cpu_fusion.cpp 148 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
16 17 18 19 20 21 22 23

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
24
#include "ngraph/autodiff/adjoints.hpp"
Louis Feng's avatar
Louis Feng committed
25
#include "ngraph/file_util.hpp"
26 27 28
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
29
#include "ngraph/op/batch_norm.hpp"
30
#include "ngraph/op/concat.hpp"
31
#include "ngraph/op/get_output_element.hpp"
32
#include "ngraph/op/max_pool.hpp"
33
#include "ngraph/op/negative.hpp"
34
#include "ngraph/op/parameter.hpp"
35
#include "ngraph/op/relu.hpp"
36
#include "ngraph/op/sigmoid.hpp"
37
#include "ngraph/op/sum.hpp"
38
#include "ngraph/op/tanh.hpp"
39
#include "ngraph/pass/algebraic_simplification.hpp"
40
#include "ngraph/pass/core_fusion.hpp"
41 42
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
Louis Feng's avatar
Louis Feng committed
43 44
#include "ngraph/pass/reshape_elimination.hpp"
#include "ngraph/pass/visualize_tree.hpp"
45 46
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp"
47
#include "ngraph/pattern/op/skip.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
48
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
49
#include "ngraph/runtime/cpu/cpu_tensor_view.hpp"
50
#include "ngraph/runtime/cpu/op/batch_dot.hpp"
51
#include "ngraph/runtime/cpu/op/batch_norm_relu.hpp"
52
#include "ngraph/runtime/cpu/op/bounded_relu.hpp"
gaurides's avatar
gaurides committed
53
#include "ngraph/runtime/cpu/op/conv_add.hpp"
54
#include "ngraph/runtime/cpu/op/conv_bias.hpp"
55
#include "ngraph/runtime/cpu/op/conv_relu.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
56
#include "ngraph/runtime/cpu/op/convert_layout.hpp"
57
#include "ngraph/runtime/cpu/op/group_conv.hpp"
58
#include "ngraph/runtime/cpu/op/group_conv_bias.hpp"
59
#include "ngraph/runtime/cpu/op/leaky_relu.hpp"
60
#include "ngraph/runtime/cpu/op/loop_kernel.hpp"
61
#include "ngraph/runtime/cpu/op/lstm.hpp"
62
#include "ngraph/runtime/cpu/op/matmul_bias.hpp"
63
#include "ngraph/runtime/cpu/op/rnn.hpp"
64
#include "ngraph/runtime/cpu/op/sigmoid_mul.hpp"
65
#include "ngraph/runtime/cpu/op/update_slice.hpp"
66
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
67
#include "ngraph/runtime/cpu/pass/cpu_loop_kernel_fusion.hpp"
68
#include "ngraph/runtime/cpu/pass/cpu_mat_fusion.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
69
#include "ngraph/runtime/cpu/pass/cpu_post_layout_optimizations.hpp"
70
#include "ngraph/runtime/cpu/pass/cpu_rnn_fusion.hpp"
71
#include "ngraph/runtime/cpu/pass/cpu_workspace_insertion.hpp"
72 73
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
74
#include "nlohmann/json.hpp"
75
#include "util/all_close.hpp"
Pruthvi's avatar
Pruthvi committed
76 77
#include "util/autodiff/backprop_function.hpp"
#include "util/autodiff/numeric_compare.hpp"
78
#include "util/matcher.hpp"
79
#include "util/random.hpp"
80
#include "util/random.hpp"
81
#include "util/test_tools.hpp"
82

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
using namespace ngraph;
using namespace std;

TEST(cpu_fusion, gemm_pattern)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;

    auto W = std::make_shared<pattern::op::Label>(A);
    auto x = std::make_shared<pattern::op::Label>(B);

    auto reshape_pred = [](std::shared_ptr<Node> n) {
        return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
    };

106 107
    auto skip_w = std::make_shared<pattern::op::Skip>(W, reshape_pred);
    auto skip_x = std::make_shared<pattern::op::Skip>(x, reshape_pred);
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    auto pdot = make_shared<op::Dot>(skip_w, skip_x);
    auto b = std::make_shared<pattern::op::Label>(C);
    auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0});
    auto padd = pdot + pbroadcast;

    TestMatcher n(nullptr);
    ASSERT_TRUE(n.match(padd, add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape());
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape());
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto re_add = re_dot + broadcast;
    ASSERT_TRUE(n.match(padd, re_add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

129 130 131 132 133 134 135 136 137 138 139 140
    auto cg = make_shared<op::MatmulBias>(
        W, x, C, W->get_shape(), x->get_shape(), false, false, AxisSet{0});
}

TEST(cpu_fusion, gemm_cpu_broadcast_row)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

141
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
142 143

    auto cg = make_shared<op::MatmulBias>(
144
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{0});
145

146
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
147

148
    auto backend = runtime::Backend::create("CPU");
149

150 151 152
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
153 154 155 156 157 158

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

159 160
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {result}, {a, b});
161 162
    vector<float> expected{11, 30, 38, 111};
    EXPECT_EQ(read_vector<float>(result), expected);
163 164
}

165 166 167 168 169 170 171 172
TEST(cpu_fusion, gemm_cpu_broadcast_column)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

173
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
174 175

    auto cg = make_shared<op::MatmulBias>(
176
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{1});
177

178
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
179

180
    auto backend = runtime::Backend::create("CPU");
181

182 183 184
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
185 186 187 188 189 190

