scatter.in.cpp 13.1 KB
Newer Older
1
//*****************************************************************************
2
// Copyright 2017-2019 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>

#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/random.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"

using namespace std;
using namespace ngraph;

static string s_manifest = "${MANIFEST}";

38
#if 0
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
NGRAPH_TEST(${BACKEND_NAME}, scatter_add_4d_indices)
{
    Shape ref_shape{3, 3, 3};
    Shape indices_shape{2, 3, 4, 2};
    Shape updates_shape{2, 3, 4, 2, 3, 3};
    Shape out_shape{3, 3, 3};
    auto R = make_shared<op::Parameter>(element::f32, ref_shape);
    auto I = make_shared<op::Parameter>(element::i32, indices_shape);
    auto U = make_shared<op::Parameter>(element::f32, updates_shape);
    auto G = make_shared<op::ScatterAdd>(R, I, U);
    auto f =
        make_shared<Function>(make_shared<op::GetOutputElement>(G, 0), ParameterVector{R, I, U});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto r = backend->create_tensor(element::f32, ref_shape);
    copy_data(r, vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5,
                               6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8});
    auto i = backend->create_tensor(element::i32, indices_shape);
    copy_data(i, vector<int32_t>{0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0,
                                 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1,
                                 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2});
    auto u = backend->create_tensor(element::f32, updates_shape);
    copy_data(u,
              vector<float>{
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                  0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8});
    auto result = backend->create_tensor(element::f32, out_shape);

    auto c = backend->compile(f);
    c->call_with_validate({result}, {r, i, u});
    EXPECT_TRUE(test::all_close_f(
        (vector<float>{0,   17,  34,  51,  68, 85, 102, 119, 136, 17, 34,  51,  68, 85,
                       102, 119, 136, 153, 0,  17, 34,  51,  68,  85, 102, 119, 136}),
        read_vector<float>(result),
        MIN_FLOAT_TOLERANCE_BITS));
}
91
#endif
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

NGRAPH_TEST(${BACKEND_NAME}, scatter_add_3d_indices)
{
    Shape ref_shape{2, 3, 3};
    Shape indices_shape{2, 2, 2};
    Shape updates_shape{2, 2, 2, 3, 3};
    Shape out_shape{2, 3, 3};
    auto R = make_shared<op::Parameter>(element::f32, ref_shape);
    auto I = make_shared<op::Parameter>(element::i32, indices_shape);
    auto U = make_shared<op::Parameter>(element::f32, updates_shape);
    auto G = make_shared<op::ScatterAdd>(R, I, U);
    auto f =
        make_shared<Function>(make_shared<op::GetOutputElement>(G, 0), ParameterVector{R, I, U});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto r = backend->create_tensor(element::f32, ref_shape);
    copy_data(r, vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9});
    auto i = backend->create_tensor(element::i32, indices_shape);
    copy_data(i, vector<int32_t>{0, 1, 1, 0, 0, 1, 1, 0});
    auto u = backend->create_tensor(element::f32, updates_shape);
    copy_data(u, vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                               1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8,
                               0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9,
                               1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8});
    auto result = backend->create_tensor(element::f32, out_shape);

    auto c = backend->compile(f);
    c->call_with_validate({result}, {r, i, u});
    EXPECT_TRUE(test::all_close_f(
        (vector<float>{0, 5, 10, 15, 20, 25, 30, 35, 40, 5, 10, 15, 20, 25, 30, 35, 40, 45}),
        read_vector<float>(result),
        MIN_FLOAT_TOLERANCE_BITS));
}

128 129
NGRAPH_TEST(${BACKEND_NAME}, scatter_add_2d_indices)
{
130
    Shape ref_shape{3};
131
    Shape indices_shape{2, 2};
132 133
    Shape updates_shape{2, 2};
    Shape out_shape{3};
134 135 136 137 138 139 140 141 142 143 144
    auto R = make_shared<op::Parameter>(element::f32, ref_shape);
    auto I = make_shared<op::Parameter>(element::i32, indices_shape);
    auto U = make_shared<op::Parameter>(element::f32, updates_shape);
    auto G = make_shared<op::ScatterAdd>(R, I, U);
    auto f =
        make_shared<Function>(make_shared<op::GetOutputElement>(G, 0), ParameterVector{R, I, U});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto r = backend->create_tensor(element::f32, ref_shape);
145
    copy_data(r, vector<float>{0, 1, 2});
146 147 148
    auto i = backend->create_tensor(element::i32, indices_shape);
    copy_data(i, vector<int32_t>{0, 1, 1, 0});
    auto u = backend->create_tensor(element::f32, updates_shape);
149
    copy_data(u, vector<float>{1, 2, 3, 4});
150 151 152 153 154
    auto result = backend->create_tensor(element::f32, out_shape);

    auto c = backend->compile(f);
    c->call_with_validate({result}, {r, i, u});
    EXPECT_TRUE(test::all_close_f(
155
        (vector<float>{5, 6, 2}), read_vector<float>(result), MIN_FLOAT_TOLERANCE_BITS));
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
}

