1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
//*****************************************************************************
// Copyright 2017-2020 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/random.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
static string s_manifest = "${MANIFEST}";
// This tests a backend's implementation of the two parameter version of create_tensor
NGRAPH_TEST(${BACKEND_NAME}, create_tensor_1)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>(make_shared<op::Add>(A, B), ParameterVector{A, B});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
copy_data(a, av);
copy_data(b, bv);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
auto handle = backend->compile(f);
handle->call_with_validate({result}, {a, b});
vector<float> expected = {6, 8, 10, 12};
EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
}
// This tests a backend's implementation of the copy_from for tensor
NGRAPH_TEST(${BACKEND_NAME}, tensor_copy_from)
{
Shape shape{2, 2};
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
vector<float> av = {1, 2, 3, 4};
vector<float> bv = {5, 6, 7, 8};
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
copy_data(a, av);
copy_data(b, bv);
a->copy_from(*b);
EXPECT_TRUE(test::all_close_f(bv, read_vector<float>(a), MIN_FLOAT_TOLERANCE_BITS));
}
NGRAPH_TEST(${BACKEND_NAME}, get_parameters_and_results)
{
Shape shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto C = make_shared<op::Parameter>(element::f32, shape);
auto f = make_shared<Function>((A + B) * C, ParameterVector{A, B, C});
auto backend = runtime::Backend::create("${BACKEND_NAME}");
// Create some tensors for input/output
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());
auto handle = backend->compile(f);
auto parameters = handle->get_parameters();
auto results = handle->get_results();
ASSERT_EQ(parameters.size(), 3);
ASSERT_EQ(results.size(), 1);
// This part can't be enabled until we force backends to make a copy of the source graph
// auto func_parameters = f->get_parameters();
// auto func_results = f->get_results();
// for (size_t i = 0; i < 3; ++i)
// {
// EXPECT_NE(parameters[i], func_parameters[i]);
// }
// for (size_t i = 0; i < 1; ++i)
// {
// EXPECT_NE(results[i], func_results[i]);
// }
}