• Scott Cyphers's avatar
    Cyphers/pattern (#4095) · 3bffe536
    Scott Cyphers authored
    * Make pattern matcher node-based
    
    Simplify implementation
    Add support for Or, Branch
    Start of support for recurrent pattern
    
    * Only save state at branch points
    
    * Factor Or out of label
    
    * Documentation
    
    * Review
    
    * Only ops need to match on shape/output index
    3bffe536
pattern.cpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
#include "ngraph/file_util.hpp"
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/op/add.hpp"
#include "ngraph/op/batch_norm.hpp"
#include "ngraph/op/constant.hpp"
#include "ngraph/op/divide.hpp"
#include "ngraph/op/multiply.hpp"
#include "ngraph/op/sqrt.hpp"
#include "ngraph/op/subtract.hpp"
#include "ngraph/op/sum.hpp"
#include "ngraph/op/sum.hpp"
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/branch.hpp"
#include "ngraph/pattern/op/label.hpp"
#include "ngraph/pattern/op/or.hpp"
#include "ngraph/pattern/op/skip.hpp"
#include "ngraph/pattern/op/true.hpp"
#include "ngraph/serializer.hpp"
#include "util/matcher.hpp"
#include "util/test_tools.hpp"

using namespace ngraph;
using namespace std;

static std::shared_ptr<Node> construct_constant_node(int n)
{
    return op::Constant::create(element::i32, Shape{}, {n});
}

static std::shared_ptr<pattern::op::Label> construct_variance_graph()
{
    // construct varaiance
    auto N = op::Constant::create(element::f32, Shape{3}, {2, 2, 2});
    auto input = std::make_shared<pattern::op::Label>(element::f32, Shape{2, 3});
    auto input_sq = std::make_shared<op::Multiply>(input, input);
    auto sum_input = std::make_shared<op::Sum>(input, AxisSet{0});
    auto square_sumed_input = std::make_shared<op::Multiply>(sum_input, sum_input);
    auto sum_squared_input = std::make_shared<op::Sum>(input_sq, AxisSet{0});
    auto avg_input_sum_sq = std::make_shared<op::Divide>(square_sumed_input, N);
    auto xmu = std::make_shared<op::Subtract>(sum_squared_input, avg_input_sum_sq);
    auto variance = std::make_shared<op::Divide>(xmu, N);
    auto variance_label =
        std::make_shared<pattern::op::Label>(variance, nullptr, NodeVector{variance});

    return variance_label;
}

static std::shared_ptr<pattern::op::Label> construct_mean_graph()
{
    // construct mean;
    auto input = std::make_shared<pattern::op::Label>(element::f32, Shape{2, 3});
    auto N = op::Constant::create(element::f32, Shape{3}, {2, 2, 2});
    auto sum_input1 = std::make_shared<op::Sum>(input, AxisSet{0});
    auto mean = std::make_shared<op::Divide>(sum_input1, N);
    auto mean_label = std::make_shared<pattern::op::Label>(mean, nullptr, NodeVector{mean});
    return mean_label;
}

class TestGraphRewrite : public ngraph::pass::GraphRewrite
{
public:
    void construct_multiply_by_one()
    {
        // pattern #1 : a * 1 = a
        auto iconst1 = construct_constant_node(1);
        auto pattern = std::make_shared<pattern::op::Label>(iconst1);

        auto callback = [pattern](pattern::Matcher& m) {
            NGRAPH_DEBUG << "In a callback for construct_multiply_by_one against "
                         << m.get_match_root()->get_name();
            NGRAPH_CHECK(m.get_match_root()->get_arguments().size() == 2);

            auto pattern_map = m.get_pattern_map();

            size_t const_node_index =
                m.get_match_root()->get_arguments().at(0) == pattern_map[pattern];
            auto const_node =
                as_type_ptr<op::Constant>(m.get_match_root()->get_arguments().at(const_node_index));
            auto second_node = m.get_match_root()->get_arguments().at(const_node_index);
            NGRAPH_DEBUG << "second_node = " << second_node->get_name()
                         << " , pattern = " << pattern_map[pattern]->get_name();

            if (pattern_map[pattern]->get_element_type() != const_node->get_element_type() ||
                pattern_map[pattern]->get_shape() != const_node->get_shape())
            {
                NGRAPH_DEBUG << "Operands' types and/or shape don't match";
                return false;
            }