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

191 192
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {result}, {a, b});
193 194
    vector<float> expected{11, 29, 39, 111};
    EXPECT_EQ(read_vector<float>(result), expected);
195 196 197
}

TEST(cpu_fusion, gemm_cpu_broadcast_matrix)
198 199 200 201 202 203 204 205 206 207 208 209 210
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1});
211 212
    auto cg = make_shared<op::MatmulBias>(
        A, B, one, A->get_shape(), B->get_shape(), true, true, AxisSet{0, 1});
213

214
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
215

216
    auto backend = runtime::Backend::create("CPU");
217

218 219 220
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
221 222 223 224 225 226

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

227 228
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {result}, {a, b});
229 230 231 232
    vector<float> expected{10, 28, 37, 109};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

233 234 235 236 237 238 239 240 241 242 243 244 245 246
TEST(cpu_fusion, gemm_cpu_no_bias)
{
    auto shapeA = Shape{3, 2};
    auto shapeB = Shape{2, 3};
    auto shapeC = Shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto cg =
        make_shared<op::MatmulBias>(A, B, nullptr, A->get_shape(), B->get_shape(), true, true);

247
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
248

249
    auto backend = runtime::Backend::create("CPU");
250

251 252 253
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
254 255 256 257 258 259

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

260 261
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {result}, {a, b});
262 263 264 265
    vector<float> expected{9, 27, 36, 108};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
TEST(cpu_fusion, cpu_fusion_pass_basic)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
281 282
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
283
    auto func = make_shared<Function>(graph, ParameterVector{A, B, C});
284
    pass_manager.run_passes(func);
285
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
286 287
}

288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
TEST(cpu_fusion, commutative_matmul_bias)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = broadcast + dot;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
303 304
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
305
    auto func = make_shared<Function>(graph, ParameterVector{A, B, C});
306
    pass_manager.run_passes(func);
307
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
308 309
}

310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);
    auto b = make_shared<op::Parameter>(element::f32, shape_b);

    auto mmb = std::make_shared<op::MatmulBias>(
        W, x, nullptr, W->get_shape(), x->get_shape(), false, false);
    auto broadcast = std::make_shared<op::Broadcast>(b, mmb->get_shape(), AxisSet{0});
    auto add = mmb + broadcast;

    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
326 327
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
328
    auto func = make_shared<Function>(graph, ParameterVector{W, x, b});
329
    pass_manager.run_passes(func);
330
    auto gmm = graph->get_argument(0);
331
    ASSERT_TRUE(std::dynamic_pointer_cast<op::MatmulBias>(gmm));
332
    ASSERT_EQ(gmm->get_argument(2), b);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
}

TEST(cpu_fusion, cpu_fusion_pass_matmul_no_bias)
{
    Shape shape_w{4, 2};
    Shape shape_x{1, 4};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);

    auto reshape_w = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{2, 4});
    auto reshape_x = std::make_shared<op::Reshape>(x, AxisVector{1, 0}, Shape{4, 1});
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto graph = make_shared<op::Abs>(re_dot);

    pass::Manager pass_manager;
348 349
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
350
    auto func = make_shared<Function>(graph, ParameterVector{W, x});
351 352 353 354 355
    pass_manager.run_passes(func);
    size_t mmb = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmb, 1);
}

356 357 358 359 360 361 362
TEST(cpu_fusion, gemm_mlp)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass::Manager pass_manager;
363 364
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
365
    pass_manager.run_passes(func);
366 367
    auto mmbs = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmbs, 3);
368 369 370 371 372 373 374
}

TEST(cpu_fusion, fuse_fprop_bn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_before_fusion.png");
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
375 376
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
377 378 379 380 381 382
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_after_fusion.png");
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_fprop_b2c3h2w2.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
383
    size_t ccg = count_ops_of_type<op::BatchNormTraining>(func);
384 385
    ASSERT_EQ(ccg, 1);
}
nikolay.korovaiko's avatar
nikolay.korovaiko committed
386

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
TEST(cpu_fusion, zero_padded_reshaped_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 2, 2, 1});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 1, 0, 0}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto reshape = make_shared<op::Reshape>(pad, AxisVector{0, 3, 1, 2}, Shape{1, 1, 3, 3});

    auto conv = make_shared<op::Convolution>(reshape,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

407
    auto func = make_shared<Function>(conv, ParameterVector{X, F});
408 409 410

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

411 412
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

TEST(cpu_fusion, zero_padded_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::Convolution>(pad,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

435
    auto func = make_shared<Function>(conv, ParameterVector{X, F});
436 437 438

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

439 440
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

TEST(cpu_fusion, non_zero_padded_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::Convolution>(pad,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

463
    auto func = make_shared<Function>(conv, ParameterVector{X, F});
464 465 466

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

467 468
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
469 470 471

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);
}
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

TEST(cpu_fusion, zero_padded_conv_backprop_filters)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::ConvolutionBackpropFilters>(pad,
                                                            Shape{1, 1, 2, 2},
                                                            F,
                                                            Strides{1, 1},
                                                            Strides{1, 1},
                                                            CoordinateDiff{0, 0},
                                                            CoordinateDiff{0, 0},
                                                            Strides{1, 1});

492
    auto func = make_shared<Function>(conv, ParameterVector{X, F});
493 494 495

