1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#pragma once
#include <exception>
#include <list>
#include <memory>
#include "ngraph/descriptor/layout/tensor_view_layout.hpp"
#include "ngraph/file_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/runtime/tensor_view.hpp"
#include "ngraph/serializer.hpp"
#define SKIP_TEST_FOR(backend_to_skip, current_backend) \
if (backend_to_skip == current_backend) \
{ \
NGRAPH_INFO << "Skipped test for " << current_backend; \
return; \
}
#define ONLY_ENABLE_TEST_FOR(backend_to_enable, current_backend) \
if (backend_to_enable != current_backend) \
{ \
NGRAPH_INFO << "Skipped test for " << current_backend; \
return; \
}
namespace ngraph
{
class Node;
class Function;
}
bool validate_list(const std::list<std::shared_ptr<ngraph::Node>>& nodes);
std::shared_ptr<ngraph::Function> make_test_graph();
template <typename T>
void copy_data(std::shared_ptr<ngraph::runtime::TensorView> tv, const std::vector<T>& data)
{
size_t data_size = data.size() * sizeof(T);
tv->write(data.data(), 0, data_size);
}
template <typename T>
std::vector<T> read_vector(std::shared_ptr<ngraph::runtime::TensorView> tv)
{
if (ngraph::element::from<T>() != tv->get_tensor_view_layout()->get_element_type())
{
throw std::invalid_argument("read_vector type must match TensorView type");
}
size_t element_count = ngraph::shape_size(tv->get_shape());
size_t size = element_count * sizeof(T);
std::vector<T> rc(element_count);
tv->read(rc.data(), 0, size);
return rc;
}
template <typename T>
void write_vector(std::shared_ptr<ngraph::runtime::TensorView> tv, const std::vector<T>& values)
{
tv->write(values.data(), 0, values.size() * sizeof(T));
}
template <typename T>
size_t count_ops_of_type(std::shared_ptr<ngraph::Function> f)
{
size_t count = 0;
for (auto op : f->get_ops())
{
if (std::dynamic_pointer_cast<T>(op))
{
count++;
}
}
return count;
}