            auto const_values = const_node->get_vector<int32_t>();
            bool all_ones =
                std::all_of(begin(const_values), end(const_values), [](int e) { return e == 1; });

            if (!all_ones)
            {
                NGRAPH_DEBUG << "Constant vector's values aren't equal to 1";
                return false;
            }

            ngraph::replace_node(m.get_match_root(), pattern_map[pattern]);
            return true;
        };

        auto m = make_shared<TestMatcher>(pattern * iconst1);
        this->add_matcher(m, callback);
    }

    void construct_add_zero()
    {
        // pattern #2 : a + 0 = a
        auto iconst0 = construct_constant_node(0);
        auto pattern = std::make_shared<pattern::op::Label>(iconst0);

        auto callback = [pattern](pattern::Matcher& m) {
            NGRAPH_DEBUG << "In a callback for construct_add_zero against "
                         << m.get_match_root()->get_name();
            NGRAPH_CHECK(m.get_match_root()->get_arguments().size() == 2);

            auto pattern_map = m.get_pattern_map();

            size_t const_node_index =
                m.get_match_root()->get_arguments().at(0) == pattern_map[pattern];
            auto const_node =
                as_type_ptr<op::Constant>(m.get_match_root()->get_arguments().at(const_node_index));
            auto second_node = m.get_match_root()->get_arguments().at(const_node_index);
            NGRAPH_DEBUG << "second_node = " << second_node->get_name()
                         << " , pattern = " << pattern_map[pattern]->get_name();

            if (pattern_map[pattern]->get_element_type() != const_node->get_element_type() ||
                pattern_map[pattern]->get_shape() != const_node->get_shape())
            {
                NGRAPH_DEBUG << "Operands' types and/or shape don't match";
                return false;
            }

            auto const_values = const_node->get_vector<int>();
            bool all_zeros =
                std::all_of(begin(const_values), end(const_values), [](int e) { return e == 0; });

            if (!all_zeros)
            {
                NGRAPH_DEBUG << "Constant vector's values aren't equal to 0";
                return false;
            }

            ngraph::replace_node(m.get_match_root(), pattern_map[pattern]);
            return true;
        };

        auto add = pattern + iconst0;
        auto m = make_shared<TestMatcher>(add);
        this->add_matcher(m, callback);
    }

    TestGraphRewrite()
        : GraphRewrite()
    {
        construct_multiply_by_one();
        construct_add_zero();
    }
};

static void run_passes(pass::Manager& pass_manager,
                       shared_ptr<Node> graph,
                       std::vector<shared_ptr<op::Parameter>> parms)
{
    auto func = make_shared<Function>(graph, ParameterVector{parms});
    pass_manager.run_passes(func);
}

TEST(pattern, graph_rewrite)
{
    Shape shape{};
    pass::Manager pass_manager;
    pass_manager.register_pass<TestGraphRewrite>();

    {
        auto a = make_shared<op::Parameter>(element::i32, shape);
        auto b = make_shared<op::Parameter>(element::i32, shape);
        auto c = make_shared<op::Parameter>(element::i32, shape);
        auto iconst0 = construct_constant_node(0);
        auto graph_a = a + iconst0;
        auto graph_b = b + iconst0;

        auto f = std::make_shared<Function>(ngraph::NodeVector{a, b, graph_a, c, graph_b},
                                            ParameterVector{a, b, c});
        pass_manager.run_passes(f);

        ASSERT_TRUE(graph_a->output(0).get_target_inputs().empty());
        ASSERT_TRUE(graph_b->output(0).get_target_inputs().empty());

        auto expected = ngraph::NodeVector{a, b, a, c, b};
        ASSERT_TRUE(count_ops_of_type<op::Add>(f) == 0);
    }

    {
        auto a = make_shared<op::Parameter>(element::i32, shape);
        auto b = make_shared<op::Parameter>(element::i32, shape);
        auto iconst0 = construct_constant_node(0);
        auto sum = (a + iconst0);
        auto graph = b + sum;
        run_passes(pass_manager, graph, {a, b});
        ASSERT_EQ(graph->get_arguments().at(1), a);
        ASSERT_EQ(graph->input(1).get_source_output(),
                  a->output(0)); // graph's input points to a's output
        ASSERT_TRUE(sum->output(0)
                        .get_target_inputs()
                        .empty()); // graph's input is removed from sum's target inptus
        ASSERT_TRUE(a->output(0).get_target_inputs().count(
            graph->input(1))); // a's output feeds into graph's input
    }