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

496 497
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
498 499 500 501

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

nikolay.korovaiko's avatar
nikolay.korovaiko committed
502 503 504 505
TEST(cpu_fusion, fuse_conv_bias)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
506 507
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::DIFFERENTIABLE_FUSIONS);
nikolay.korovaiko's avatar
nikolay.korovaiko committed
508 509 510 511 512 513 514 515
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "conv_bias.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionBias>(func);
    ASSERT_GT(cb, 0);
}
516

Louis Feng's avatar
Louis Feng committed
517
struct ConvolutionBiasTestData
Louis Feng's avatar
Louis Feng committed
518
{
Louis Feng's avatar
Louis Feng committed
519 520 521 522 523 524
    size_t n{0};
    size_t c{0};
    size_t filter{0};
    size_t kernel_size{0};
    size_t w{0};
    size_t h{0};
525 526 527 528 529 530 531 532
    shared_ptr<runtime::Tensor> data_val;
    shared_ptr<runtime::Tensor> weights_val;
    shared_ptr<runtime::Tensor> bias_val;
    shared_ptr<runtime::Tensor> result_val;
    shared_ptr<runtime::Tensor> delta_val;
    shared_ptr<runtime::Tensor> d_data_val;
    shared_ptr<runtime::Tensor> d_weights_val;
    shared_ptr<runtime::Tensor> d_bias_val;
Louis Feng's avatar
Louis Feng committed
533 534 535 536 537 538 539 540 541 542 543 544 545 546
    vector<float> expected_result_val;
    vector<float> expected_d_data_val;
    vector<float> expected_d_weights_val;
    vector<float> expected_d_bias_val;

    Shape data_shape;
    Shape weights_shape;
    Shape bias_shape;
    Shape result_shape;
    shared_ptr<op::Parameter> data;
    shared_ptr<op::Parameter> weights;
    shared_ptr<op::Parameter> bias;
    shared_ptr<op::Parameter> delta;

547
    void n1c1h3w3(runtime::Backend* backend)
Louis Feng's avatar
Louis Feng committed
548
    {
Louis Feng's avatar
Louis Feng committed
549 550 551 552 553 554 555 556 557 558 559 560 561
        n = 1;
        c = 1;
        filter = 1;
        kernel_size = 3;
        w = 3;
        h = w;

        data_shape = Shape{n, c, h, w};
        data = make_shared<op::Parameter>(element::f32, data_shape);
        weights_shape = Shape{filter, c, kernel_size, kernel_size};
        weights = make_shared<op::Parameter>(element::f32, weights_shape);
        bias_shape = Shape{filter};
        bias = make_shared<op::Parameter>(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
562
        result_shape = Shape{n, filter, 1, 1};
Louis Feng's avatar
Louis Feng committed
563

564
        data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
565 566 567 568 569 570 571 572 573 574
        copy_data(data_val,
                  vector<float>{-0.67765152f,
                                0.10073948f,
                                0.57595438f,
                                -0.3469252f,
                                -0.22134334f,
                                -1.80471897f,
                                -0.80642909f,
                                1.22033095f,
                                2.23235631f});
575
        weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
576 577 578 579 580 581 582 583 584 585
        copy_data(weights_val,
                  vector<float>{0.20070229f,
                                -0.54968649f,
                                -0.19819015f,
                                -0.38577855f,
                                1.37109005f,
                                -0.23789984f,
                                0.14867957f,
                                -0.49851316f,
                                -0.84815776f});
586
        bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
587 588
        copy_data(bias_val, vector<float>{0.07811152f});

589
        result_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
590 591 592
        copy_data(result_val, vector<float>{0});

        delta = make_shared<op::Parameter>(element::f32, result_shape);
593
        delta_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
594 595
        copy_data(delta_val, vector<float>{-2.58936238f});

596
        d_data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
597
        copy_data(d_data_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
598

599
        d_weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
600
        copy_data(d_weights_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
601

602
        d_bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
603 604
        copy_data(d_bias_val, vector<float>{0});

Louis Feng's avatar
Louis Feng committed
605
        expected_result_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
        expected_d_data_val = vector<float>{-0.51969099f,
                                            1.42333758f,
                                            0.5131861f,
                                            0.99892044f,
                                            -3.5502491f,
                                            0.61600888f,
                                            -0.3849853f,
                                            1.29083121f,
                                            2.19618773f};
        expected_d_weights_val = vector<float>{1.7546854f,
                                               -0.26085103f,
                                               -1.49135458f,
                                               0.89831507f,
                                               0.57313812f,
                                               4.67307138f,
                                               2.08813715f,
                                               -3.15987897f,
                                               -5.7803793f};
Louis Feng's avatar
Louis Feng committed
624
        expected_d_bias_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
625
    }
Louis Feng's avatar
Louis Feng committed
626
};
Louis Feng's avatar
Louis Feng committed
627

Louis Feng's avatar
Louis Feng committed
628
TEST(cpu_fusion, conv_bias_fprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
629
{
630
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
631 632

    ConvolutionBiasTestData conv_test;
633
    conv_test.n1c1h3w3(backend.get());
Louis Feng's avatar
Louis Feng committed
634 635 636 637

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
638
    auto f = make_shared<Function>(
639
        convolution_bias, ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
640

641 642
    auto handle = backend->compile(f);
    backend->call_with_validate(handle,
643 644
                                {conv_test.result_val},
                                {conv_test.data_val, conv_test.weights_val, conv_test.bias_val});
Louis Feng's avatar
Louis Feng committed
645
    auto result_vec = read_vector<float>(conv_test.result_val);
Louis Feng's avatar
Louis Feng committed
646

