1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <climits>
#include <cmath>
#include "util/all_close_f.hpp"
using namespace std;
using namespace ngraph;
union FloatUnion {
float f;
uint32_t i;
};
union DoubleUnion {
double d;
uint64_t i;
};
constexpr uint32_t FLOAT_BELOW_MIN_SIGNAL = UINT_MAX;
constexpr uint32_t FLOAT_MAX_DIFF = UINT_MAX - 1;
constexpr uint64_t DOUBLE_BELOW_MIN_SIGNAL = ULLONG_MAX;
constexpr uint64_t DOUBLE_MAX_DIFF = ULLONG_MAX - 1;
uint32_t test::float_distance(float a, float b, float min_signal)
{
if (std::isnan(a) && std::isnan(b))
{
return 0;
}
else if (std::isinf(a) && std::isinf(b))
{
if (a > 0 && b > 0)
{
return 0;
}
else if (a < 0 && b < 0)
{
return 0;
}
return FLOAT_MAX_DIFF;
}
FloatUnion a_fu{a};
FloatUnion b_fu{b};
FloatUnion min_signal_fu{min_signal};
uint32_t a_uint = a_fu.i;
uint32_t b_uint = b_fu.i;
// A trick to handle both positive and negative numbers, see https://goo.gl/YbdnFQ
// - If negative: convert to two's complement
// - If positive: mask with sign bit
uint32_t sign_mask = static_cast<uint32_t>(1U) << 31;
uint32_t abs_value_bits_mask = ~sign_mask;
a_uint = (sign_mask & a_uint) ? (~a_uint + 1) : (sign_mask | a_uint);
b_uint = (sign_mask & b_uint) ? (~b_uint + 1) : (sign_mask | b_uint);
uint32_t distance;
uint32_t a_uint_abs = (abs_value_bits_mask & a_fu.i);
uint32_t b_uint_abs = (abs_value_bits_mask & b_fu.i);
uint32_t min_signal_uint_abs = (abs_value_bits_mask & min_signal_fu.i);
if ((a_uint_abs < min_signal_uint_abs) && (b_uint_abs < min_signal_uint_abs))
{
// Both a & b below minimum signal
distance = FLOAT_BELOW_MIN_SIGNAL;
}
else
{
distance = (a_uint >= b_uint) ? (a_uint - b_uint) : (b_uint - a_uint);
// We've reserved UINT_MAX to mean FLOAT_BELOW_MIN_SIGNAL
if (distance == UINT_MAX)
{
distance = FLOAT_MAX_DIFF;
}
}
return distance;
}
uint64_t test::float_distance(double a, double b, double min_signal)
{
if (std::isnan(a) && std::isnan(b))
{
return 0;
}
else if (std::isinf(a) && std::isinf(b))
{
if (a > 0 && b > 0)
{
return 0;
}
else if (a < 0 && b < 0)
{
return 0;
}
return DOUBLE_MAX_DIFF;
}
DoubleUnion a_du{a};
DoubleUnion b_du{b};
DoubleUnion min_signal_du{min_signal};
uint64_t a_uint = a_du.i;
uint64_t b_uint = b_du.i;
// A trick to handle both positive and negative numbers, see https://goo.gl/YbdnFQ
// - If negative: convert to two's complement
// - If positive: mask with sign bit
uint64_t sign_mask = static_cast<uint64_t>(1U) << 63;
uint64_t abs_value_bits_mask = ~sign_mask;
a_uint = (sign_mask & a_uint) ? (~a_uint + 1) : (sign_mask | a_uint);
b_uint = (sign_mask & b_uint) ? (~b_uint + 1) : (sign_mask | b_uint);
uint64_t distance;
uint64_t a_uint_abs = (abs_value_bits_mask & a_du.i);
uint64_t b_uint_abs = (abs_value_bits_mask & b_du.i);
uint64_t min_signal_uint_abs = (abs_value_bits_mask & min_signal_du.i);
if ((a_uint_abs < min_signal_uint_abs) && (b_uint_abs < min_signal_uint_abs))
{
// Both a & b below minimum signal
distance = DOUBLE_BELOW_MIN_SIGNAL;
}
else
{
distance = (a_uint >= b_uint) ? (a_uint - b_uint) : (b_uint - a_uint);
// We've reserved ULLONG_MAX to mean DOUBLE_BELOW_MIN_SIGNAL
if (distance == ULLONG_MAX)
{
distance = DOUBLE_MAX_DIFF;
}
}
return distance;
}
bool test::close_f(float a, float b, int tolerance_bits, float min_signal)
{
if (std::isnan(a) && std::isnan(b))
{
return true;
}
else if (std::isinf(a) && std::isinf(b))
{
if (a > 0 && b > 0)
{
return true;
}
else if (a < 0 && b < 0)
{
return true;
}
return false;
}