    {
        auto a = make_shared<op::Parameter>(element::i32, shape);
        auto b = make_shared<op::Parameter>(element::i32, shape);
        auto iconst1 = construct_constant_node(1);
        auto mul = (a * iconst1);
        auto graph = b + mul;
        run_passes(pass_manager, graph, {a, b});
        ASSERT_EQ(graph->get_arguments().at(1), a);
        ASSERT_EQ(graph->input(1).get_source_output(),
                  a->output(0)); // graph's input points to a's output
        ASSERT_TRUE(mul->output(0)
                        .get_target_inputs()
                        .empty()); // graph's input is removed from sum's target inputs
        ASSERT_TRUE(a->output(0).get_target_inputs().count(
            graph->input(1))); // a's output feeds into graph's input
    }

    {
        auto a = make_shared<op::Parameter>(element::i32, shape);
        auto b = make_shared<op::Parameter>(element::i32, shape);
        auto iconst1 = construct_constant_node(1);
        auto graph = ((((a * iconst1) * iconst1) * iconst1) * iconst1) + b;
        run_passes(pass_manager, graph, {a, b});
        ASSERT_EQ(graph->get_arguments().at(0), a);
        ASSERT_EQ(graph->input(0).get_source_output(),
                  a->output(0)); // graph's input points to a's output
        ASSERT_TRUE(a->output(0).get_target_inputs().count(
            graph->input(0))); // a's output feeds into graph's input
    }

    {
        auto a = make_shared<op::Parameter>(element::i32, shape);
        auto b = make_shared<op::Parameter>(element::i32, shape);
        auto iconst0 = construct_constant_node(0);
        auto iconst1 = construct_constant_node(1);
        auto graph = b + (iconst0 + ((a + iconst0) * iconst1));
        run_passes(pass_manager, graph, {a, b});
        ASSERT_EQ(graph->get_arguments().at(1), a);
        ASSERT_EQ(graph->input(1).get_source_output(),
                  a->output(0)); // graph's input points to a's output
        ASSERT_TRUE(a->output(0).get_target_inputs().count(
            graph->input(1))); // a's output feeds into graph's input
    }

    {
        auto a = make_shared<op::Parameter>(element::i32, shape);
        auto b = make_shared<op::Parameter>(element::i32, shape);
        auto iconst1 = construct_constant_node(1);
        auto graph = b + (iconst1 * (iconst1 * (iconst1 * (iconst1 * a))));
        run_passes(pass_manager, graph, {a, b});
        ASSERT_EQ(graph->get_arguments().at(1), a);
        ASSERT_EQ(graph->input(1).get_source_output(),
                  a->output(0)); // graph's input points to a's output
        ASSERT_TRUE(a->output(0).get_target_inputs().count(
            graph->input(1))); // a's output feeds into graph's input
    }
}

TEST(pattern, matcher)
{
    Shape shape{};
    auto a = make_shared<op::Parameter>(element::i32, shape);
    TestMatcher n;
    ASSERT_TRUE(n.match(a, a));
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{a}));

    auto abs = make_shared<op::Abs>(a);
    auto any = std::make_shared<pattern::op::Skip>(a);
    ASSERT_TRUE(n.match(any, abs));
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{abs, a}));

    auto false_pred = [](std::shared_ptr<Node> /* no */) { return false; };
    auto any_false = std::make_shared<pattern::op::Skip>(a, false_pred);
    ASSERT_TRUE(n.match(any_false, a));
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{a, a}));

    auto pattern = std::make_shared<pattern::op::Label>(a);
    ASSERT_TRUE(n.match(pattern, a));
    ASSERT_EQ(n.get_pattern_map()[pattern], a);
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{a}));

    auto pattern_false = std::make_shared<pattern::op::Label>(a, false_pred);
    ASSERT_FALSE(n.match(pattern_false, a));
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{}));

    auto b = make_shared<op::Parameter>(element::i32, shape);