Louis Feng's avatar
Louis Feng committed
647 648
    EXPECT_TRUE(
        test::all_close(conv_test.expected_result_val, read_vector<float>(conv_test.result_val)));
Louis Feng's avatar
Louis Feng committed
649 650
}

Louis Feng's avatar
Louis Feng committed
651
TEST(cpu_fusion, conv_bias_bprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
652
{
653
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
654

Louis Feng's avatar
Louis Feng committed
655
    ConvolutionBiasTestData conv_test;
656
    conv_test.n1c1h3w3(backend.get());
Louis Feng's avatar
Louis Feng committed
657 658 659 660

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
661
    auto f = make_shared<Function>(
662
        convolution_bias, ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
663

664 665 666 667 668
    ngraph::autodiff::Adjoints adjoints(NodeVector{convolution_bias}, NodeVector{conv_test.delta});

    auto d_data = adjoints.backprop_node(conv_test.data);
    auto d_weights = adjoints.backprop_node(conv_test.weights);
    auto d_bias = adjoints.backprop_node(conv_test.bias);
Louis Feng's avatar
Louis Feng committed
669

Louis Feng's avatar
Louis Feng committed
670 671
    auto df = make_shared<Function>(
        NodeVector{d_data, d_weights, d_bias},
672
        ParameterVector{conv_test.data, conv_test.weights, conv_test.bias, conv_test.delta});
673
    backend->call_with_validate(
674
        backend->compile(df),
675 676
        {conv_test.d_data_val, conv_test.d_weights_val, conv_test.d_bias_val},
        {conv_test.data_val, conv_test.weights_val, conv_test.bias_val, conv_test.delta_val});
Louis Feng's avatar
Louis Feng committed
677

Louis Feng's avatar
Louis Feng committed
678 679 680 681 682 683
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_data_val, read_vector<float>(conv_test.d_data_val)));
    EXPECT_TRUE(test::all_close(conv_test.expected_d_weights_val,
                                read_vector<float>(conv_test.d_weights_val)));
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_bias_val, read_vector<float>(conv_test.d_bias_val)));
Louis Feng's avatar
Louis Feng committed
684
}
Pruthvi's avatar
Pruthvi committed
685

686 687 688 689 690 691
TEST(cpu_fusion, conv_bias_bprop)
{
    Shape shape{2, 2, 1, 1};
    auto data_batch = std::make_shared<op::Parameter>(element::f32, shape);
    auto filters = std::make_shared<op::Parameter>(element::f32, shape);
    auto delta = std::make_shared<op::Parameter>(element::f32, shape);
692 693
    auto bias = make_shared<op::Parameter>(element::f32, Shape{shape[0]});
    auto pbroadcast = std::make_shared<op::Broadcast>(bias, shape, AxisSet{1, 2, 3});
694 695 696 697 698 699
    auto conv = std::make_shared<op::Convolution>(data_batch, filters);
    auto conv_bias = std::make_shared<op::Add>(conv, pbroadcast);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.register_pass<pass::VisualizeTree>("conv_bias_bprop_fusion");
700
    auto f = make_shared<Function>(conv_bias, ParameterVector{data_batch, filters, bias});
701 702 703 704 705 706 707 708

    ngraph::autodiff::Adjoints adjoints(NodeVector{conv_bias}, NodeVector{delta});

    auto d_data = adjoints.backprop_node(data_batch);
    auto d_weights = adjoints.backprop_node(filters);
    auto d_bias = adjoints.backprop_node(bias);

    auto df = make_shared<Function>(NodeVector{d_data, d_weights, d_bias},
709
                                    ParameterVector{data_batch, filters, bias, delta});
710 711 712 713 714 715

    pass_manager.run_passes(df);
    size_t ccg = count_ops_of_type<op::ConvolutionBiasBackpropFiltersBias>(df);
    ASSERT_EQ(ccg, 1);
}

716 717 718 719 720 721 722 723 724 725 726 727
TEST(cpu_fusion, batchnorm_fprop_relu_b1c2h2w2)
{
    auto input_shape = Shape{1, 2, 2, 2};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{2};
    auto var_shape = Shape{2};
    auto gamma_shape = Shape{2};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{2};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{1, 2, 2, 2};
728
    auto bn = make_shared<op::BatchNormTraining>(input, gamma, beta, eps);
729 730 731 732 733 734 735 736 737 738 739 740 741

    auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);
    // Note, op::Splice is used to break Relu(BatchNorm) fusion
    // otherwise we will be comparing two BatchNormRelus
    // Unfortunately, we can't use INTERPRETER for
    // verifying the results as it doesn't implement
    // BatchNorm op.
    auto slice =
        std::make_shared<op::Slice>(output_rt, Coordinate{0, 0, 0, 0}, Coordinate{1, 2, 2, 2});
    auto output_relu = std::make_shared<op::Relu>(slice);
    auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
    auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

742
    auto bn_relu = make_shared<op::BatchNormTrainingRelu>(eps, gamma, beta, input);
743 744 745 746 747 748
    auto output_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 0);
    auto mean_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 1);
    auto variance_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 2);

    auto f = make_shared<Function>(
        NodeVector{output_relu, mean_rt, variance_rt, output_rt_bnr, mean_rt_bnr, variance_rt_bnr},
749
        ParameterVector{input, gamma, beta});
750
    auto backend = runtime::Backend::create("CPU");
751 752

