXPECT_FALSE(test::close_f(zero, infinity));
EXPECT_FALSE(test::close_f(zero, neg_infinity));
EXPECT_FALSE(test::close_f(zero, quiet_nan));
EXPECT_FALSE(test::close_f(zero, signaling_nan));
EXPECT_FALSE(test::close_f(infinity, infinity));
EXPECT_FALSE(test::close_f(neg_infinity, neg_infinity));
EXPECT_FALSE(test::close_f(quiet_nan, quiet_nan));
EXPECT_FALSE(test::close_f(signaling_nan, signaling_nan));
}