    auto is_bea = [](std::shared_ptr<Node> node) -> bool {
        return node->is_binary_elementwise_arithmetic();
    };
    auto bea = std::make_shared<pattern::op::Any>(a, is_bea, NodeVector{a, b});
    auto add_ab = a + b;
    ASSERT_TRUE(n.match(bea, add_ab));
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{add_ab, a, b}));
    ASSERT_TRUE(n.match(bea, b + a));

    auto bea_false = std::make_shared<pattern::op::Any>(a, false_pred, NodeVector{a, b});
    ASSERT_FALSE(n.match(bea_false, a + b));

    auto add_abs_b = abs + b;
    auto bea_any_of = std::make_shared<pattern::op::AnyOf>(a, is_bea, NodeVector{abs});
    ASSERT_TRUE(n.match(bea_any_of, add_abs_b));

    auto add_b_abs = b + abs;
    ASSERT_TRUE(n.match(bea_any_of, add_b_abs));

    auto bea_any_of_label =
        std::make_shared<pattern::op::Label>(a, nullptr, NodeVector{bea_any_of});
    ASSERT_TRUE(n.match(bea_any_of_label, add_b_abs));
    ASSERT_EQ(n.get_pattern_map()[bea_any_of_label], add_b_abs);

    auto abs_label = std::make_shared<pattern::op::Label>(a, nullptr, NodeVector{abs});
    auto bea_label_any_of = std::make_shared<pattern::op::AnyOf>(a, is_bea, NodeVector{abs_label});
    ASSERT_TRUE(n.match(bea_label_any_of, add_b_abs));
    ASSERT_EQ(n.get_pattern_map()[abs_label], abs);

    auto bea_label = std::make_shared<pattern::op::Label>(a, nullptr, NodeVector{bea});
    auto ab = a + b;
    ASSERT_TRUE(n.match(bea_label, ab));
    ASSERT_EQ(n.get_pattern_map()[bea_label], ab);

    auto d = make_shared<op::Parameter>(element::i32, shape);
    ASSERT_FALSE(n.match(d, b));

    ASSERT_FALSE(n.match(abs + b, b + b));
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{}));

    auto add_absb = abs + b;
    ASSERT_TRUE(n.match(any + b, add_absb));
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{add_absb, abs, a, b}));

    ASSERT_TRUE(n.match(pattern + b, add_absb));
    ASSERT_EQ(n.get_pattern_map()[pattern], abs);
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{add_absb, abs, b}));

    ASSERT_TRUE(n.match(b + pattern, add_absb));
    ASSERT_EQ(n.get_pattern_map()[pattern], abs);
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{add_absb, abs, b}));

    auto c = make_shared<op::Parameter>(element::i32, shape);
    auto mul_add_absb = c * (add_absb);
    ASSERT_TRUE(n.match(c * (b + pattern), mul_add_absb));
    ASSERT_EQ(n.get_pattern_map()[pattern], abs);
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{mul_add_absb, c, add_absb, abs, b}));

    ASSERT_TRUE(n.match(c * (any + b), mul_add_absb)); // nested any
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{mul_add_absb, c, add_absb, abs, a, b}));
    ASSERT_TRUE(n.match(c * (any + b), (b + abs) * c)); // permutations w/ any
    auto mul_c_add_ab = c * add_ab;
    ASSERT_TRUE(n.match(c * (any_false + b), c * (a + b)));  // nested any
    ASSERT_TRUE(n.match(c * (any_false + b), mul_c_add_ab)); // permutations w/ any_false
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{mul_c_add_ab, c, add_ab, a, a, b}));

    auto iconst1_0 = construct_constant_node(1);
    auto iconst1_1 = construct_constant_node(1);
    ASSERT_TRUE(n.match(pattern * iconst1_0, a * iconst1_1)); // different iconst
    ASSERT_EQ(n.get_pattern_map()[pattern], a);
    auto fconst1_0 = op::Constant::create(element::f32, shape, {1});
    auto patternf = std::make_shared<pattern::op::Label>(fconst1_0);
    ASSERT_TRUE(n.match(patternf * fconst1_0, a * iconst1_1)); // different iconst

    // Subgraph labels
    auto add = a + b;
    auto label = std::make_shared<pattern::op::Label>(add, nullptr, NodeVector{add});
    ASSERT_TRUE(n.match(label, add));
    ASSERT_EQ(n.get_pattern_map()[label], add);
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{add, add, a, b}));