    // Create some tensors for input/output
753
    auto input_t = backend->create_tensor(element::f32, Shape{1, 2, 2, 2});
754 755 756 757 758 759 760 761 762 763

    copy_data(input_t,
              vector<float>{0.54881352f,
                            0.71518934f,
                            0.60276335f,
                            0.54488319f,
                            0.42365479f,
                            0.64589411f,
                            0.4375872f,
                            0.89177299f});
764
    auto gamma_t = backend->create_tensor(element::f32, gamma_shape);
765
    copy_data(gamma_t, vector<float>{1.0f, 1.0f});
766
    auto beta_t = backend->create_tensor(element::f32, beta_shape);
767
    copy_data(beta_t, vector<float>{0.0f, 0.0f});
768 769 770 771 772 773 774 775
    auto bn_output = backend->create_tensor(element::f32, shape_r);
    auto result_mean = backend->create_tensor(element::f32, mean_shape);
    auto result_variance = backend->create_tensor(element::f32, var_shape);

    auto bn_output_bnr = backend->create_tensor(element::f32, shape_r);
    auto result_mean_bnr = backend->create_tensor(element::f32, mean_shape);
    auto result_variance_bnr = backend->create_tensor(element::f32, var_shape);

776 777
    auto handle = backend->compile(f);
    backend->call_with_validate(handle,
778 779 780 781 782 783 784
                                {bn_output,
                                 result_mean,
                                 result_variance,
                                 bn_output_bnr,
                                 result_mean_bnr,
                                 result_variance_bnr},
                                {input_t, gamma_t, beta_t});
785 786 787 788 789 790 791 792

    EXPECT_TRUE(test::all_close(read_vector<float>(bn_output), read_vector<float>(bn_output_bnr)));
    EXPECT_TRUE(
        test::all_close(read_vector<float>(result_mean), read_vector<float>(result_mean_bnr)));
    EXPECT_TRUE(test::all_close(read_vector<float>(result_variance),
                                read_vector<float>(result_variance_bnr)));
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
static void test_batchnorm_fprop_relu(Shape input_shape)
{
    auto make_bn_relu_function = [&]() {
        auto c_axis = input_shape[1];
        auto input = make_shared<op::Parameter>(element::f32, input_shape);
        auto mean_shape = Shape{c_axis};
        auto var_shape = Shape{c_axis};
        auto gamma_shape = Shape{c_axis};
        auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
        auto beta_shape = Shape{c_axis};
        auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
        double eps = 0.001;
        auto shape_r = input_shape;
        auto bn = make_shared<op::BatchNormTraining>(eps, gamma, beta, input);
        auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);

        auto output_relu = std::make_shared<op::Relu>(output_rt);
        auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
        auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

        auto f = make_shared<Function>(NodeVector{output_relu, mean_rt, variance_rt},
                                       ParameterVector{input, gamma, beta});
        return f;
    };
    auto cpu_f = make_bn_relu_function();
    auto int_f = make_bn_relu_function();
    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, batchnorm_fprop_relu)
{
    test_batchnorm_fprop_relu(Shape{1, 2, 2, 2});
    test_batchnorm_fprop_relu(Shape{1, 2, 2, 2, 2});
    test_batchnorm_fprop_relu(Shape{2, 2, 2, 4, 4});
}

843 844 845 846 847 848 849 850
TEST(cpu_fusion, fuse_conv_relu)
{
    auto A = std::make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = std::make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto convolution = std::make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto relu = std::make_shared<op::Relu>(convolution);
    auto abs_node =
        std::make_shared<op::Abs>(std::make_shared<op::Abs>(std::make_shared<op::Abs>(relu)));
851
    auto func = make_shared<Function>(abs_node, ParameterVector{A, weights});
852 853

    pass::Manager pass_manager;
854 855
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
856 857 858 859 860
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionRelu>(func);
    ASSERT_GT(cb, 0);
}

861
TEST(cpu_fusion, conv_relu_n2c1h2w2_2)
862 863 864 865
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};

866 867 868 869 870
    auto make_int_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto relu = std::make_shared<op::Relu>(conv);
871
        auto f = make_shared<Function>(NodeVector{relu}, ParameterVector{A, weights});
872 873
        return f;
    };
874

875
    auto int_f = make_int_function();
876

877 878 879 880 881
    auto make_cpu_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto conv_relu = std::make_shared<op::ConvolutionRelu>(conv);
882
        auto f = make_shared<Function>(NodeVector{conv_relu}, ParameterVector{A, weights});
883 884
        return f;
    };
885

886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916
TEST(cpu_fusion, conv_bias_relu_n2c1h2w2_2)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_int_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto relu = std::make_shared<op::Relu>(conv_bias);
917
        auto f = make_shared<Function>(NodeVector{relu}, ParameterVector{A, weights, bias});
918 919 920 921 922 923 924 925 926 927
        return f;
    };

    auto int_f = make_int_function();

    auto make_cpu_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
928
        auto conv_bias_relu = std::make_shared<op::ConvolutionBias>(conv, bias, true);
929 930
        auto f =
            make_shared<Function>(NodeVector{conv_bias_relu}, ParameterVector{A, weights, bias});
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
        return f;
    };

