1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
#include <algorithm>
#include <cstdio>
#include <cudnn.h>
#include <iostream>
#include <list>
#include <memory>
#include "gtest/gtest.h"
#include "ngraph/autodiff/adjoints.hpp"
#include "ngraph/file_util.hpp"
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/op/batch_norm.hpp"
#include "ngraph/op/concat.hpp"
#include "ngraph/op/get_output_element.hpp"
#include "ngraph/op/max_pool.hpp"
#include "ngraph/op/negative.hpp"
#include "ngraph/op/parameter.hpp"
#include "ngraph/op/relu.hpp"
#include "ngraph/op/sigmoid.hpp"
#include "ngraph/op/sum.hpp"
#include "ngraph/op/tanh.hpp"
#include "ngraph/pass/algebraic_simplification.hpp"
#include "ngraph/pass/core_fusion.hpp"
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/reshape_elimination.hpp"
#include "ngraph/pass/visualize_tree.hpp"
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp"
#include "ngraph/pattern/op/skip.hpp"
#include "ngraph/runtime/gpu/op/rnn.hpp"
#include "ngraph/runtime/gpu/pass/gpu_rnn_fusion.hpp"
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
#include "nlohmann/json.hpp"
#include "util/all_close.hpp"
#include "util/autodiff/backprop_function.hpp"
#include "util/autodiff/numeric_compare.hpp"
#include "util/matcher.hpp"
#include "util/random.hpp"
#include "util/random.hpp"
#include "util/test_tools.hpp"
using namespace ngraph;
using namespace std;
#if CUDNN_VERSION >= 7200
TEST(gpu_fusion, rnn_fprop_1_lstm_cell)
{
auto src_layer = make_shared<op::Parameter>(element::f32, Shape{10, 100});
auto src_iter = make_shared<op::Parameter>(element::f32, Shape{10, 100});
auto params =
make_shared<op::Parameter>(element::f32, Shape{400 * 100 + 400 * 100 + 400 + 400});
auto state_iter = make_shared<op::Parameter>(element::f32, Shape{10, 100});
const int number_of_timesteps = 1;
const int number_of_gates_per_cell = 4;
const int src_seq_length = 1;
const int src_layer_feature_size = 100;
const int feature_size = 100;
const int rnn_direction = 1;
const int num_of_rnn_fused_layer = 1;
auto rnn_node = make_shared<op::gpu::Rnn>(src_layer,
src_iter,
params,
state_iter,
number_of_timesteps,
number_of_gates_per_cell,
src_seq_length,
src_layer_feature_size,
feature_size,
rnn_direction,
num_of_rnn_fused_layer);
auto rnn_ht_output = make_shared<op::GetOutputElement>(rnn_node, 0);
auto rnn_ct_output = make_shared<op::GetOutputElement>(rnn_node, 1);
auto func = make_shared<Function>(NodeVector{rnn_ht_output, rnn_ct_output},
ParameterVector{src_layer, src_iter, params, state_iter});
auto backend = runtime::Backend::create("GPU");
shared_ptr<runtime::Tensor> src_layer_t =
backend->create_tensor(element::f32, src_layer->get_shape());
shared_ptr<runtime::Tensor> src_iter_t =
backend->create_tensor(element::f32, src_iter->get_shape());
shared_ptr<runtime::Tensor> state_iter_t =
backend->create_tensor(element::f32, state_iter->get_shape());
shared_ptr<runtime::Tensor> params_t =
backend->create_tensor(element::f32, params->get_shape());
shared_ptr<runtime::Tensor> result_ht = backend->create_tensor(element::f32, {10, 100});
shared_ptr<runtime::Tensor> result_ct = backend->create_tensor(element::f32, Shape{10, 100});
copy_data(src_layer_t, vector<float>(1000, 1));
copy_data(src_iter_t, vector<float>(1000, 1));
copy_data(state_iter_t, vector<float>(1000, 1));
copy_data(params_t, vector<float>(shape_size(params->get_shape()), 1));
auto handle = backend->compile(func);