uint32_t distance = float_distance(a, b, min_signal);
// e.g. for float with 24 bit mantissa, 2 bit accuracy, and hard-coded 8 bit exponent_bits
// tolerance_bit_shift = 32 - (1 + 8 + (24 - 1 ) - 2 )
// float_length sign exp mantissa implicit 1 tolerance_bits
uint32_t tolerance_bit_shift = 32 - (1 + 8 + (FLOAT_MANTISSA_BITS - 1) - tolerance_bits);
uint32_t tolerance = static_cast<uint32_t>(1U) << tolerance_bit_shift;
return (distance <= tolerance) || (distance == FLOAT_BELOW_MIN_SIGNAL);
}
bool test::close_f(double a, double b, int tolerance_bits, double min_signal)
{
if (std::isnan(a) && std::isnan(b))
{
return true;
}
else if (std::isinf(a) && std::isinf(b))
{
if (a > 0 && b > 0)
{
return true;
}
else if (a < 0 && b < 0)
{
return true;
}
return false;
}
uint64_t distance = float_distance(a, b, min_signal);
// e.g. for double with 52 bit mantissa, 2 bit accuracy, and hard-coded 11 bit exponent_bits
// tolerance_bit_shift = 64 - (1 + 11 + (53 - 1 ) - 2 )
// double_length sign exp mantissa implicit 1 tolerance_bits
uint64_t tolerance_bit_shift = 64 - (1 + 11 + (DOUBLE_MANTISSA_BITS - 1) - tolerance_bits);
uint64_t tolerance = static_cast<uint64_t>(1U) << tolerance_bit_shift;
return (distance <= tolerance) || (distance == DOUBLE_BELOW_MIN_SIGNAL);
}
vector<uint32_t>
test::float_distances(const vector<float>& a, const vector<float>& b, float min_signal)
{
if (a.size() != b.size())
{
throw ngraph_error("a.size() != b.size() for float_distances comparison.");
}
vector<uint32_t> distances(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
distances[i] = float_distance(a[i], b[i], min_signal);
}
return distances;
}
vector<uint64_t>
test::float_distances(const vector<double>& a, const vector<double>& b, double min_signal)
{
if (a.size() != b.size())
{
throw ngraph_error("a.size() != b.size() for float_distances comparison.");
}
vector<uint64_t> distances(a.size());
for (size_t i = 0; i < a.size(); ++i)
{
distances[i] = float_distance(a[i], b[i], min_signal);
}
return distances;
}
uint32_t test::matching_mantissa_bits(uint32_t distance)
{
uint32_t tolerance_bit_shift = 0;
uint32_t num_bits_on = 0;
// Do some bit probing to find the most significant bit that's on,
// as well as how many bits are on.
for (uint32_t check_bit = 0; check_bit < 32; ++check_bit)
{
if (distance & (1 << check_bit))
{
tolerance_bit_shift = check_bit;
++num_bits_on;
}
}
// all_close_f is <= test for tolerance (where tolerance is uint32_t with single bit on)
// So if more than one bit is on we need the next higher tolerance
if (num_bits_on > 1)
{
++tolerance_bit_shift;
}
// all_close_f calculation of tolerance_bit_shift:
// e.g. for float with 24 bit mantissa, 2 bit accuracy, and hard-coded 8 bit exponent_bits
// tolerance_bit_shift = 32 - (1 + 8 + (24 - 1 ) - 2 )
// float_length sign exp matching_matissa_bits implicit 1 tolerance_bits
//
// Assuming 0 tolerance_bits and solving for matching_matissa_bits yields:
// tolerance_bit_shift = 32 - (1 + 8 + (matching_matissa_bits - 1 ) - 0 )
// tolerance_bit_shift = 32 - (1 + 8 + (matching_matissa_bits - 1 ) )
// matching_matissa_bits = 32 - (1 + 8 + (tolerance_bit_shift - 1 ) )
uint32_t matching_matissa_bits =
tolerance_bit_shift < 24 ? (32 - (1 + 8 + (tolerance_bit_shift - 1))) : 0;
return matching_matissa_bits;
}
uint32_t test::matching_mantissa_bits(uint64_t distance)
{
uint32_t tolerance_bit_shift = 0;
uint32_t num_bits_on = 0;
// Do some bit probing to find the most significant bit that's on,
// as well as how many bits are on.
