1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <sstream>
#include <string>
#include <vector>
#include <gtest/gtest.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cudnn.h>
#include "ngraph/codegen/compiler.hpp"
#include "ngraph/runtime/gpu/gpu_external_function.hpp"
#include "ngraph/ngraph.hpp"
#include "util/ndarray.hpp"
#include "util/test_tools.hpp"
using namespace ngraph;
using namespace std;
TEST(cudnn, loadTest)
{
auto cudnn_version = cudnnGetVersion();
EXPECT_FLOAT_EQ(cudnn_version, CUDNN_VERSION);
}
TEST(cudnn, compileTest)
{
const auto source = R"###(
// Example developed from LLVM documentation https://llvm.org/docs/NVPTXUsage.html
#include <cassert>
#include <fstream>
#include <iostream>
#include "cublas_v2.h"
#include "cuda.h"
void check_cuda_errors(CUresult err) {
assert(err == CUDA_SUCCESS);
}
/// main - Program entry point
int main(int argc, char **argv) {
CUdevice device;
CUmodule cuda_module;
CUcontext context;
CUfunction function;
CUlinkState linker;
int dev_count;
// Cublas init
cudaError_t cudaStat;
cublasStatus_t stat;
cublasHandle_t handle;
stat = cublasCreate(&handle);
cublasDestroy(handle);
// CUDA initialization
check_cuda_errors(cuInit(0));
check_cuda_errors(cuDeviceGetCount(&dev_count));
check_cuda_errors(cuDeviceGet(&device, 0));
char name[128];
check_cuda_errors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int dev_major, dev_minor;
check_cuda_errors(cuDeviceComputeCapability(&dev_major, &dev_minor, device));
std::cout << "Device Compute Capability: "
<< dev_major << "." << dev_minor << "\n";
if (dev_major < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
return 1;
}
const auto str = R"(
.version 5.0
.target sm_60
.address_size 64
// .globl _Z7ew_multPfS_S_ // -- Begin function _Z7ew_multPfS_S_
.global .align 1 .b8 threadIdx[1];
// @_Z7ew_multPfS_S_
.visible .entry _Z7ew_multPfS_S_(
.param .u64 _Z7ew_multPfS_S__param_0,
.param .u64 _Z7ew_multPfS_S__param_1,
.param .u64 _Z7ew_multPfS_S__param_2
)
{
.local .align 8 .b8 __local_depot0[24];
.reg .b64 %SP;
.reg .b64 %SPL;
.reg .f32 %f<4>;
.reg .b32 %r<2>;
.reg .b64 %rd<17>;
// BB#0:
mov.u64 %SPL, __local_depot0;
cvta.local.u64 %SP, %SPL;
ld.param.u64 %rd3, [_Z7ew_multPfS_S__param_2];
ld.param.u64 %rd2, [_Z7ew_multPfS_S__param_1];
ld.param.u64 %rd1, [_Z7ew_multPfS_S__param_0];
cvta.to.global.u64 %rd4, %rd3;
cvta.global.u64 %rd5, %rd4;
cvta.to.global.u64 %rd6, %rd2;
cvta.global.u64 %rd7, %rd6;
cvta.to.global.u64 %rd8, %rd1;
cvta.global.u64 %rd9, %rd8;
st.u64 [%SP+0], %rd9;
st.u64 [%SP+8], %rd7;
st.u64 [%SP+16], %rd5;
ld.u64 %rd10, [%SP+0];
mov.u32 %r1, %tid.x;
mul.wide.u32 %rd11, %r1, 4;
add.s64 %rd12, %rd10, %rd11;
ld.f32 %f1, [%rd12];
ld.u64 %rd13, [%SP+8];
add.s64 %rd14, %rd13, %rd11;
ld.f32 %f2, [%rd14];
mul.rn.f32 %f3, %f1, %f2;
ld.u64 %rd15, [%SP+16];
add.s64 %rd16, %rd15, %rd11;
st.f32 [%rd16], %f3;
ret;
}
// -- End function
// .globl _Z6ew_addPfS_S_ // -- Begin function _Z6ew_addPfS_S_
.visible .entry _Z6ew_addPfS_S_(
.param .u64 _Z6ew_addPfS_S__param_0,