handle->call_with_validate({result_ht, result_ct},
{src_layer_t, src_iter_t, params_t, state_iter_t});
vector<float> expected_ht(10 * 100, 0.964028f);
vector<float> expected_ct;
for (size_t i = 0; i < 10 * 100; i++)
{
expected_ct.push_back(0.964028f);
}
EXPECT_TRUE(test::all_close(expected_ht, read_vector<float>(result_ht)));
EXPECT_TRUE(test::all_close(expected_ct, read_vector<float>(result_ct)));
}
#endif
#ifndef NGRAPH_JSON_DISABLE
TEST(gpu_fusion, fuse_lstm_cells)
{
pass::Manager pass_manager;
pass_manager.register_pass<runtime::gpu::pass::LSTMFusion>();
const string json_path =
file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
const string json_string = file_util::read_file_to_string(json_path);
stringstream ss(json_string);
shared_ptr<Function> func = ngraph::deserialize(ss);
pass_manager.run_passes(func);
auto lstm_ops = get_ops_of_type<op::gpu::Rnn>(func);
EXPECT_EQ(lstm_ops.size(), 6);
}
TEST(gpu_fusion, fuse_2_layer_rnn)
{
pass::Manager pass_manager;
pass_manager.register_pass<runtime::gpu::pass::LSTMFusion>();
pass_manager.register_pass<runtime::gpu::pass::RNNFusion>();
const string json_path =
file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
const string json_string = file_util::read_file_to_string(json_path);
stringstream ss(json_string);
shared_ptr<Function> func = ngraph::deserialize(ss);
pass_manager.run_passes(func);
size_t count = count_ops_of_type<op::gpu::Rnn>(func);
auto rnn_ops = get_ops_of_type<op::gpu::Rnn>(func);
EXPECT_EQ(rnn_ops.size(), count);
for (auto& node : rnn_ops)
{
EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
}
}
TEST(DISABLED_gpu_fusion, fuse_1_layer_rnn)
{
pass::Manager pass_manager;
pass_manager.register_pass<runtime::gpu::pass::LSTMFusion>();
pass_manager.register_pass<runtime::gpu::pass::RNNFusion>();
const string json_path =
file_util::path_join(SERIALIZED_ZOO, "mxnet/1rnn_layer_3lstm_cell.json");
const string json_string = file_util::read_file_to_string(json_path);
stringstream ss(json_string);
shared_ptr<Function> func = ngraph::deserialize(ss);
pass_manager.run_passes(func);
size_t count = count_ops_of_type<op::gpu::Rnn>(func);
auto rnn_ops = get_ops_of_type<op::gpu::Rnn>(func);
EXPECT_EQ(rnn_ops.size(), 1);
EXPECT_EQ(rnn_ops.size(), count);
for (auto& node : rnn_ops)
{
EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
}
}
#endif
TEST(gpu_fusion, lstm_analytic)
{
auto input_xt = std::make_shared<op::Parameter>(element::f32, Shape{1, 1});
auto weights_i2h = std::make_shared<op::Parameter>(element::f32, Shape{4, 1});
auto weights_i2h_reshape =
std::make_shared<op::Reshape>(weights_i2h, AxisVector{1, 0}, Shape{1, 4});
auto dot_1 = std::make_shared<op::Dot>(input_xt, weights_i2h_reshape);
auto bias_i2h = std::make_shared<op::Parameter>(element::f32, Shape{4});
auto broadcast_bias_i2h = std::make_shared<op::Broadcast>(bias_i2h, Shape{1, 4}, AxisSet{0});
auto add_1 = std::make_shared<op::Add>(dot_1, broadcast_bias_i2h);
auto h_const = op::Constant::create(element::f32, Shape{}, {1.0});
auto hidden_ht = std::make_shared<op::Broadcast>(h_const, Shape{1, 1}, AxisSet{0, 1});
auto weights_h2h = std::make_shared<op::Parameter>(element::f32, Shape{4, 1});
auto param2_2_reshape =
std::make_shared<op::Reshape>(weights_h2h, AxisVector{1, 0}, Shape{1, 4});
auto dot_2 = std::make_shared<op::Dot>(hidden_ht, param2_2_reshape);
auto bias_h2h = std::make_shared<op::Parameter>(element::f32, Shape{4});