for (uint32_t check_bit = 0; check_bit < 64; ++check_bit)
{
if (distance & (1ull << check_bit))
{
tolerance_bit_shift = check_bit;
++num_bits_on;
}
}
// all_close_f is <= test for tolerance (where tolerance is uint64_t with single bit on)
// So if more than one bit is on we need the next higher tolerance
if (num_bits_on > 1)
{
++tolerance_bit_shift;
}
// all_close_f calculation of tolerance_bit_shift:
// e.g. for double with 53 bit mantissa, 2 bit accuracy, and hard-coded 8 bit exponent_bits
// tolerance_bit_shift = 64 - (1 + 11 + (53 - 1 ) - 2 )
// double_length sign exp matching_matissa_bits implicit 1 tolerance_bits
//
// Assuming 0 tolerance_bits and solving for matching_matissa_bits yields:
// tolerance_bit_shift = 64 - (1 + 11 + (matching_matissa_bits - 1 ) - 0 )
// tolerance_bit_shift = 64 - (1 + 11 + (matching_matissa_bits - 1 ) )
// matching_matissa_bits = 64 - (1 + 11 + (tolerance_bit_shift - 1 ) )
uint32_t matching_matissa_bits =
tolerance_bit_shift < 53 ? (64 - (1 + 11 + (tolerance_bit_shift - 1))) : 0;
return matching_matissa_bits;
}
::testing::AssertionResult test::all_close_f(const vector<float>& a,
const vector<float>& b,
int tolerance_bits,
float min_signal)
{
if (tolerance_bits < MIN_FLOAT_TOLERANCE_BITS)
{
tolerance_bits = MIN_FLOAT_TOLERANCE_BITS;
}
if (tolerance_bits >= FLOAT_MANTISSA_BITS)
{
tolerance_bits = FLOAT_MANTISSA_BITS - 1;
}
bool rc = true;
stringstream msg;
if (a.size() != b.size())
{
return ::testing::AssertionFailure() << "a.size() != b.size() for all_close_f comparison.";
}
if (a.size() == 0)
{
return ::testing::AssertionSuccess() << "No elements to compare";
}
vector<uint32_t> distances = float_distances(a, b, min_signal);
// e.g. for float with 24 bit mantissa, 2 bit accuracy, and hard-coded 8 bit exponent_bits
// tolerance_bit_shift = 32 - (1 + 8 + (24 - 1 ) - 2 )
// float_length sign exp mantissa implicit 1 tolerance_bits
uint32_t tolerance_bit_shift = 32 - (1 + 8 + (FLOAT_MANTISSA_BITS - 1) - tolerance_bits);
uint32_t tolerance = static_cast<uint32_t>(1U) << tolerance_bit_shift;
uint32_t max_distance = 0;
uint32_t min_distance = FLOAT_BELOW_MIN_SIGNAL;
size_t max_distance_index = 0;
size_t min_distance_index = 0;
size_t diff_count = 0;
size_t below_min_count = 0;
for (size_t i = 0; i < a.size(); ++i)
{
if (distances[i] == FLOAT_BELOW_MIN_SIGNAL)
{
// Special value that indicates both values were below min_signal
below_min_count++;
continue;
}
if (distances[i] > max_distance)
{
max_distance = distances[i];
max_distance_index = i;
}
if (distances[i] < min_distance)
{
min_distance = distances[i];
min_distance_index = i;
}
bool is_close_f = distances[i] <= tolerance;
if (!is_close_f)
{
if (diff_count < 5)
{
msg << std::setprecision(std::numeric_limits<long double>::digits10 + 1) << a[i]
<< " is not close to " << b[i] << " at index " << i << "\n";
}
rc = false;
diff_count++;
}
}
if (!rc)
{
msg << "diff count: " << diff_count << " out of " << a.size() << "\n";
}
// Find median value via partial sorting
size_t middle = distances.size() / 2;
std::nth_element(distances.begin(), distances.begin() + middle, distances.end());
uint32_t median_distance = distances[middle];
if (distances.size() % 2 == 0)
{
// Find middle-1 value
uint64_t median_sum = static_cast<uint64_t>(median_distance) +
*max_element(distances.begin(), distances.begin() + middle);
median_distance = median_sum / 2;
}
bool all_below_min_signal = below_min_count == distances.size();
if (rc && (std::getenv("NGRAPH_GTEST_INFO") != nullptr))
