1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <memory>
#include <sstream>
#include <string>
#include <typeindex>
#include <typeinfo>
#include <vector>
#include "gtest/gtest.h"
#include "ngraph/graph_util.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/pass/assign_placement.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/runtime/host_tensor.hpp"
#include "ngraph/util.hpp"
#include "util/ndarray.hpp"
#include "util/test_tools.hpp"
using namespace std;
using namespace ngraph;
// Perform all operations on INTERPRETER and fallback Multiply to CPU
static function<Placement(shared_ptr<Node>)> int_with_cpu_mul_policy = [](shared_ptr<Node> node) {
Placement placement;
string node_op = node->description();
if (node_op == "Multiply")
{
placement = Placement::CPU;
}
else
{
placement = Placement::INTERPRETER;
}
return placement;
};
// HybridCallFrame servers 2 purposes:
// 1. HybridBackend's main use case is to test device placement and graph partition routines.
// 2. It also shows how glued-hybrid runtime can be built by combining different runtimes.
//
// By default, HybridBackend operates on INTERPRETER (for example, the tensor view is
// INTERPRETER tensor view). It falls back to CPU when requested by placement.
class HybridBackend
{
public:
HybridBackend(const function<Placement(shared_ptr<Node>)>& placement_policy)
: m_placement_policy(placement_policy)
{
}
~HybridBackend() {}
shared_ptr<runtime::Tensor> create_tensor(const element::Type& element_type, const Shape& shape)
{
return get_cached_backend(Placement::INTERPRETER)->create_tensor(element_type, shape);
}
bool compile(const shared_ptr<Function>& func)
{
if (m_function_map.find(func) == m_function_map.end())
{
// Clone function
FunctionInstance instance;
instance.m_function = clone_function(*func);
// Run placement pass
pass::Manager pass_manager;
pass_manager.register_pass<pass::AssignPlacement>(int_with_cpu_mul_policy);
pass_manager.run_passes(instance.m_function);
// Split function to sub_functions
tie(instance.m_sub_functions, instance.m_map_parameter_to_result) =
split_function_by_placement(instance.m_function);
m_function_map.insert({func, instance});
// Compile subfunctions in corresponding backends
for (shared_ptr<Function>& sub_function : instance.m_sub_functions)
{
Placement placement = get_colocated_function_placement(sub_function);
auto backend = get_cached_backend(placement);
backend->compile(sub_function);
}
}
return true;
}
bool call_with_validate(const shared_ptr<Function>& func,
const vector<shared_ptr<runtime::Tensor>>& outputs,
const vector<shared_ptr<runtime::Tensor>>& inputs)
{
// Get FunctionInstance
bool rc = true;
auto it = m_function_map.find(func);
if (it == m_function_map.end())
{
compile(func);
it = m_function_map.find(func);
}
if (it == m_function_map.end())
{
throw runtime_error("Error constructing backend.");
}
FunctionInstance& instance = it->second;
// Parameter and result node in sub_function maps to one Tensor
unordered_map<shared_ptr<Node>, shared_ptr<runtime::Tensor>> map_node_to_tensor_view;
for (size_t i = 0; i < inputs.size(); ++i)
{
map_node_to_tensor_view[instance.m_function->get_parameters()[i]] = inputs[i];
}
for (size_t i = 0; i < outputs.size(); ++i)
{
map_node_to_tensor_view[instance.m_function->get_results()[i]] = outputs[i];
}
// Call subfunctions
for (shared_ptr<Function>& sub_function : instance.m_sub_functions)
{
// Init backend
Placement placement = get_colocated_function_placement(sub_function);
auto backend = get_cached_backend(placement);
// Prepare parameter TensorViews
vector<shared_ptr<runtime::Tensor>> parameter_tvs;
