1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
// Based on the Matrix class in
// The C++ Programming Language
// Fourth edition
// Bjarne Stroustrup
// Addison-Wesley, Boston, 2013.
#pragma once
#include <algorithm>
#include <cassert>
#include <cstring>
#include <memory>
#include <type_traits>
#include <vector>
#include "ngraph/log.hpp"
#include "ngraph/shape.hpp"
namespace ngraph
{
namespace test
{
namespace init
{
// Recursively define types for N-deep initializer lists
template <typename T, size_t N>
struct NestedInitializerListWrapper
{
using type =
std::initializer_list<typename NestedInitializerListWrapper<T, N - 1>::type>;
};
// 1-deep is a plain initializer_list
template <typename T>
struct NestedInitializerListWrapper<T, 1>
{
using type = std::initializer_list<T>;
};
// Scalar case is just the element type
template <typename T>
struct NestedInitializerListWrapper<T, 0>
{
using type = T;
};
// Convenience type name for N-deep initializer lists of Ts
template <typename T, size_t N>
using NestedInitializerList = typename NestedInitializerListWrapper<T, N>::type;
// Fill in a shape from a nested initializer list
// For a scalar, nothing to do.
template <typename T, size_t N>
typename std::enable_if<(N == 0), void>::type
fill_shape(Shape& shape, const NestedInitializerList<T, N>& inits)
{
}
// Check that the inits match the shape
template <typename T, size_t N>
typename std::enable_if<(N == 0), void>::type
check_shape(const Shape& shape, const NestedInitializerList<T, N>& inits)
{
assert(shape.size() == 0);
}
// For a plain initializer list, the shape is the length of the list.
template <typename T, size_t N>
typename std::enable_if<(N == 1)>::type
fill_shape(Shape& shape, const NestedInitializerList<T, N>& inits)
{
shape.push_back(inits.size());
}
template <typename T, size_t N>
typename std::enable_if<(N == 1)>::type
check_shape(const Shape& shape, const NestedInitializerList<T, N>& inits)
{
assert(shape.at(shape.size() - N) == inits.size());
}
// In the general case, we append our level's length and recurse.
template <typename T, size_t N>
typename std::enable_if<(N > 1), void>::type
fill_shape(Shape& shape, const NestedInitializerList<T, N>& inits)
{
shape.push_back(inits.size());
fill_shape<T, N - 1>(shape, *inits.begin());
}
template <typename T, size_t N>
typename std::enable_if<(N > 1), void>::type
check_shape(const Shape& shape, const NestedInitializerList<T, N>& inits)
{
assert(shape.at(shape.size() - N) == inits.size());
for (auto it : inits)
{
check_shape<T, N - 1>(shape, it);
}
}
// Get the shape of inits.
template <typename T, size_t N>
Shape get_shape(const NestedInitializerList<T, N>& inits)
{
Shape shape;
fill_shape<T, N>(shape, inits);
check_shape<T, N>(shape, inits);
return shape;
}
template <typename IT, typename T, size_t N>
typename std::enable_if<(N == 1), IT>::type
flatten(IT it, const Shape& shape, const NestedInitializerList<T, N>& inits)
{
assert(inits.size() == shape.at(shape.size() - N));
for (auto it1 : inits)
{
*(it++) = it1;
}
return it;
}
template <typename IT, typename T, size_t N>
typename std::enable_if<(N > 1), IT>::type
flatten(IT it, const Shape& shape, const NestedInitializerList<T, N>& inits)
{
assert(inits.size() == shape.at(shape.size() - N));
for (auto it1 : inits)
{
it = flatten<IT, T, N - 1>(it, shape, it1);
}
return it;
}
template <typename IT, typename T, size_t N>
typename std::enable_if<(N == 0), IT>::type
flatten(IT it, const Shape& shape, const NestedInitializerList<T, 0>& init)
{
assert(shape.size() == 0);
*(it++) = init;
return it;
}
}
template <typename T>
class NDArrayBase
{
using vtype = std::vector<T>;
public:
using type = T;
using iterator = typename vtype::iterator;
using const_iterator = typename vtype::const_iterator;
NDArrayBase(const Shape& shape)
: m_shape(shape)
, m_elements(shape_size(m_shape))
{
}
const Shape& get_shape() const { return m_shape; }
const_iterator begin() const { return m_elements.begin(); }
const_iterator end() const { return m_elements.end(); }
vtype get_vector() { return m_elements; }
const vtype get_vector() const { return m_elements; }
operator const vtype() const { return m_elements; }
operator vtype() { return m_elements; }
void* data() { return m_elements.data(); }
const void* data() const { return m_elements.data(); }
bool operator==(const NDArrayBase<T>& other) const
{
return m_shape == other.m_shape && m_elements == other.m_elements;
}
protected:
Shape m_shape;
vtype m_elements;
};
/// An N dimensional array of elements of type T
template <typename T, size_t N>
class NDArray : public NDArrayBase<T>
{
public:
NDArray(const init::NestedInitializerList<T, N>& initial_value)
: NDArrayBase<T>(init::get_shape<T, N>(initial_value))
{
init::flatten<typename std::vector<T>::iterator, T, N>(
NDArrayBase<T>::m_elements.begin(), NDArrayBase<T>::m_shape, initial_value);
}
};
}
}