1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/pass/dump_sorted.hpp"
#include "ngraph/pass/liveness.hpp"
#include "ngraph/pass/liveness.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/visualize_tree.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
namespace ng = ngraph;
TEST(liveness, constant)
{
Shape shape{1};
auto c = op::Constant::create(element::i32, shape, {5});
auto f = make_shared<Function>(make_shared<op::Negative>(c), op::ParameterVector{});
pass::Manager pass_manager;
pass_manager.register_pass<pass::Liveness>();
pass_manager.run_passes(f);
auto tmp = f->get_ordered_ops();
vector<shared_ptr<Node>> sorted{tmp.begin(), tmp.end()};
ASSERT_EQ(3, sorted.size());
EXPECT_EQ(0, sorted[0]->liveness_live_list.size());
EXPECT_EQ(0, sorted[0]->liveness_new_list.size());
EXPECT_EQ(0, sorted[0]->liveness_free_list.size());
//op::Negative is live on output to op::Result
EXPECT_EQ(1, sorted[1]->liveness_live_list.size());
//op::Negative is new
EXPECT_EQ(1, sorted[1]->liveness_new_list.size());
EXPECT_EQ(0, sorted[1]->liveness_free_list.size());
//op::Negative is live on input to op::Result
EXPECT_EQ(1, sorted[2]->liveness_live_list.size());
EXPECT_EQ(0, sorted[2]->liveness_new_list.size());
//op::Negative is freed
EXPECT_EQ(1, sorted[2]->liveness_free_list.size());
}
TEST(liveness, liveness)
{
string image = "liveness.png";
string dump_file = "liveness.txt";
pass::Manager pass_manager;
pass_manager.register_pass<pass::VisualizeTree>(image);
pass_manager.register_pass<pass::Liveness>();
pass_manager.register_pass<pass::DumpSorted>(dump_file);
shared_ptr<Function> func = make_test_graph();
pass_manager.run_passes(func);
auto sorted = func->get_ordered_ops();
// for (const Node* node : sorted)
// {
// NGRAPH_INFO << *node;
// for (const descriptor::Tensor* tensor : node->liveness_live_list)
// {
// NGRAPH_INFO << " " << *tensor;
// }
// }
// auto x = ng.variable(axes=[]).named('x');
// auto y = ng.variable(axes=[]).named('y');
// auto w1 = ng.variable(axes=[]).named('w1');
// auto w2 = ng.variable(axes=[]).named('w2');
// auto x2 = x * w1;
// auto x3 = (x2 * w2).named('result');
// auto cost = x3 - y;
// auto dw1 = ng.deriv(cost, w1);
// auto dw2 = ng.deriv(cost, w2);
// auto upd1 = ng.assign(w1, w1 + dw1);
// auto upd2 = ng.assign(w2, w2 + dw2);
// auto seq_stuff = ng.sequential([upd1, upd2, x3]);
// auto exc = ex.executor(seq_stuff);
// return exc;
// lg = LivenessGraph(exc.exop.ops)
// lg.layout_memory()
// for i, node in enumerate(lg.liveness_nodes):
// print i, node
// for node in lg.liveness_nodes:
// for var1 in node.live_list:
// assert var1.buffer_pool_offset is not None
// for var2 in node.live_list:
// if var1 != var2:
// if var1.buffer_pool_offset < var2.buffer_pool_offset:
// assert var1.buffer_pool_offset + var1.size <= var2.buffer_pool_offset
// else:
// assert var2.buffer_pool_offset + var2.size <= var1.buffer_pool_offset
// // for o in egraph.computations:
// // print o.values
// print("max memory {}".format(lg.memory_footprint()))
// print("worst case memory {}".format(lg.worst_case_memory_usage()))
// print("memory efficiency {}".format(lg.memory_efficiency()))
// // // print lg.liveness_json()
}