    ASSERT_FALSE(n.match(label, a - b));

    ASSERT_TRUE(n.match(make_shared<op::Abs>(label), make_shared<op::Abs>(add)));
    ASSERT_EQ(n.get_pattern_map()[label], add);

    // Correct argument order
    ASSERT_FALSE(n.match(b - a, a - b));
    auto aab = a * (a - b);
    auto paab = pattern * (pattern - b);
    ASSERT_TRUE(n.match(paab, aab));
    auto aba = a * (b - a);
    ASSERT_FALSE(n.match(paab, aba));
    auto paba = pattern * (b - pattern);
    ASSERT_FALSE(n.match(paba, aab));

    // Correlations
    auto label1 = std::make_shared<pattern::op::Label>(a);
    auto tmp = label1 + b;
    auto label2 = std::make_shared<pattern::op::Label>(tmp, nullptr, NodeVector{tmp});
    auto sub_label1 = label1 - label2;
    auto sub_add = a - add;
    ASSERT_TRUE(n.match(sub_label1, sub_add));
    ASSERT_EQ(n.get_pattern_map()[label1], a);
    ASSERT_EQ(n.get_pattern_map()[label2], add);
    ASSERT_EQ(n.get_matched_nodes(), (NodeVector{sub_add, a, add, add, a, b}));

    ASSERT_FALSE(n.match(sub_label1, add - a));

    auto add_label1 = label1 + label2;
    ASSERT_TRUE(n.match(add_label1, add + a));
    ASSERT_EQ(n.get_pattern_map()[label1], a);
    ASSERT_EQ(n.get_pattern_map()[label2], add);

    // Or
    ASSERT_TRUE(n.match(std::make_shared<pattern::op::Or>(OutputVector{a + b, a - b}), a + b));
    ASSERT_TRUE(n.match(std::make_shared<pattern::op::Or>(OutputVector{a + b, a - b}), a - b));

    // Branch
    {
        auto branch = std::make_shared<pattern::op::Branch>();
        auto star = std::make_shared<pattern::op::Or>(
            OutputVector{branch, std::make_shared<pattern::op::True>()});
        auto pattern = star + star;
        branch->set_destination(pattern);
        ASSERT_TRUE(n.match(pattern, ((a + b) + (b + a) + a)));
        ASSERT_EQ(n.get_matched_nodes().size(), 4);
    }

    // strict mode
    {
        TestMatcher sm(Output<Node>{}, "TestMatcher", true);
        // exact shape and type
        auto scalar_param = make_shared<op::Parameter>(element::i32, Shape{});
        auto label_dynamic_shape =
            make_shared<pattern::op::Label>(element::i32, PartialShape::dynamic());
        auto param = make_shared<op::Parameter>(element::f32, Shape{});
        ASSERT_TRUE(sm.match(label_dynamic_shape, scalar_param));
        // wrong type
        auto scalar_param_wrong_type = make_shared<op::Parameter>(element::f32, Shape{});
        ASSERT_FALSE(sm.match(label, scalar_param_wrong_type));
        // dynamic dimension
        auto label_dynamic_dimension =
            make_shared<pattern::op::Label>(element::i32, PartialShape{Dimension::dynamic()});
        auto vector_param = make_shared<op::Parameter>(element::i32, Shape{10});
        ASSERT_TRUE(sm.match(label_dynamic_dimension, vector_param));
        // dynamic type
        auto label_dynamic_type =
            make_shared<pattern::op::Label>(element::dynamic, PartialShape{Dimension::dynamic()});
        ASSERT_TRUE(sm.match(label_dynamic_type, vector_param));
    }
}

TEST(pattern, mean)
{
    // construct mean
    TestMatcher n;

    auto input = std::make_shared<op::Parameter>(element::f32, Shape{2, 3});
    auto N = op::Constant::create(element::f32, Shape{3}, {2, 2, 2});
    auto sum_input1 = std::make_shared<op::Sum>(input, AxisSet{0});
    auto mean = std::make_shared<op::Divide>(sum_input1, N);

    auto mean_graph = construct_mean_graph();
    ASSERT_TRUE(n.match(mean_graph, mean));
    ASSERT_EQ(n.get_pattern_map()[mean_graph], mean);
}

