1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <iostream>
#include <ngraph/ngraph.hpp>
using namespace ngraph;
int main()
{
// Build the graph
Shape s{2, 3};
auto a = std::make_shared<op::Parameter>(element::f32, s);
auto b = std::make_shared<op::Parameter>(element::f32, s);
auto c = std::make_shared<op::Parameter>(element::f32, s);
auto t0 = std::make_shared<op::Add>(a, b);
auto t1 = std::make_shared<op::Multiply>(t0, c);
// Make the function
auto f = std::make_shared<Function>(NodeVector{t1},
ParameterVector{a, b, c});
// Create the backend
auto backend = runtime::Backend::create("CPU");
// Allocate tensors for arguments a, b, c
auto t_a = backend->create_tensor(element::f32, s);
auto t_b = backend->create_tensor(element::f32, s);
auto t_c = backend->create_tensor(element::f32, s);
// Allocate tensor for the result
auto t_result = backend->create_tensor(element::f32, s);
// Initialize tensors
float v_a[2][3] = {{1, 2, 3}, {4, 5, 6}};
float v_b[2][3] = {{7, 8, 9}, {10, 11, 12}};
float v_c[2][3] = {{1, 0, -1}, {-1, 1, 2}};
t_a->write(&v_a, 0, sizeof(v_a));
t_b->write(&v_b, 0, sizeof(v_b));
t_c->write(&v_c, 0, sizeof(v_c));
// Invoke the function
auto exec = backend->compile(f);
exec->call({t_result}, {t_a, t_b, t_c});
// Get the result
float r[2][3];
t_result->read(&r, 0, sizeof(r));
std::cout << "[" << std::endl;
for (size_t i = 0; i < s[0]; ++i)
{
std::cout << " [";
for (size_t j = 0; j < s[1]; ++j)
{
std::cout << r[i][j] << ' ';
}
std::cout << ']' << std::endl;
}
std::cout << ']' << std::endl;
return 0;
}