auto broadcast_bias_h2h = std::make_shared<op::Broadcast>(bias_h2h, Shape{1, 4}, AxisSet{0});
auto add_2 = std::make_shared<op::Add>(dot_2, broadcast_bias_h2h);
auto X = std::make_shared<op::Add>(add_2, add_1);
// construct forget gate
auto input_slice_0 = std::make_shared<op::Slice>(X, Coordinate{0, 0}, Coordinate{1, 1});
auto forget_gate = std::make_shared<op::Sigmoid>(input_slice_0);
//ct-1 -> cell state
auto c_const = op::Constant::create(element::f32, Shape{}, {-1.0});
auto ct_1 = std::make_shared<op::Broadcast>(c_const, Shape{1, 1}, AxisSet{0, 1});
//auto ct_1 = std::make_shared<op::>(element::f32, Shape{10, 100});
auto multiply_forget_gate_ct_1 = std::make_shared<op::Multiply>(forget_gate, ct_1);
// construct input gate
auto input_slice_1 = std::make_shared<op::Slice>(X, Coordinate{0, 1}, Coordinate{1, 2});
auto input_gate = std::make_shared<op::Sigmoid>(input_slice_1);
auto input_slice_2 = std::make_shared<op::Slice>(X, Coordinate{0, 2}, Coordinate{1, 3});
auto tanh_1 = std::make_shared<op::Tanh>(input_slice_2);
auto multiply_input_gate_tanh_1 = std::make_shared<op::Multiply>(input_gate, tanh_1);
auto ct = std::make_shared<op::Add>(multiply_forget_gate_ct_1, multiply_input_gate_tanh_1);
// construct output gate
auto input_slice_3 = std::make_shared<op::Slice>(X, Coordinate{0, 3}, Coordinate{1, 4});
auto output_gate = std::make_shared<op::Sigmoid>(input_slice_3);
auto tanh_2 = std::make_shared<op::Tanh>(ct);
auto ht = std::make_shared<op::Multiply>(output_gate, tanh_2);
auto f = make_shared<Function>(
NodeVector{ht, ct},
ParameterVector{input_xt, weights_i2h, weights_h2h, bias_i2h, bias_h2h});
auto backend = runtime::Backend::create("GPU");
std::shared_ptr<runtime::Tensor> input_xt_t =
backend->create_tensor(element::f32, input_xt->get_shape());
copy_data(input_xt_t, std::vector<float>{1.0});
std::shared_ptr<runtime::Tensor> weights_i2h_t =
backend->create_tensor(element::f32, weights_i2h->get_shape());
copy_data(weights_i2h_t, std::vector<float>{-1.0, -1.0, -1.0, -1.0});
std::shared_ptr<runtime::Tensor> weights_h2h_t =
backend->create_tensor(element::f32, weights_h2h->get_shape());
copy_data(weights_h2h_t, std::vector<float>{-1.0, -1.0, -1.0, -1.0});
std::shared_ptr<runtime::Tensor> bias_i2h_t =
backend->create_tensor(element::f32, bias_i2h->get_shape());
copy_data(bias_i2h_t, std::vector<float>{-1.0, -1.0, -1.0, -1.0});
std::shared_ptr<runtime::Tensor> bias_h2h_t =
backend->create_tensor(element::f32, bias_h2h->get_shape());
copy_data(bias_h2h_t, std::vector<float>{-1.0, -1.0, -1.0, -1.0});
std::shared_ptr<runtime::Tensor> result_ht =
backend->create_tensor(element::f32, ht->get_shape());
std::shared_ptr<runtime::Tensor> result_ct =
backend->create_tensor(element::f32, ct->get_shape());
auto handle = backend->compile(f);
handle->call_with_validate({result_ht, result_ct},
{input_xt_t, weights_i2h_t, weights_h2h_t, bias_i2h_t, bias_h2h_t});
auto sig = [](float x) { return 1.0f / (1.0f + std::exp(-x)); };
float ct_val = -sig(-4.0f) + sig(-4.0f) * std::tanh(-4.0f);
float ht_val = sig(-4.0f) * std::tanh(ct_val);
EXPECT_TRUE(test::all_close(std::vector<float>{ht_val}, read_vector<float>(result_ht)));
EXPECT_TRUE(test::all_close(std::vector<float>{ct_val}, read_vector<float>(result_ct)));
}
TEST(gpu_fusion, fuse_2_layer_rnn_1lstm_analytic)
{
auto input_xt = std::make_shared<op::Parameter>(element::f32, Shape{1, 1});
auto weights_i2h = std::make_shared<op::Parameter>(element::f32, Shape{4, 1});