TEST(pattern, variance)
{
    // construct variance
    TestMatcher n;
    auto N = op::Constant::create(element::f32, Shape{3}, {2, 2, 2});
    auto input = std::make_shared<pattern::op::Label>(element::f32, Shape{2, 3});
    auto input_sq = std::make_shared<op::Multiply>(input, input);
    auto sum_input = std::make_shared<op::Sum>(input, AxisSet{0});
    auto square_sumed_input = std::make_shared<op::Multiply>(sum_input, sum_input);
    auto sum_squared_input = std::make_shared<op::Sum>(input_sq, AxisSet{0});
    auto avg_input_sum_sq = std::make_shared<op::Divide>(square_sumed_input, N);
    auto xmu = std::make_shared<op::Subtract>(sum_squared_input, avg_input_sum_sq);
    auto variance = std::make_shared<op::Divide>(xmu, N);

    auto var_graph = construct_variance_graph();
    ASSERT_TRUE(n.match(var_graph, variance));
    ASSERT_EQ(n.get_pattern_map()[var_graph], variance);
}

TEST(pattern, previous_matches)
{
    using ngraph::pattern::Matcher;
    Shape shape{};
    Matcher::PatternMap previous_matches;
    auto a = make_shared<op::Parameter>(element::i32, shape);
    auto b = make_shared<op::Parameter>(element::i32, shape);
    auto pattern = std::make_shared<pattern::op::Label>(b);
    auto abs = make_shared<op::Abs>(a);
    auto add = abs + b;
    {
        Matcher n(pattern + b);
        ASSERT_TRUE(n.match(add, previous_matches));
        ASSERT_EQ(n.get_pattern_map()[pattern], abs);
    }

    {
        Matcher n(pattern + b);
        previous_matches.insert(std::make_pair(pattern, a));
        ASSERT_FALSE(n.match(add, previous_matches));
    }
}

TEST(pattern, test_sort)
{
    using ngraph::pattern::Matcher;
    Shape shape{};

    auto a = make_shared<op::Parameter>(element::i32, shape);
    auto b = make_shared<op::Parameter>(element::i32, shape);
    auto abs1 = make_shared<op::Abs>(a);
    auto abs2 = make_shared<op::Abs>(b);
    auto add = abs1 + abs2;

    auto pa = make_shared<op::Parameter>(element::i32, shape);
    auto pb = make_shared<op::Parameter>(element::i32, shape);
    auto pabs1 = make_shared<op::Abs>(pa);
    auto pabs1_label = std::make_shared<pattern::op::Label>(pabs1);
    auto pabs2 = make_shared<op::Abs>(b);
    auto padd = pabs1_label + pabs2;

    {
        Matcher n1(padd);
        ASSERT_TRUE(n1.match(add));
        auto r1 = n1.get_pattern_map()[pabs1_label];
        ASSERT_TRUE(n1.match(add));
        ASSERT_EQ(r1, n1.get_pattern_map()[pabs1_label]);
    }
}

TEST(pattern, recurrent_pattern)
{
    using ngraph::pattern::RecurrentMatcher;
    Shape shape{};
    ngraph::pattern::Matcher::PatternMap previous_matches;
    auto a = make_shared<op::Parameter>(element::i32, shape);
    auto b = make_shared<op::Parameter>(element::i32, shape);
    auto rpattern = std::make_shared<pattern::op::Label>(b);
    auto iconst0 = construct_constant_node(0);
    auto abs = make_shared<op::Abs>(a);
    auto add1 = iconst0 + b;
    auto add2 = iconst0 + add1;
    auto add3 = iconst0 + add2;
    auto padd = iconst0 + rpattern;
    std::set<std::shared_ptr<pattern::op::Label>> empty_correlated_matches;
    RecurrentMatcher rm(padd, rpattern, empty_correlated_matches);
    ASSERT_TRUE(rm.match(add3));
    ASSERT_EQ(rm.get_number_of_bound_labels(), 1);
    auto recurrent_matches = rm.get_bound_nodes_for_pattern(rpattern);
    ASSERT_EQ(recurrent_matches.at(0), add2);
    ASSERT_EQ(recurrent_matches.at(1), add1);
    ASSERT_EQ(recurrent_matches.at(2), b);

