# ******************************************************************************
# Copyright 2018 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ******************************************************************************
-
arogowie-intel authored
* Update avg_pool signature to be consistent with ngraph AvgPool. - Change parameters order and use more appropriate paramter names. - Add docstring. * Single file with test for pooling operations. - Add test for avg_pool for 2D case. * Code refactoring. - Rename parameters to be more verbose. - Change function return type, to enable general usage. * Add UT for ceil, ceiling and abs. * Update docstrings and type annotations. * Add UT for broadcast operation. * Add UT for concat operation. - Minor change: add optional node name function parameter. * Code formatting. * UT for constant and convert operations. - Move broadcast test to test_basic.py file. * Update function signature. - Update to be consistent with nGraph object API. * Review fix. - Update type annotations. - Update docstring. - Change local variables names to be consistent. * Refactoring - put some commonly used functions into util.py. * Update convolution operation signature. - Add docstring - Update to be consistent with respective nGraph object API. - Formatting in UT. * Fix import statements under py27. * Correct quotation marks. * Revert changes: use AxisSet as a return type. * Review fix. - Update parameter names to be consistent with respective parameters of nGraph object constructors. * Review fix - Set seed for random number generation to be repeatable. - Use numpy.allclose. * Change serialize routine * Change serialize routine call for onnx * Run clang-format on constant.cpp * Update function type annotation.
9aa63947