NGRAPH_TEST(${BACKEND_NAME}, scatter_add_1d_indices)
{
    Shape ref_shape{2, 3, 3};
    Shape indices_shape{2};
    Shape updates_shape{2, 3, 3};
    Shape out_shape{2, 3, 3};
    auto R = make_shared<op::Parameter>(element::f32, ref_shape);
    auto I = make_shared<op::Parameter>(element::i32, indices_shape);
    auto U = make_shared<op::Parameter>(element::f32, updates_shape);
    auto G = make_shared<op::ScatterAdd>(R, I, U);
    auto f =
        make_shared<Function>(make_shared<op::GetOutputElement>(G, 0), ParameterVector{R, I, U});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto r = backend->create_tensor(element::f32, ref_shape);
    copy_data(r, vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9});
    auto i = backend->create_tensor(element::i32, indices_shape);
    copy_data(i, vector<int32_t>{1, 0});
    auto u = backend->create_tensor(element::f32, updates_shape);
    copy_data(u, vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8});
    auto result = backend->create_tensor(element::f32, out_shape);

    auto c = backend->compile(f);
    c->call_with_validate({result}, {r, i, u});
    EXPECT_TRUE(test::all_close_f(
        (vector<float>{0, 2, 4, 6, 8, 10, 12, 14, 16, 2, 4, 6, 8, 10, 12, 14, 16, 18}),
        read_vector<float>(result),
        MIN_FLOAT_TOLERANCE_BITS));
}

NGRAPH_TEST(${BACKEND_NAME}, scatter_add_scalar_indices)
{
    Shape ref_shape{2, 3, 3};
    Shape indices_shape{};
    Shape updates_shape{3, 3};
    Shape out_shape{2, 3, 3};
    auto R = make_shared<op::Parameter>(element::f32, ref_shape);
    auto I = make_shared<op::Parameter>(element::i32, indices_shape);
    auto U = make_shared<op::Parameter>(element::f32, updates_shape);
    auto G = make_shared<op::ScatterAdd>(R, I, U);
    auto f =
        make_shared<Function>(make_shared<op::GetOutputElement>(G, 0), ParameterVector{R, I, U});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto r = backend->create_tensor(element::f32, ref_shape);
    copy_data(r, vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9});
    auto i = backend->create_tensor(element::i32, indices_shape);
    copy_data(i, vector<int32_t>{1});
    auto u = backend->create_tensor(element::f32, updates_shape);
    copy_data(u, vector<float>{1, 2, 3, 4, 5, 6, 7, 8, 9});
    auto result = backend->create_tensor(element::f32, out_shape);

    auto c = backend->compile(f);
    c->call_with_validate({result}, {r, i, u});
    EXPECT_TRUE(test::all_close_f(
        (vector<float>{0, 1, 2, 3, 4, 5, 6, 7, 8, 2, 4, 6, 8, 10, 12, 14, 16, 18}),
        read_vector<float>(result),
        MIN_FLOAT_TOLERANCE_BITS));
}

NGRAPH_TEST(${BACKEND_NAME}, scatter_nd_add_batch_2d_to_3d)
{
    Shape ref_shape{3, 3, 3};
    Shape indices_shape{2, 1};
    Shape updates_shape{2, 3, 3};
    Shape out_shape{3, 3, 3};
    auto R = make_shared<op::Parameter>(element::f32, ref_shape);
    auto I = make_shared<op::Parameter>(element::i32, indices_shape);
    auto U = make_shared<op::Parameter>(element::f32, updates_shape);
    auto G = make_shared<op::ScatterNDAdd>(R, I, U);
    auto f =
        make_shared<Function>(make_shared<op::GetOutputElement>(G, 0), ParameterVector{R, I, U});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto r = backend->create_tensor(element::f32, ref_shape);
    copy_data(r, vector<float>{1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5,
                               5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9});
    auto i = backend->create_tensor(element::i32, indices_shape);
    copy_data(i, vector<int32_t>{0, 2});
    auto u = backend->create_tensor(element::f32, updates_shape);
    copy_data(u, vector<float>{1, 1, 1, 2, 2, 2, 3, 3, 3, 7, 7, 7, 8, 8, 8, 9, 9, 9});
    auto result = backend->create_tensor(element::f32, out_shape);

    auto c = backend->compile(f);
    c->call_with_validate({result}, {r, i, u});
    EXPECT_TRUE(test::all_close_f((vector<float>{2, 2, 2, 4, 4,  4,  6,  6,  6,  4,  4,  4,  5, 5,
                                                 5, 6, 6, 6, 14, 14, 14, 16, 16, 16, 18, 18, 18}),
                                  read_vector<float>(result),
                                  MIN_FLOAT_TOLERANCE_BITS));
}

NGRAPH_TEST(${BACKEND_NAME}, scatter_nd_add_2d_to_3d)
{
    Shape ref_shape{3, 3, 3};
    Shape indices_shape{1};
    Shape updates_shape{3, 3};
    Shape out_shape{3, 3, 3};
    auto R = make_shared<op::Parameter>(element::f32, ref_shape);
    auto I = make_shared<op::Parameter>(element::i32, indices_shape);
    auto U = make_shared<op::Parameter>(element::f32, updates_shape);
    auto G = make_shared<op::ScatterNDAdd>(R, I, U);
    auto f =
        make_shared<Function>(make_shared<op::GetOutputElement>(G, 0), ParameterVector{R, I, U});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto r = backend->create_tensor(element::f32, ref_shape);
    copy_data(r, vector<float>{1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5,
                               5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9});
    auto i = backend->create_tensor(element::i32, indices_shape);
    copy_data(i, vector<int32_t>{0});
    auto u = backend->create_tensor(element::f32, updates_shape);
    copy_data(u, vector<float>{1, 1, 1, 2, 2, 2, 3, 3, 3});
    auto result = backend->create_tensor(element::f32, out_shape);

    auto c = backend->compile(f);
    c->call_with_validate({result}, {r, i, u});
    EXPECT_TRUE(test::all_close_f((vector<float>{2, 2, 2, 4, 4, 4, 6, 6, 6, 4, 4, 4, 5, 5,
                                                 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9}),
                                  read_vector<float>(result),
                                  MIN_FLOAT_TOLERANCE_BITS));
}