auto weights_i2h_reshape =
std::make_shared<op::Reshape>(weights_i2h, AxisVector{1, 0}, Shape{1, 4});
auto dot_1 = std::make_shared<op::Dot>(input_xt, weights_i2h_reshape);
auto bias_i2h = std::make_shared<op::Parameter>(element::f32, Shape{4});
auto broadcast_bias_i2h = std::make_shared<op::Broadcast>(bias_i2h, Shape{1, 4}, AxisSet{0});
auto add_1 = std::make_shared<op::Add>(dot_1, broadcast_bias_i2h);
auto h_const = op::Constant::create(element::f32, Shape{}, {1.0});
auto hidden_ht = std::make_shared<op::Broadcast>(h_const, Shape{1, 1}, AxisSet{0, 1});
auto weights_h2h = std::make_shared<op::Parameter>(element::f32, Shape{4, 1});
auto param2_2_reshape =
std::make_shared<op::Reshape>(weights_h2h, AxisVector{1, 0}, Shape{1, 4});
auto dot_2 = std::make_shared<op::Dot>(hidden_ht, param2_2_reshape);
auto bias_h2h = std::make_shared<op::Parameter>(element::f32, Shape{4});
auto broadcast_bias_h2h = std::make_shared<op::Broadcast>(bias_h2h, Shape{1, 4}, AxisSet{0});
auto add_2 = std::make_shared<op::Add>(dot_2, broadcast_bias_h2h);
auto X = std::make_shared<op::Add>(add_2, add_1);
// construct forget gate
auto input_slice_0 = std::make_shared<op::Slice>(X, Coordinate{0, 0}, Coordinate{1, 1});
auto forget_gate = std::make_shared<op::Sigmoid>(input_slice_0);
//ct-1 -> cell state
auto c_const = op::Constant::create(element::f32, Shape{}, {1.0});
auto ct_1 = std::make_shared<op::Broadcast>(c_const, Shape{1, 1}, AxisSet{0, 1});
//auto ct_1 = std::make_shared<op::>(element::f32, Shape{10, 100});
auto multiply_forget_gate_ct_1 = std::make_shared<op::Multiply>(forget_gate, ct_1);
// construct input gate
auto input_slice_1 = std::make_shared<op::Slice>(X, Coordinate{0, 1}, Coordinate{1, 2});
auto input_gate = std::make_shared<op::Sigmoid>(input_slice_1);
auto input_slice_2 = std::make_shared<op::Slice>(X, Coordinate{0, 2}, Coordinate{1, 3});
auto tanh_1 = std::make_shared<op::Tanh>(input_slice_2);
auto multiply_input_gate_tanh_1 = std::make_shared<op::Multiply>(input_gate, tanh_1);
auto ct = std::make_shared<op::Add>(multiply_forget_gate_ct_1, multiply_input_gate_tanh_1);
// construct output gate
auto input_slice_3 = std::make_shared<op::Slice>(X, Coordinate{0, 3}, Coordinate{1, 4});
auto output_gate = std::make_shared<op::Sigmoid>(input_slice_3);
auto tanh_2 = std::make_shared<op::Tanh>(ct);
auto ht = std::make_shared<op::Multiply>(output_gate, tanh_2);
// next lstm layer
auto weights_i2h_0 = std::make_shared<op::Parameter>(element::f32, Shape{4, 1});
auto weights_i2h_0_reshape_0 =
std::make_shared<op::Reshape>(weights_i2h_0, AxisVector{1, 0}, Shape{1, 4});
auto dot_1_0 = std::make_shared<op::Dot>(ht, weights_i2h_0_reshape_0);
auto bias_i2h_0 = std::make_shared<op::Parameter>(element::f32, Shape{4});
auto broadcast_bias_i2h_0_0 =
std::make_shared<op::Broadcast>(bias_i2h_0, Shape{1, 4}, AxisSet{0});
auto add_1_0 = std::make_shared<op::Add>(dot_1_0, broadcast_bias_i2h_0_0);
auto h_const_0 = op::Constant::create(element::f32, Shape{}, {1.0});
auto hidden_ht_0 = std::make_shared<op::Broadcast>(h_const_0, Shape{1, 1}, AxisSet{0, 1});
auto weights_h2h_0 = std::make_shared<op::Parameter>(element::f32, Shape{4, 1});
auto param2_2_reshape_0 =
std::make_shared<op::Reshape>(weights_h2h_0, AxisVector{1, 0}, Shape{1, 4});
auto dot_2_0 = std::make_shared<op::Dot>(hidden_ht_0, param2_2_reshape_0);
auto bias_h2h_0 = std::make_shared<op::Parameter>(element::f32, Shape{4});
auto broadcast_bias_h2h_0_0 =