    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
TEST(cpu_fusion, conv_horizontal_fusion)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights1 = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv1 = std::make_shared<op::Convolution>(A, weights1, Strides{2, 2}, Strides{1, 1});
        auto bias1 = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias1 =
            conv1 + std::make_shared<op::Broadcast>(bias1, conv1->get_shape(), AxisSet{0, 2, 3});
        auto relu1 = std::make_shared<op::Relu>(conv_bias1);

        auto weights2 = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv2 = std::make_shared<op::Convolution>(A, weights2, Strides{2, 2}, Strides{1, 1});
        auto bias2 = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias2 =
            conv2 + std::make_shared<op::Broadcast>(bias2, conv2->get_shape(), AxisSet{0, 2, 3});
        auto relu2 = std::make_shared<op::Relu>(conv_bias2);

        auto concat = std::make_shared<op::Concat>(NodeVector{relu1, relu2}, 1);
        auto f = make_shared<Function>(NodeVector{concat},
976
                                       ParameterVector{A, weights1, bias1, weights2, bias2});
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
        return f;
    };
    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f},
        {3., 3., 3., 3.},
        {0.2f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));

    size_t cpu_cb = count_ops_of_type<op::ConvolutionBias>(cpu_f);
    ASSERT_EQ(cpu_cb, 1);
}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
// ConvolutionBiasAdd relies on an in-place fused MKLDNN kernel.
// Need to ensure that it is fused only when in-place buffer allocation is feasible
shared_ptr<Function> gen_conv_bias_add(bool param_input, bool result_output)
{
    auto A = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
    auto bias = make_shared<op::Parameter>(element::f32, Shape{1});
    auto conv = make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto bias_broadcast = make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
    auto convbias = conv + bias_broadcast;
    auto B = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto abs_B = make_shared<op::Abs>(B);
    auto add =
        param_input ? make_shared<op::Add>(convbias, B) : make_shared<op::Add>(convbias, abs_B);
    auto abs = make_shared<op::Abs>(add);

1019 1020
    return result_output ? make_shared<Function>(add, ParameterVector{A, weights, bias, B})
                         : make_shared<Function>(abs, ParameterVector{A, weights, bias, B});
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
}

TEST(cpu_fusion, fuse_conv_bias_add)
{
    auto func_fuse = gen_conv_bias_add(false, false);
    auto func_nofuse1 = gen_conv_bias_add(true, false);
    auto func_nofuse2 = gen_conv_bias_add(false, true);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func_fuse);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_fuse), 1);

    pass_manager.run_passes(func_nofuse1);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_nofuse1), 0);

    pass_manager.run_passes(func_nofuse2);
gaurides's avatar
gaurides committed
1038
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_nofuse2), 1);
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
}

TEST(cpu_fusion, conv_bias_add)
{
    auto int_f = gen_conv_bias_add(false, false);
    auto cpu_f = gen_conv_bias_add(false, false);

    vector<vector<float>> args{{1.25f, 2.25f, 5.25f, 6.25f, -1.25f, -1.25f, 3.25f, -4.25f},
                               {-1.25f},
                               {2.25f},
                               {1.25f, 2.25f, -3.25f, 2.25f, 4.25f, 4.25f, 1.25f, 2.25f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

gaurides's avatar
gaurides committed
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
// ConvolutionAdd relies on an in-place fused MKLDNN kernel.
// Need to ensure that it is fused only when in-place buffer allocation is feasible
shared_ptr<Function> gen_conv_add(bool param_input, bool result_output)
{
    auto A = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
    auto conv = make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto B = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto abs_B = make_shared<op::Abs>(B);
    auto add = param_input ? make_shared<op::Add>(conv, B) : make_shared<op::Add>(conv, abs_B);
    auto abs = make_shared<op::Abs>(add);

1068 1069
    return result_output ? make_shared<Function>(add, ParameterVector{A, weights, B})
                         : make_shared<Function>(abs, ParameterVector{A, weights, B});
gaurides's avatar
gaurides committed
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
}

TEST(cpu_fusion, fuse_conv_add)
{
    auto func_fuse = gen_conv_add(false, false);
    auto func_nofuse1 = gen_conv_add(true, false);
    auto func_nofuse2 = gen_conv_add(false, true);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func_fuse);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_fuse), 1);

    pass_manager.run_passes(func_nofuse1);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_nofuse1), 0);

    pass_manager.run_passes(func_nofuse2);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_nofuse2), 1);
}

TEST(cpu_fusion, conv_add)
{
    auto int_f = gen_conv_add(false, false);
    auto cpu_f = gen_conv_add(false, false);

    vector<vector<float>> args{{1.25f, 2.25f, 5.25f, 6.25f, -1.25f, -1.25f, 3.25f, -4.25f},
                               {-1.25f},
                               {1.25f, 2.25f, -3.25f, 2.25f, 4.25f, 4.25f, 1.25f, 2.25f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));

    int_f = gen_conv_add(false, true);
    cpu_f = gen_conv_add(false, true);

    int_results = execute(int_f, args, "INTERPRETER");
    cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
shared_ptr<Function> gen_groupconv_batchnorm(const bool add_goe,
                                             const bool with_relu,
                                             const Shape shape_in,
                                             const Shape shape_weights,
                                             const Shape shape_out,
                                             const size_t groups)
{
    auto input = make_shared<op::Parameter>(element::f32, shape_in);
    auto weights = make_shared<op::Parameter>(element::f32, shape_weights);

    unsigned long OC = shape_out.at(1);
    Shape shape_bn{OC};
    auto group_conv = make_shared<op::GroupConvolution>(input,
                                                        weights,
                                                        Strides{1, 1},
                                                        Strides{1, 1},
                                                        CoordinateDiff{0, 0},
                                                        CoordinateDiff{0, 0},
                                                        Strides{1, 1},
                                                        groups,
                                                        shape_out);

    double eps = 0.001;
    auto gamma = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto beta = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto mean = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto var = std::make_shared<op::Parameter>(element::f32, shape_bn);

    auto goe_bn = std::make_shared<op::GetOutputElement>(group_conv, 0);

