1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#if defined(__x86_64__) || defined(__amd64__)
#include <xmmintrin.h>
#endif
#include "benchmark_utils.hpp"
#include "ngraph/file_util.hpp"
#include "ngraph/runtime/backend.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/runtime/tensor.hpp"
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
using namespace std;
using namespace ngraph;
template <>
void init_int_tensor<char>(shared_ptr<runtime::Tensor> tensor, char min, char max)
{
size_t size = tensor->get_element_count();
uniform_int_distribution<int16_t> dist(static_cast<short>(min), static_cast<short>(max));
vector<char> vec(size);
for (char& element : vec)
{
element = static_cast<char>(dist(get_random_engine()));
}
tensor->write(vec.data(), vec.size() * sizeof(char));
}
template <>
void init_int_tensor<int8_t>(shared_ptr<runtime::Tensor> tensor, int8_t min, int8_t max)
{
size_t size = tensor->get_element_count();
uniform_int_distribution<int16_t> dist(static_cast<short>(min), static_cast<short>(max));
vector<int8_t> vec(size);
for (int8_t& element : vec)
{
element = static_cast<int8_t>(dist(get_random_engine()));
}
tensor->write(vec.data(), vec.size() * sizeof(int8_t));
}
template <>
void init_int_tensor<uint8_t>(shared_ptr<runtime::Tensor> tensor, uint8_t min, uint8_t max)
{
size_t size = tensor->get_element_count();
uniform_int_distribution<int16_t> dist(static_cast<short>(min), static_cast<short>(max));
vector<uint8_t> vec(size);
for (uint8_t& element : vec)
{
element = static_cast<uint8_t>(dist(get_random_engine()));
}
tensor->write(vec.data(), vec.size() * sizeof(uint8_t));
}
void set_denormals_flush_to_zero()
{
#if defined(__x86_64__) || defined(__amd64__)
// Avoids perf impact from denormals while benchmarking with random data
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
#endif
}
void random_init(shared_ptr<runtime::Tensor> tensor)
{
element::Type et = tensor->get_element_type();
#if defined(__GNUC__) && !(__GNUC__ == 4 && __GNUC_MINOR__ == 8)
#pragma GCC diagnostic push
#pragma GCC diagnostic error "-Wswitch"
#pragma GCC diagnostic error "-Wswitch-enum"
#endif
switch (et)
{
case element::Type_t::boolean: init_int_tensor<char>(tensor, 0, 1); break;
case element::Type_t::f32: init_real_tensor<float>(tensor, -1, 1); break;
case element::Type_t::f64: init_real_tensor<double>(tensor, -1, 1); break;
case element::Type_t::i8: init_int_tensor<int8_t>(tensor, -1, 1); break;
case element::Type_t::i16: init_int_tensor<int16_t>(tensor, -1, 1); break;
case element::Type_t::i32: init_int_tensor<int32_t>(tensor, 0, 1); break;
case element::Type_t::i64: init_int_tensor<int64_t>(tensor, 0, 1); break;
case element::Type_t::u8: init_int_tensor<uint8_t>(tensor, 0, 1); break;
case element::Type_t::u16: init_int_tensor<uint16_t>(tensor, 0, 1); break;
case element::Type_t::u32: init_int_tensor<uint32_t>(tensor, 0, 1); break;
case element::Type_t::u64: init_int_tensor<uint64_t>(tensor, 0, 1); break;
case element::Type_t::undefined:
case element::Type_t::dynamic:
case element::Type_t::bf16:
case element::Type_t::f16:
default: throw runtime_error("unsupported type");
}
#if defined(__GNUC__) && !(__GNUC__ == 4 && __GNUC_MINOR__ == 8)
#pragma GCC diagnostic pop
#endif
}
default_random_engine& get_random_engine()
{
static std::default_random_engine s_random_engine;
return s_random_engine;
}