std::make_shared<op::Broadcast>(bias_h2h_0, Shape{1, 4}, AxisSet{0});
auto add_2_0 = std::make_shared<op::Add>(dot_2_0, broadcast_bias_h2h_0_0);
auto X_0 = std::make_shared<op::Add>(add_2_0, add_1_0);
// construct forget gate
auto input_slice_0_0 = std::make_shared<op::Slice>(X_0, Coordinate{0, 0}, Coordinate{1, 1});
auto forget_gate_0 = std::make_shared<op::Sigmoid>(input_slice_0_0);
//ct-1 -> cell state
auto c_const_0 = op::Constant::create(element::f32, Shape{}, {1.0});
auto ct_1_0 = std::make_shared<op::Broadcast>(c_const_0, Shape{1, 1}, AxisSet{0, 1});
//auto ct_1 = std::make_shared<op::>(element::f32, Shape{10, 100});
auto multiply_forget_gate_0_ct_1_0 = std::make_shared<op::Multiply>(forget_gate_0, ct_1_0);
// construct input gate
auto input_slice_1_0 = std::make_shared<op::Slice>(X_0, Coordinate{0, 1}, Coordinate{1, 2});
auto input_gate_0 = std::make_shared<op::Sigmoid>(input_slice_1_0);
auto input_slice_2_0 = std::make_shared<op::Slice>(X_0, Coordinate{0, 2}, Coordinate{1, 3});
auto tanh_1_0 = std::make_shared<op::Tanh>(input_slice_2_0);
auto multiply_input_gate_0_tanh_1_0 = std::make_shared<op::Multiply>(input_gate_0, tanh_1_0);
auto ct_0 =
std::make_shared<op::Add>(multiply_forget_gate_0_ct_1_0, multiply_input_gate_0_tanh_1_0);
// construct output gate
auto input_slice_3_0 = std::make_shared<op::Slice>(X_0, Coordinate{0, 3}, Coordinate{1, 4});
auto output_gate_0 = std::make_shared<op::Sigmoid>(input_slice_3_0);
auto tanh_2_0 = std::make_shared<op::Tanh>(ct_0);
auto ht_0 = std::make_shared<op::Multiply>(output_gate_0, tanh_2_0);
auto f = make_shared<Function>(NodeVector{ht_0, ct_0},
ParameterVector{input_xt,
weights_i2h,
weights_h2h,
bias_i2h,
bias_h2h,
weights_i2h_0,
weights_h2h_0,
bias_i2h_0,
bias_h2h_0});
auto backend = runtime::Backend::create("GPU");
auto params = f->get_parameters();
std::vector<std::shared_ptr<ngraph::runtime::Tensor>> arg_tensors;
for (shared_ptr<op::Parameter> param : params)
{
vector<float> tensor_vals(shape_size(param->get_shape()), 1.0f);
auto tensor = backend->create_tensor(element::f32, param->get_shape());
copy_data(tensor, tensor_vals);
arg_tensors.push_back(tensor);
}
std::shared_ptr<runtime::Tensor> result_ht =
backend->create_tensor(element::f32, ht->get_shape());
std::shared_ptr<runtime::Tensor> result_ct =
backend->create_tensor(element::f32, ct->get_shape());
auto handle = backend->compile(f);
handle->call_with_validate({result_ht, result_ct}, arg_tensors);
//EXPECT_EQ(1, count_ops_of_type<op::gpu::Rnn>(f));
auto sig = [](float x) { return 1.0f / (1.0f + std::exp(-x)); };
float kernel = 4.0f;
float ct_val_first = sig(kernel) + sig(kernel) * std::tanh(kernel);
float ht_val_first = sig(kernel) * std::tanh(ct_val_first);
kernel = 3.0f + ht_val_first;
float ct_val_second = sig(kernel) + sig(kernel) * std::tanh(kernel);
float ht_val_second = sig(kernel) * std::tanh(ct_val_second);
EXPECT_TRUE(test::all_close(std::vector<float>{ht_val_second}, read_vector<float>(result_ht)));
EXPECT_TRUE(test::all_close(std::vector<float>{ct_val_second}, read_vector<float>(result_ct)));
}
#ifndef NGRAPH_JSON_DISABLE
TEST(gpu_fusion, rnn_fusion_inter_vs_gpu_1lstm_cell)
{
const std::string file_name("mxnet/1_lstm_cell_forward.json");
auto gpu_f = make_function_from_file(file_name);
auto int_f = make_function_from_file(file_name);
test::Uniform<float> rng(-10.0f, 10.0f);
vector<vector<float>> args;
for (shared_ptr<op::Parameter> param : int_f->get_parameters())