.param .u64 _Z6ew_addPfS_S__param_1,
.param .u64 _Z6ew_addPfS_S__param_2
) // @_Z6ew_addPfS_S_
{
.local .align 8 .b8 __local_depot1[24];
.reg .b64 %SP;
.reg .b64 %SPL;
.reg .f32 %f<4>;
.reg .b32 %r<2>;
.reg .b64 %rd<17>;
// BB#0:
mov.u64 %SPL, __local_depot1;
cvta.local.u64 %SP, %SPL;
ld.param.u64 %rd3, [_Z6ew_addPfS_S__param_2];
ld.param.u64 %rd2, [_Z6ew_addPfS_S__param_1];
ld.param.u64 %rd1, [_Z6ew_addPfS_S__param_0];
cvta.to.global.u64 %rd4, %rd3;
cvta.global.u64 %rd5, %rd4;
cvta.to.global.u64 %rd6, %rd2;
cvta.global.u64 %rd7, %rd6;
cvta.to.global.u64 %rd8, %rd1;
cvta.global.u64 %rd9, %rd8;
st.u64 [%SP+0], %rd9;
st.u64 [%SP+8], %rd7;
st.u64 [%SP+16], %rd5;
ld.u64 %rd10, [%SP+0];
mov.u32 %r1, %tid.x;
mul.wide.u32 %rd11, %r1, 4;
add.s64 %rd12, %rd10, %rd11;
ld.f32 %f1, [%rd12];
ld.u64 %rd13, [%SP+8];
add.s64 %rd14, %rd13, %rd11;
ld.f32 %f2, [%rd14];
add.rn.f32 %f3, %f1, %f2;
ld.u64 %rd15, [%SP+16];
add.s64 %rd16, %rd15, %rd11;
st.f32 [%rd16], %f3;
ret;
}
// -- End function
)";
// Create driver context
check_cuda_errors(cuCtxCreate(&context, 0, device));
// Create module for object
check_cuda_errors(cuModuleLoadDataEx(&cuda_module, str, 0, 0, 0));
// Get kernel function
check_cuda_errors(cuModuleGetFunction(&function, cuda_module, "_Z7ew_multPfS_S_"));
// Device data
CUdeviceptr dev_bufferA;
CUdeviceptr dev_bufferB;
CUdeviceptr dev_bufferC;
check_cuda_errors(cuMemAlloc(&dev_bufferA, sizeof(float)*16));
check_cuda_errors(cuMemAlloc(&dev_bufferB, sizeof(float)*16));
check_cuda_errors(cuMemAlloc(&dev_bufferC, sizeof(float)*16));
float* host_A = new float[16];
float* host_B = new float[16];
float* host_C = new float[16];
// Populate input
for (unsigned i = 0; i != 16; ++i) {
host_A[i] = (float)i;
host_B[i] = (float)(2*i);
host_C[i] = 0.0f;
}
check_cuda_errors(cuMemcpyHtoD(dev_bufferA, &host_A[0], sizeof(float)*16));
check_cuda_errors(cuMemcpyHtoD(dev_bufferB, &host_B[0], sizeof(float)*16));
unsigned block_size_X = 16;
unsigned block_size_Y = 1;
unsigned block_size_Z = 1;
unsigned grid_size_X = 1;
unsigned grid_size_Y = 1;
unsigned grid_size_Z = 1;
// Kernel parameters
void *kernel_params[] = { &dev_bufferA, &dev_bufferB, &dev_bufferC };
std::cout << "Launching kernel\n";
// Kernel launch
check_cuda_errors(cuLaunchKernel(function, grid_size_X, grid_size_Y, grid_size_Z,
block_size_X, block_size_Y, block_size_Z,
0, NULL, kernel_params, NULL));
// Retrieve device data
check_cuda_errors(cuMemcpyDtoH(&host_C[0], dev_bufferC, sizeof(float)*16));
std::cout << "Results:\n";
for (unsigned i = 0; i != 16; ++i) {
std::cout << host_A[i] << " + " << host_B[i] << " = " << host_C[i] << "\n";
}
// Clean up after ourselves
delete [] host_A;
delete [] host_B;
delete [] host_C;
// Clean-up
check_cuda_errors(cuMemFree(dev_bufferA));
check_cuda_errors(cuMemFree(dev_bufferB));
check_cuda_errors(cuMemFree(dev_bufferC));
check_cuda_errors(cuModuleUnload(cuda_module));
check_cuda_errors(cuCtxDestroy(context));
return 0;
})###";
codegen::Compiler compiler;
auto module = compiler.compile(source);
}