1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/random.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
// This tests a backend's implementation of the two parameter version of create_tensor
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_1)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
copy_data(a, av);
copy_data(b, bv);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the three parameter version of create_tensor
// Testing using this tensor as a Function input
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_2_input)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape, av.data());
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape, bv.data());
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the three parameter version of create_tensor
// Testing using this tensor as a Function output
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_2_output)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
copy_data(a, av);
copy_data(b, bv);
vector<float> actual(4);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape, actual.data());
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(actual, expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the copy_from for tensor
NGRAPH_TEST(${BACKEND_NAME}, tensor_copy_from)
{
Shape shape{2, 2};
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
copy_data(a, av);
copy_data(b, bv);
a->copy_from(*b);
EXPECT_TRUE(test::all_close_f(bv, read_vector<float>(a), MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, get_parameters_and_results)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto C = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>((A + B) * C, ParameterVector{A, B, C});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());
auto handle = backend->compile(f);
auto parameters = handle->get_parameters();
auto results = handle->get_results();
ASSERT_EQ(parameters.size(), 3);
ASSERT_EQ(results.size(), 1);
// This part can't be enabled until we force backends to make a copy of the source graph
// auto func_parameters = f->get_parameters();
// auto func_results = f->get_results();
// for (size_t i = 0; i < 3; ++i)
// {
// EXPECT_NE(parameters[i], func_parameters[i]);
// }
// for (size_t i = 0; i < 1; ++i)
// {
// EXPECT_NE(results[i], func_results[i]);
// }
}