for (auto parameter_node : sub_function->get_parameters())
{
if (map_node_to_tensor_view.find(parameter_node) != map_node_to_tensor_view.end())
{
parameter_tvs.push_back(map_node_to_tensor_view.at(parameter_node));
}
else
{
auto result_node = instance.m_map_parameter_to_result.at(parameter_node);
auto result_tv = map_node_to_tensor_view.at(result_node);
auto parameter_tv = backend->create_tensor(parameter_node->get_element_type(),
parameter_node->get_shape());
copy_data(parameter_tv, read_vector<float>(result_tv));
map_node_to_tensor_view[parameter_node] = parameter_tv;
parameter_tvs.push_back(parameter_tv);
}
}
// Prepare result TensorViews
vector<shared_ptr<runtime::Tensor>> result_tvs;
for (auto result_node : sub_function->get_results())
{
if (map_node_to_tensor_view.find(result_node) != map_node_to_tensor_view.end())
{
result_tvs.push_back(map_node_to_tensor_view.at(result_node));
}
else
{
auto result_tv = backend->create_tensor(result_node->get_element_type(),
result_node->get_shape());
map_node_to_tensor_view[result_node] = result_tv;
result_tvs.push_back(result_tv);
}
}
// Call
backend->call_with_validate(sub_function, result_tvs, parameter_tvs);
}
return rc;
}
protected:
class FunctionInstance
{
public:
shared_ptr<Function> m_function;
vector<shared_ptr<Function>> m_sub_functions;
unordered_map<shared_ptr<op::Parameter>, shared_ptr<op::Result>> m_map_parameter_to_result;
};
shared_ptr<runtime::Backend> get_cached_backend(Placement placement)
{
if (m_cached_backends.find(placement) == m_cached_backends.end())
{
m_cached_backends[placement] = runtime::Backend::create(placement_to_string(placement));
}
return m_cached_backends.at(placement);
}
map<Placement, shared_ptr<runtime::Backend>> m_cached_backends;
map<shared_ptr<Function>, FunctionInstance> m_function_map;
function<Placement(shared_ptr<Node>)> m_placement_policy;
};
TEST(graph_partition, placement_all_cpu_policy)
{
Shape shape = Shape{2, 2};
shared_ptr<op::Parameter> A = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> B = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> C = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<Node> AplusB = A + B;
shared_ptr<Node> AplusBtimesC = AplusB * C;
shared_ptr<Function> f = make_shared<Function>(AplusBtimesC, op::ParameterVector{A, B, C});
for (auto node : f->get_ordered_ops())
{
EXPECT_EQ(node->get_placement(), Placement::DEFAULT);
}
pass::Manager pass_manager;
pass_manager.register_pass<pass::AssignPlacement>(
[](shared_ptr<Node> node) { return Placement::CPU; });
pass_manager.run_passes(f);
for (auto node : f->get_ordered_ops())
{
EXPECT_EQ(node->get_placement(), Placement::CPU);
}
}
#ifdef NGRAPH_CPU_ENABLE
TEST(graph_partition, placement_int_with_cpu_mul_policy)
{
Shape shape = Shape{2, 2};
shared_ptr<op::Parameter> A = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> B = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> C = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<Node> AplusB = A + B;
shared_ptr<Node> AplusBtimesC = AplusB * C;
shared_ptr<Function> f = make_shared<Function>(AplusBtimesC, op::ParameterVector{A, B, C});
for (auto node : f->get_ordered_ops())
{
EXPECT_EQ(node->get_placement(), Placement::DEFAULT);
}
pass::Manager pass_manager;
pass_manager.register_pass<pass::AssignPlacement>(int_with_cpu_mul_policy);
pass_manager.run_passes(f);
for (auto node : f->get_ordered_ops())
{
string node_op = node->description();
if (node_op == "Multiply")
{
EXPECT_EQ(node->get_placement(), Placement::CPU);
}
else
{
EXPECT_EQ(node->get_placement(), Placement::INTERPRETER);
}
}
}
TEST(graph_partition, hybrid_abc_manual)
{
// A B C A B C