    // Multiple labels in a reccuring pattern
    auto iconst1 = construct_constant_node(1);
    auto iconst_label = std::make_shared<pattern::op::Label>(iconst1, nullptr, NodeVector{iconst1});
    auto add2_2 = iconst1 + add1;
    auto add3_2 = iconst0 + add2_2;
    auto padd2 = iconst_label + rpattern;
    RecurrentMatcher rm2(padd2, rpattern, empty_correlated_matches);
    ASSERT_TRUE(rm2.match(add3_2));
    ASSERT_EQ(rm2.get_number_of_bound_labels(), 2);
    recurrent_matches = rm2.get_bound_nodes_for_pattern(rpattern);
    ASSERT_EQ(recurrent_matches.at(0), add2_2);
    ASSERT_EQ(recurrent_matches.at(1), add1);
    ASSERT_EQ(recurrent_matches.at(2), b);
    auto iconst_matches = rm2.get_bound_nodes_for_pattern(iconst_label);
    ASSERT_EQ(iconst_matches.at(0), iconst0);
    ASSERT_EQ(iconst_matches.at(1), iconst1);
    ASSERT_EQ(iconst_matches.at(2), iconst0);

    // Non-matching correlated labels
    std::set<std::shared_ptr<pattern::op::Label>> correlated_matches;
    correlated_matches.insert(iconst_label);
    RecurrentMatcher rm3(padd2, rpattern, correlated_matches);
    ASSERT_TRUE(rm3.match(add3_2));
    ASSERT_EQ(rm3.get_number_of_bound_labels(), 2);
    iconst_matches = rm3.get_bound_nodes_for_pattern(iconst_label);
    ASSERT_EQ(iconst_matches.size(), 1);
    ASSERT_EQ(iconst_matches.at(0), iconst0);

    // Matching correlated labels and
    // testing if RecurrentMatcher can be reused for different nodes
    ASSERT_TRUE(rm3.match(add3));
    ASSERT_EQ(rm3.get_number_of_bound_labels(), 2);
    recurrent_matches = rm3.get_bound_nodes_for_pattern(rpattern);
    ASSERT_EQ(recurrent_matches.at(0), add2);
    ASSERT_EQ(recurrent_matches.at(1), add1);
    ASSERT_EQ(recurrent_matches.at(2), b);
    iconst_matches = rm3.get_bound_nodes_for_pattern(iconst_label);
    ASSERT_EQ(iconst_matches.at(0), iconst0);
    ASSERT_EQ(iconst_matches.at(1), iconst0);
    ASSERT_EQ(iconst_matches.at(2), iconst0);
}

class TestRecurrentGraphRewrite : public ngraph::pass::RecurrentGraphRewrite
{
public:
    void construct_recurrent_add()
    {
        Shape shape{};
        auto iconst0 = construct_constant_node(0);
        auto iconst_label =
            std::make_shared<pattern::op::Label>(iconst0, nullptr, NodeVector{iconst0});
        auto rpattern = std::make_shared<pattern::op::Label>(element::i32, shape);
        auto padd = iconst_label + rpattern;

        auto callback = [iconst_label, rpattern](pattern::RecurrentMatcher& rm) {
            NGRAPH_DEBUG << "In a callback for construct_recurrent_add against "
                         << rm.get_match_root()->get_name();

            auto iconst_matches = rm.get_bound_nodes_for_pattern(iconst_label);

            auto is_iconst_zero = [](std::shared_ptr<Node> n) {
                bool result = ngraph::is_zero(n);
                NGRAPH_DEBUG << n->get_name() << " is " << (result ? " a zero " : " not a zero");
                return ngraph::is_zero(n);
            };

            bool are_all_iconst_zeros =
                std::all_of(iconst_matches.begin(), iconst_matches.end(), is_iconst_zero);

            if (!are_all_iconst_zeros)
            {
                return false;
            }

            auto number_of_adds = rm.get_number_of_recurrent_matches();
            // replace the topmost add with the seed (i.e. the first parameter to add)
            // matches are added in reverse order (i.e. the first match is the topmost node)
            auto arg = rm.get_bound_nodes_for_pattern(rpattern).at(number_of_adds - 1);
            NGRAPH_DEBUG << "Replacing " << rm.get_match_root()->get_name() << " with "
                         << arg->get_name();
            ngraph::replace_node(rm.get_match_root(), arg);
            return true;
        };

        std::set<std::shared_ptr<pattern::op::Label>> empty_correlated_matches;
        auto rm = make_shared<pattern::RecurrentMatcher>(padd, rpattern, empty_correlated_matches);
        this->add_matcher(rm, callback);
    }