{
// Short unobtrusive message when passing
std::cout << "[ INFO ] Verifying match of <= " << (FLOAT_MANTISSA_BITS - tolerance_bits)
<< " mantissa bits (" << FLOAT_MANTISSA_BITS << " bits precision - "
<< tolerance_bits << " tolerance). ";
if (all_below_min_signal)
{
std::cout << "All values below min_signal: " << min_signal << "\n";
}
else
{
std::cout << below_min_count << " value(s) below min_signal: " << min_signal
<< " Loosest match found is " << matching_mantissa_bits(max_distance)
<< " mantissa bits.\n";
}
}
msg << "passing criteria - mismatch allowed @ mantissa bit: "
<< (FLOAT_MANTISSA_BITS - tolerance_bits) << " or later (" << tolerance_bits
<< " tolerance bits)\n";
if (all_below_min_signal)
{
msg << "All values below min_signal: " << min_signal << "\n";
}
else
{
msg << below_min_count << " value(s) below min_signal: " << min_signal << "\n";
msg << std::setprecision(std::numeric_limits<long double>::digits10 + 1)
<< "tightest match - mismatch occurred @ mantissa bit: "
<< matching_mantissa_bits(min_distance) << " or next bit (" << a[min_distance_index]
<< " vs " << b[min_distance_index] << " at [" << min_distance_index << "])\n";
msg << std::setprecision(std::numeric_limits<long double>::digits10 + 1)
<< "loosest match - mismatch occurred @ mantissa bit: "
<< matching_mantissa_bits(max_distance) << " or next bit (" << a[max_distance_index]
<< " vs " << b[max_distance_index] << " at [" << max_distance_index << "])\n";
msg << "median match - mismatch occurred @ mantissa bit: "
<< matching_mantissa_bits(median_distance) << " or next bit\n";
}
::testing::AssertionResult res =
rc ? ::testing::AssertionSuccess() : ::testing::AssertionFailure();
res << msg.str();
return res;
}
::testing::AssertionResult test::all_close_f(const vector<double>& a,
const vector<double>& b,
int tolerance_bits,
double min_signal)
{
if (tolerance_bits < 0)
{
tolerance_bits = 0;
}
if (tolerance_bits >= DOUBLE_MANTISSA_BITS)
{
tolerance_bits = DOUBLE_MANTISSA_BITS - 1;
}
bool rc = true;
stringstream msg;
if (a.size() != b.size())
{
return ::testing::AssertionFailure() << "a.size() != b.size() for all_close_f comparison.";
}
if (a.size() == 0)
{
return ::testing::AssertionSuccess() << "No elements to compare";
}
vector<uint64_t> distances = float_distances(a, b, min_signal);
// e.g. for double with 52 bit mantissa, 2 bit accuracy, and hard-coded 11 bit exponent_bits
// tolerance_bit_shift = 64 - (1 + 11 + (53 - 1 ) - 2 )
// double_length sign exp mantissa implicit 1 tolerance_bits
uint64_t tolerance_bit_shift = 64 - (1 + 11 + (DOUBLE_MANTISSA_BITS - 1) - tolerance_bits);
uint64_t tolerance = static_cast<uint64_t>(1U) << tolerance_bit_shift;
uint64_t max_distance = 0;
uint64_t min_distance = DOUBLE_BELOW_MIN_SIGNAL;
size_t max_distance_index = 0;
size_t min_distance_index = 0;
size_t diff_count = 0;
size_t below_min_count = 0;
for (size_t i = 0; i < a.size(); ++i)
{
if (distances[i] == DOUBLE_BELOW_MIN_SIGNAL)
{
// Special value that indicates both values were below min_signal
below_min_count++;
continue;
}
if (distances[i] > max_distance)
{
max_distance = distances[i];
max_distance_index = i;
}
if (distances[i] < min_distance)
{
min_distance = distances[i];
min_distance_index = i;
}
bool is_close_f = distances[i] <= tolerance;
if (!is_close_f)
{
if (diff_count < 5)
{
msg << a[i] << " is not close to " << b[i] << " at index " << i << "\n";
}
rc = false;
diff_count++;
}
}
if (!rc)
{
msg << "diff count: " << diff_count << " out of " << a.size() << "\n";