// \ / / \ / /
// +D / +D /
// \ / | /
// *E R0 R1 f0(INT)
// | ------------------
// R P0 P1
// \ /
// *E
// |
// R2 f1(CPU)
// ------------------
// P2
// |
// R f2(INT)
// ------------------
Shape shape = Shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto C = make_shared<op::Parameter>(element::f32, shape);
auto D = A + B;
auto E = D * C;
auto R = make_shared<op::Result>(E);
auto f = make_shared<Function>(ResultVector{R}, op::ParameterVector{A, B, C});
pass::Manager pass_manager;
pass_manager.register_pass<pass::AssignPlacement>(int_with_cpu_mul_policy);
pass_manager.run_passes(f);
// Insert parameter
auto RP0 = insert_result_parameter_split(D, E);
shared_ptr<op::Result> R0 = RP0.first;
shared_ptr<op::Parameter> P0 = RP0.second;
auto RP1 = insert_result_parameter_split(C, E);
shared_ptr<op::Result> R1 = RP1.first;
shared_ptr<op::Parameter> P1 = RP1.second;
auto RP2 = insert_result_parameter_split(E, R);
shared_ptr<op::Result> R2 = RP2.first;
shared_ptr<op::Parameter> P2 = RP2.second;
// Backends
auto int_backend = runtime::Backend::create(placement_to_string(Placement::INTERPRETER));
auto cpu_backend = runtime::Backend::create(placement_to_string(Placement::CPU));
// f0 on INT
auto a = int_backend->create_tensor(element::f32, shape);
auto b = int_backend->create_tensor(element::f32, shape);
auto c = int_backend->create_tensor(element::f32, shape);
auto r0 = int_backend->create_tensor(element::f32, shape);
auto r1 = int_backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());
auto f0 = make_shared<Function>(ResultVector{R0, R1}, op::ParameterVector{A, B, C});
int_backend->compile(f0);
int_backend->call_with_validate(f0, {r0, r1}, {a, b, c});
// f1 on CPU
auto p0 = cpu_backend->create_tensor(element::f32, shape);
auto p1 = cpu_backend->create_tensor(element::f32, shape);
auto r2 = cpu_backend->create_tensor(element::f32, shape);
copy_data(p0, read_vector<float>(r0));
copy_data(p1, read_vector<float>(r1));
auto f1 = make_shared<Function>(ResultVector{R2}, op::ParameterVector{P0, P1});
cpu_backend->compile(f1);
cpu_backend->call_with_validate(f1, {r2}, {p0, p1});
// f2 on INT
auto p2 = int_backend->create_tensor(element::f32, shape);
auto r = int_backend->create_tensor(element::f32, shape);
copy_data(p2, read_vector<float>(r2));
auto f2 = make_shared<Function>(ResultVector{R}, op::ParameterVector{P2});
int_backend->compile(f2);
int_backend->call_with_validate(f2, {r}, {p2});
// Check final result on INT
EXPECT_EQ(read_vector<float>(r),
(test::NDArray<float, 2>({{54, 80}, {110, 144}})).get_vector());
}
TEST(graph_partition, hybrid_abc)
{
// Same as hybrid_abc_manual, but using the test hybrid transformer
//
// A B C A B C
// \ / / \ / /
// +D / +D /
// \ / | /
// *E R0 R1 f0(INT)
// | ------------------
// R P0 P1
// \ /
// *E
// |
// R2 f1(CPU)
// ------------------
// P2
// |
// R f2(INT)
// ------------------
Shape shape = Shape{2, 2};
auto A = make_shared<op::Parameter>(element::f32, shape);
auto B = make_shared<op::Parameter>(element::f32, shape);
auto C = make_shared<op::Parameter>(element::f32, shape);
auto D = A + B;
auto E = D * C;
auto R = make_shared<op::Result>(E);
auto f = make_shared<Function>(ResultVector{R}, op::ParameterVector{A, B, C});
auto backend = make_shared<HybridBackend>(int_with_cpu_mul_policy);
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> r = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());
backend->call_with_validate(f, {r}, {a, b, c});
EXPECT_EQ(read_vector<float>(r),
(test::NDArray<float, 2>({{54, 80}, {110, 144}})).get_vector());
}
TEST(graph_partition, hybrid_abcd)
{
// A B
// \ /
// C E* D
// \ / \ /
// F+ G+