    TestRecurrentGraphRewrite()
        : RecurrentGraphRewrite()
    {
        construct_recurrent_add();
    }
};

TEST(pattern, recurrent_graph_rewrite)
{
    Shape shape{};
    pass::Manager pass_manager;
    pass_manager.register_pass<TestRecurrentGraphRewrite>();

    {
        auto a = make_shared<op::Parameter>(element::i32, shape);
        auto iconst0 = construct_constant_node(0);
        auto add_a1 = a + iconst0;
        auto add_a2 = add_a1 + iconst0;
        auto add_a3 = add_a2 + iconst0;
        auto abs_add_a3 = std::make_shared<op::Abs>(add_a3);

        auto b = make_shared<op::Parameter>(element::i32, shape);
        auto add_b1 = b + iconst0;
        auto add_b2 = add_b1 + iconst0;
        auto abs_add_b2 = std::make_shared<op::Abs>(add_b2);

        auto graph = abs_add_a3 * abs_add_b2;

        auto f = std::make_shared<Function>(ngraph::NodeVector{graph}, ParameterVector{a, b});
        pass_manager.run_passes(f);

        auto left_abs = graph->get_argument(0);
        auto add_a = left_abs->get_argument(0);
        ASSERT_EQ(add_a, a);

        auto right_abs = graph->get_argument(1);
        auto add_b = right_abs->get_argument(0);
        ASSERT_EQ(add_b, b);
    }
}

TEST(pattern, label_on_skip)
{
    Shape shape{2, 2};
    auto a = make_shared<op::Parameter>(element::i32, shape);
    auto b = make_shared<op::Parameter>(element::i32, Shape{});
    auto iconst = ngraph::make_zero(element::i32, Shape{});
    auto label = std::make_shared<pattern::op::Label>(iconst);
    auto const_label =
        std::make_shared<pattern::op::Label>(iconst, ngraph::is_zero, NodeVector{iconst});

    auto bcst_pred = [](std::shared_ptr<Node> n) {
        return as_type_ptr<op::Broadcast>(n) != nullptr;
    };

    auto bcst = std::make_shared<pattern::op::Skip>(const_label, bcst_pred);
    auto bcst_label = std::make_shared<pattern::op::Label>(bcst, nullptr, NodeVector{bcst});
    auto matcher = std::make_shared<pattern::Matcher>(
        std::make_shared<op::Multiply>(label, bcst_label), "label_on_skip");

    auto const_broadcast = make_shared<op::Broadcast>(iconst, shape, AxisSet{0, 1});
    auto mul = a * const_broadcast;
    auto mul_scalar = b * iconst;
    ASSERT_TRUE(matcher->match(mul));
    ASSERT_EQ(matcher->get_pattern_map()[bcst_label], const_broadcast);
    ASSERT_EQ(matcher->get_pattern_map()[const_label], iconst);
    ASSERT_EQ(matcher->get_pattern_map()[label], a);
    ASSERT_TRUE(matcher->match(mul_scalar));
    ASSERT_EQ(matcher->get_pattern_map()[bcst_label], iconst);
    ASSERT_EQ(matcher->get_pattern_map()[const_label], iconst);
    ASSERT_EQ(matcher->get_pattern_map()[label], b);
}

TEST(pattern, is_contained_match)
{
    Shape shape{};
    auto a = make_shared<op::Parameter>(element::i32, shape);
    auto absn = make_shared<op::Abs>(a);
    TestMatcher n;

    auto label_a = std::make_shared<pattern::op::Label>(a);
    auto label_abs = make_shared<op::Abs>(a);
    ASSERT_TRUE(n.match(label_abs, absn));
    auto result_absn = make_shared<op::Result>(absn);
    ASSERT_TRUE(n.is_contained_match());

    auto absn2 = make_shared<op::Abs>(absn);
    auto result_absn2 = make_shared<op::Result>(absn2);
    auto label_abs2 = make_shared<op::Abs>(label_abs);
    ASSERT_TRUE(n.match(label_abs2, absn2));
    ASSERT_FALSE(n.is_contained_match());
}