• Tomasz Dołbniak's avatar
    POC enabling Resnet50 with dynamic batch dimension (#4298) · b2da4cee
    Tomasz Dołbniak authored
    * Constify the onnx importer conv
    
    * Extract and fix the groups attribute validation for Conv
    
    * Check if the convolution's data input rank is static
    
    * Validate the groups attribute against channels and filters
    
    * Validate the conv operation in a separate function
    
    * Dynamically broadcast the conv bias if needed
    
    * Import a test model with dynamic batch conv op
    
    * Run a conv test with dynamic batch
    
    * Cleanup of conv bias handling code
    
    * Use a proper Broadcast constructor for bias in onnx conv
    
    * Handle dynamic ReduceMean with statically defined rank
    
    * Use the target shape rank to construct the default output shape for Broadcast
    
    * Handle ONNX Squeeze with dynamic input and static rank
    
    * Handle ONNX Shape with dynamic input and static rank
    
    * Handle the dynamic target shape in ONNX Reshape
    
    * Fix for the ONNX Shape input validation
    
    * Handle ONNX Softmax with dynamic input and static rank
    
    * Fix the failing Broadcast type prop test
    
    * Code formatting
    
    * Dont broadcast bias before adding it to the conv node
    
    * Drop the conv node validation and rely on the core op implementation checks
    
    * Code review feedback
    
    * Revert the Broadcast op changes
    
    * More code review feedback
    
    * Dynamic conv test using ng test case
    
    * Obsolete headers removal
    
    * Code formatting
    
    * Variable names refactor
    
    * Disable model_conv_with_dynamic_batch test on GPU
    
    * Code formatting
    Co-authored-by: 's avatarSang Ik Lee <sang.ik.lee@intel.com>
    b2da4cee
broadcast.cpp 13.9 KB