    // Adding a goe will stop fusion since the patterns wont expect to see this op
    auto bn =
1143 1144
        add_goe ? std::make_shared<op::BatchNormInference>(goe_bn, gamma, beta, mean, var, eps)
                : std::make_shared<op::BatchNormInference>(group_conv, gamma, beta, mean, var, eps);
1145 1146 1147 1148
    if (with_relu)
    {
        auto prelu = std::make_shared<op::Relu>(bn);
        auto f = make_shared<Function>(NodeVector{prelu},
1149
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1150 1151 1152 1153 1154
        return f;
    }
    else
    {
        auto f = make_shared<Function>(NodeVector{bn},
1155
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        return f;
    }
}

void fuse_groupconv_batchnorm_helper(Shape shape_in,
                                     Shape shape_weights,
                                     Shape shape_r,
                                     size_t groups)
{
    auto func_fuse =
        gen_groupconv_batchnorm(false, false, shape_in, shape_weights, shape_r, groups);
    auto func_fuse2 =
        gen_groupconv_batchnorm(false, true, shape_in, shape_weights, shape_r, groups);

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(func_fuse);
        ASSERT_EQ(count_ops_of_type<op::GroupConvolutionBias>(func_fuse), 1);
    }

    {
        // test groupconv + batchnorm + relu fusion
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(func_fuse2);
        ASSERT_EQ(count_ops_of_type<op::GroupConvolutionBias>(func_fuse2), 1);
        ASSERT_EQ(count_ops_of_type<op::Relu>(func_fuse2), 0);
    }
}

void groupconv_batchnorm_test_val_helper(
    const bool with_relu, Shape shape_in, Shape shape_weights, Shape shape_r, size_t groups)
{
    shared_ptr<Function> fuse_func =
        gen_groupconv_batchnorm(false, with_relu, shape_in, shape_weights, shape_r, groups);
    shared_ptr<Function> nofuse_func =
        gen_groupconv_batchnorm(true, with_relu, shape_in, shape_weights, shape_r, groups);

    test::Uniform<float> rng(1.0f, 100.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : fuse_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto fuse_results = execute(fuse_func, args, "CPU");
    auto nofuse_results = execute(nofuse_func, args, "CPU");

    EXPECT_TRUE(test::all_close(fuse_results.at(0), nofuse_results.at(0)));
}

TEST(cpu_fusion, fuse_groupconv_batchnorm1)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{8, 10, 3, 3};
    Shape shape_r{1, 8, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 2);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 2);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 2);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm2)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{5, 4, 3, 3};
    Shape shape_r{1, 5, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 5);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 5);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 5);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm3)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{20, 1, 3, 3};
    Shape shape_r{1, 20, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 20);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 20);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 20);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm4)
{
    Shape shape_in{1, 20, 4, 4};
    Shape shape_weights{5, 20, 1, 1};
    Shape shape_r{1, 5, 4, 4};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 1);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 1);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 1);
}

1250 1251 1252 1253 1254 1255 1256 1257
std::vector<shared_ptr<runtime::Tensor>> rnn_matrix_fusion_eval(const size_t time_steps,
                                                                const Shape& data_shape,
                                                                const Shape& weights_shape,
                                                                const Shape& bias_shape,
                                                                const vector<float>& data_val,
                                                                const vector<float>& weights_val,
                                                                const vector<float>& bias_val,
                                                                const bool enable_pass)
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
{
    auto data = make_shared<op::Parameter>(element::f32, data_shape);
    auto weights = make_shared<op::Parameter>(element::f32, weights_shape);
    auto bias = make_shared<op::Parameter>(element::f32, bias_shape);

    // results from each time step
    NodeVector results;
    for (size_t t = 0; t < time_steps; ++t)
    {
        auto data_slice = make_shared<op::Slice>(
            data, Coordinate{0, t, 0}, Coordinate{data_shape[0], t + 1, data_shape[2]});
        auto data_reshape = make_shared<op::Reshape>(
            data_slice, AxisVector{0, 1, 2}, Shape{data_shape[0], data_shape[2]});
        auto weights_reshape = make_shared<op::Reshape>(
            weights, AxisVector{1, 0}, Shape{weights_shape[1], weights_shape[0]});
        auto dot = make_shared<op::Dot>(data_reshape, weights_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add = make_shared<op::Add>(dot, bias_broadcast);
        results.push_back(add);
    }
1278
    auto func = make_shared<Function>(results, ParameterVector{data, weights, bias});
1279 1280 1281 1282
    if (enable_pass)
    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1283 1284
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
            runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
1285 1286 1287 1288 1289 1290
        pass_manager.run_passes(func);
        // check all of our dot/add are converted to a single MatmulBias op.
        size_t count = count_ops_of_type<op::MatmulBias>(func);
        EXPECT_EQ(count, 1);
    }

1291
    auto backend = runtime::Backend::create("CPU");
1292

1293
    shared_ptr<runtime::Tensor> data_tensor =
1294
        backend->create_tensor(element::f32, data->get_shape());
1295
    shared_ptr<runtime::Tensor> weights_tensor =
1296
        backend->create_tensor(element::f32, weights->get_shape());
1297
    shared_ptr<runtime::Tensor> bias_tensor =
1298
        backend->create_tensor(element::f32, bias->get_shape());
1299