// \ /
// H+
Shape shape = Shape{2, 2};
shared_ptr<op::Parameter> A = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> B = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> C = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> D = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<Node> E = A * B;
shared_ptr<Node> F = C + E;
shared_ptr<Node> G = E + D;
shared_ptr<Node> H = F + G;
shared_ptr<Function> f = make_shared<Function>(H, op::ParameterVector{A, B, C, D});
auto backend = make_shared<HybridBackend>(int_with_cpu_mul_policy);
backend->compile(f);
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> d = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> r = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());
copy_data(d, test::NDArray<float, 2>({{13, 14}, {15, 16}}).get_vector());
backend->call_with_validate(f, {r}, {a, b, c, d});
EXPECT_EQ(read_vector<float>(r), (test::NDArray<float, 2>({{32, 48}, {68, 92}})).get_vector());
}
TEST(graph_partition, hybrid_back_and_forth)
{
// A B
// \ / \
// D* |
// \ /
// E+ C
// \ /
// F*
Shape shape = Shape{2, 2};
shared_ptr<op::Parameter> A = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> B = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> C = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<Node> D = A * B;
shared_ptr<Node> E = D + B;
shared_ptr<Node> F = E * C;
shared_ptr<Function> f = make_shared<Function>(F, op::ParameterVector{A, B, C});
auto backend = make_shared<HybridBackend>(int_with_cpu_mul_policy);
backend->compile(f);
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> r = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());
backend->call_with_validate(f, {r}, {a, b, c});
EXPECT_EQ(read_vector<float>(r),
(test::NDArray<float, 2>({{90, 180}, {308, 480}})).get_vector());
}
TEST(graph_partition, hybrid_multi_middle_nodes)
{
// A B C
// \ / \ / \
// D+ E+ |
// \ / \ /
// F* G*
// \ /
// H+
Shape shape = Shape{2, 2};
shared_ptr<op::Parameter> A = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> B = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> C = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<Node> D = A + B;
shared_ptr<Node> E = B + C;
shared_ptr<Node> F = D * E;
shared_ptr<Node> G = E * C;
shared_ptr<Node> H = F + G;
shared_ptr<Function> f = make_shared<Function>(H, op::ParameterVector{A, B, C});
auto backend = make_shared<HybridBackend>(int_with_cpu_mul_policy);
backend->compile(f);
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> r = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
copy_data(c, test::NDArray<float, 2>({{9, 10}, {11, 12}}).get_vector());
backend->call_with_validate(f, {r}, {a, b, c});
EXPECT_EQ(read_vector<float>(r),
(test::NDArray<float, 2>({{210, 288}, {378, 480}})).get_vector());
}
TEST(graph_partition, hybrid_no_split)
{
// A B
// \ /
// +
Shape shape = Shape{2, 2};
shared_ptr<op::Parameter> A = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<op::Parameter> B = make_shared<op::Parameter>(element::f32, shape);
shared_ptr<Node> C = A + B;
shared_ptr<Function> f = make_shared<Function>(C, op::ParameterVector{A, B});
auto backend = make_shared<HybridBackend>(int_with_cpu_mul_policy);
backend->compile(f);
shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shape);
shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shape);
copy_data(a, test::NDArray<float, 2>({{1, 2}, {3, 4}}).get_vector());
copy_data(b, test::NDArray<float, 2>({{5, 6}, {7, 8}}).get_vector());
backend->call_with_validate(f, {c}, {a, b});
EXPECT_EQ(read_vector<float>(c), (test::NDArray<float, 2>({{6, 8}, {10, 12}})).get_vector());
}
#endif