}
// Find median value via partial sorting
size_t middle = distances.size() / 2;
std::nth_element(distances.begin(), distances.begin() + middle, distances.end());
uint64_t median_distance = distances[middle];
if (distances.size() % 2 == 0)
{
uint64_t median_distance2 = *max_element(distances.begin(), distances.begin() + middle);
uint64_t remainder1 = median_distance % 2;
uint64_t remainder2 = median_distance2 % 2;
median_distance =
(median_distance / 2) + (median_distance2 / 2) + ((remainder1 + remainder2) / 2);
}
bool all_below_min_signal = below_min_count == distances.size();
if (rc && (std::getenv("NGRAPH_GTEST_INFO") != nullptr))
{
// Short unobtrusive message when passing
std::cout << "[ INFO ] Verifying match of >= "
<< (DOUBLE_MANTISSA_BITS - tolerance_bits) << " mantissa bits ("
<< DOUBLE_MANTISSA_BITS << " bits precision - " << tolerance_bits
<< " tolerance). ";
if (all_below_min_signal)
{
std::cout << "All values below min_signal: " << min_signal << "\n";
}
else
{
std::cout << below_min_count << " value(s) below min_signal: " << min_signal
<< " Loosest match found is " << matching_mantissa_bits(max_distance)
<< " mantissa bits.\n";
}
}
msg << "passing criteria - mismatch allowed @ mantissa bit: "
<< (DOUBLE_MANTISSA_BITS - tolerance_bits) << " or later (" << tolerance_bits
<< " tolerance bits)\n";
if (all_below_min_signal)
{
msg << "All values below min_signal: " << min_signal << "\n";
}
else
{
msg << below_min_count << " value(s) below min_signal: " << min_signal << "\n";
msg << std::setprecision(std::numeric_limits<long double>::digits10 + 1)
<< "tightest match - mismatch occurred @ mantissa bit: "
<< matching_mantissa_bits(min_distance) << " or next bit (" << a[min_distance_index]
<< " vs " << b[min_distance_index] << " at [" << min_distance_index << "])\n";
msg << std::setprecision(std::numeric_limits<long double>::digits10 + 1)
<< "loosest match - mismatch occurred @ mantissa bit: "
<< matching_mantissa_bits(max_distance) << " or next bit (" << a[max_distance_index]
<< " vs " << b[max_distance_index] << " at [" << max_distance_index << "])\n";
msg << "median match - mismatch occurred @ mantissa bit: "
<< matching_mantissa_bits(median_distance) << " or next bit\n";
}
::testing::AssertionResult res =
rc ? ::testing::AssertionSuccess() : ::testing::AssertionFailure();
res << msg.str();
return res;
}
::testing::AssertionResult test::all_close_f(const std::shared_ptr<runtime::Tensor>& a,
const std::shared_ptr<runtime::Tensor>& b,
int tolerance_bits,
float min_signal)
{
// Check that the layouts are compatible
if (*a->get_tensor_layout() != *b->get_tensor_layout())
{
return ::testing::AssertionFailure() << "Cannot compare tensors with different layouts";
}
if (a->get_shape() != b->get_shape())
{
return ::testing::AssertionFailure() << "Cannot compare tensors with different shapes";
}
return test::all_close_f(
read_float_vector(a), read_float_vector(b), tolerance_bits, min_signal);
}
::testing::AssertionResult
test::all_close_f(const std::vector<std::shared_ptr<runtime::Tensor>>& as,
const std::vector<std::shared_ptr<runtime::Tensor>>& bs,
int tolerance_bits,
float min_signal)
{
if (as.size() != bs.size())
{
return ::testing::AssertionFailure() << "Cannot compare tensors with different sizes";
}
for (size_t i = 0; i < as.size(); ++i)
{
auto ar = test::all_close_f(as[i], bs[i], tolerance_bits, min_signal);
if (!ar)
{
return ar;
}
}
return ::testing::AssertionSuccess();
}