{
vector<float> tensor_val(shape_size(param->get_shape()));
rng.initialize(tensor_val);
args.push_back(tensor_val);
}
auto int_results = execute(int_f, args, "INTERPRETER");
auto gpu_results = execute(gpu_f, args, "GPU");
for (size_t i = 0; i < gpu_results.size(); i++)
{
EXPECT_TRUE(test::all_close(gpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
}
}
TEST(DISABLED_gpu_fusion, rnn_fusion_inter_vs_gpu_1rnn_layer_3lstm_cell)
{
const std::string file_name("mxnet/1rnn_layer_3lstm_cell.json");
auto gpu_f = make_function_from_file(file_name);
auto int_f = make_function_from_file(file_name);
test::Uniform<float> rng(-10.0f, 10.0f);
vector<vector<float>> args;
for (shared_ptr<op::Parameter> param : int_f->get_parameters())
{
vector<float> tensor_val(shape_size(param->get_shape()));
rng.initialize(tensor_val);
args.push_back(tensor_val);
}
auto int_results = execute(int_f, args, "INTERPRETER");
auto gpu_results = execute(gpu_f, args, "GPU");
for (size_t i = 0; i < gpu_results.size(); i++)
{
EXPECT_TRUE(test::all_close(gpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
}
}
TEST(gpu_fusion, rnn_fusion_inter_vs_gpu_2rnn_layer_3lstm_cell)
{
const std::string file_name("mxnet/2rnn_layer_3lstm_cell.json");
auto gpu_f = make_function_from_file(file_name);
auto int_f = make_function_from_file(file_name);
test::Uniform<float> rng(-10.0f, 10.0f);
vector<vector<float>> args;
for (shared_ptr<op::Parameter> param : int_f->get_parameters())
{
vector<float> tensor_val(shape_size(param->get_shape()));
rng.initialize(tensor_val);
args.push_back(tensor_val);
}
auto int_results = execute(int_f, args, "INTERPRETER");
auto gpu_results = execute(gpu_f, args, "GPU");
for (size_t i = 0; i < gpu_results.size(); i++)
{
EXPECT_TRUE(test::all_close(gpu_results.at(i), int_results.at(i), 1.0e-3f, 1.0e-3f));
}
}
TEST(gpu_fusion, fuse_rnn_across_layer)
{
pass::Manager pass_manager;
pass_manager.register_pass<runtime::gpu::pass::LSTMFusion>();
pass_manager.register_pass<runtime::gpu::pass::RNNFusion>();
pass_manager.register_pass<ngraph::pass::AlgebraicSimplification>();
pass_manager.register_pass<runtime::gpu::pass::MultiLayerRNNFusion>();
const string json_path =
file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_1timestep.json");
const string json_string = file_util::read_file_to_string(json_path);
stringstream ss(json_string);
shared_ptr<Function> func = ngraph::deserialize(ss);
pass_manager.run_passes(func);
size_t ref_rnn_count = 1;
auto rnn_count = count_ops_of_type<op::gpu::Rnn>(func);
EXPECT_EQ(ref_rnn_count, rnn_count);
}
TEST(gpu_fusion, fuse_rnn_across_2layer_1timestep)
{
const std::string file_name("mxnet/2rnn_layer_1timestep.json");
auto gpu_f = make_function_from_file(file_name);
auto int_f = make_function_from_file(file_name);
test::Uniform<float> rng(-10.0f, 10.0f);
vector<vector<float>> args;
for (shared_ptr<op::Parameter> param : int_f->get_parameters())
{
vector<float> tensor_val(shape_size(param->get_shape()));
rng.initialize(tensor_val);
args.push_back(tensor_val);
}
auto int_results = execute(int_f, args, "INTERPRETER");
auto gpu_results = execute(gpu_f, args, "GPU");
// TODO (pruthvi): Enable this after fixing failing
// mxnet rnn unit tests
// EXPECT_EQ(1, count_ops_of_type<op::gpu::Rnn>(gpu_f));
for (size_t i = 0; i < gpu_results.size(); i++)
{
EXPECT_TRUE(test::all_close(gpu_results.at(1), int_results.at(1), 1.0e-4f, 1.0e-4f));
}
}
#endif