1300
    std::vector<shared_ptr<runtime::Tensor>> result_tensors;
1301 1302
    for (auto r : results)
    {
1303
        result_tensors.push_back(backend->create_tensor(element::f32, r->get_shape()));
1304 1305 1306 1307 1308
    }

    copy_data(data_tensor, data_val);
    copy_data(weights_tensor, weights_val);
    copy_data(bias_tensor, bias_val);
1309 1310
    backend->call_with_validate(
        backend->compile(func), result_tensors, {data_tensor, weights_tensor, bias_tensor});
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
    return result_tensors;
}

TEST(cpu_fusion, rnn_matrix_fusion_eval_pass)
{
    const size_t time_steps = 4;
    Shape data_shape{3, time_steps, 5};
    Shape weights_shape{6, data_shape[2]};
    Shape bias_shape{6};

    test::Uniform<float> rng{0, 1, 0};
    vector<float> data_val(shape_size(data_shape));
    vector<float> weights_val(shape_size(weights_shape));
    vector<float> bias_val(shape_size(bias_shape));
    rng.initialize(data_val);
    rng.initialize(weights_val);
    rng.initialize(bias_val);

1329
    std::vector<shared_ptr<runtime::Tensor>> result_expected = rnn_matrix_fusion_eval(
1330
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, false);
1331
    std::vector<shared_ptr<runtime::Tensor>> result_fused = rnn_matrix_fusion_eval(
1332 1333 1334 1335 1336 1337
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, true);
    for (size_t i = 0; i < result_expected.size(); ++i)
    {
        EXPECT_TRUE(test::all_close<float>(result_expected[i], result_fused[i]));
    }
}
1338 1339 1340 1341 1342

TEST(cpu_fusion, rnn_fusion_from_json_model)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1343 1344
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
1345 1346 1347 1348 1349 1350 1351
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/rnn-10-step-fusion-test.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    const size_t NUM_STEPS = 10;
1352
    auto mmb_predicate = [](std::shared_ptr<Node> node) {
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
        auto users = node->get_users();
        return users.size() == NUM_STEPS &&
               std::all_of(begin(users), end(users), [](std::shared_ptr<Node> n) {
                   return std::dynamic_pointer_cast<op::Slice>(n) != nullptr;
               });
    };

    auto mmbs = get_ops_of_type<op::MatmulBias>(func);
    ASSERT_TRUE(std::any_of(begin(mmbs), end(mmbs), mmb_predicate));
}
Nick Korovaiko's avatar
Nick Korovaiko committed
1363 1364 1365 1366 1367 1368 1369

TEST(cpu_fusion, weight_fusion)
{
    auto param = std::make_shared<op::Parameter>(element::f32, Shape{64});
    auto reshape_conv =
        std::make_shared<ngraph::op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto data_conv = std::make_shared<op::Parameter>(element::f32, Shape{16, 4, 7, 7});
Scott Cyphers's avatar
Scott Cyphers committed
1370
    auto tvt = reshape_conv->get_outputs().at(0).get_tensor_ptr().get();
1371
    auto lt_desc = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt);
Nick Korovaiko's avatar
Nick Korovaiko committed
1372 1373 1374 1375 1376 1377 1378
    auto cvt_lt_conv = std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv, lt_desc);
    auto conv = std::make_shared<ngraph::op::Convolution>(
        data_conv, cvt_lt_conv, Strides{1, 1}, Strides{1, 1});

    auto reshape_conv_bprop =
        std::make_shared<op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto dummy_arg_conv_bprop = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 7, 7});
Scott Cyphers's avatar
Scott Cyphers committed
1379
    auto tvt_bprop = reshape_conv_bprop->get_outputs().at(0).get_tensor_ptr().get();
1380
    auto lt_desc_bprop = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt_bprop);
Nick Korovaiko's avatar
Nick Korovaiko committed
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
    auto cvt_lt_conv_bprop =
        std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv_bprop, lt_desc_bprop);
    auto conv_bprop = std::make_shared<op::ConvolutionBackpropData>(Shape{1, 4, 7, 7},
                                                                    cvt_lt_conv_bprop,
                                                                    dummy_arg_conv_bprop,
                                                                    Strides{1, 1},
                                                                    Strides{1, 1},
                                                                    CoordinateDiff{0, 0},
                                                                    CoordinateDiff{0, 0},
                                                                    Strides{1, 1});

    auto conv_relu = std::make_shared<op::Relu>(conv);
    auto conv_bprop_abs = std::make_shared<op::Abs>(conv_bprop);

    auto f = make_shared<Function>(NodeVector{conv_relu, conv_bprop_abs},
1396
                                   ParameterVector{param, data_conv, dummy_arg_conv_bprop});
Nick Korovaiko's avatar
Nick Korovaiko committed
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUPostLayoutOptimizations>();
    pass_manager.run_passes(f);

    auto new_conv_bprop_data = conv_bprop_abs->get_argument(0);
    auto new_convert_layout = new_conv_bprop_data->get_argument(0);

    ASSERT_EQ(std::dynamic_pointer_cast<runtime::cpu::op::ConvertLayout>(
                  new_convert_layout->get_argument(0)),
              cvt_lt_conv);
}
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421

TEST(cpu_fusion, max_pool_with_indices)
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto C = std::make_shared<op::Parameter>(element::f32, max_pool->get_shape());

    ngraph::autodiff::Adjoints adjoints(NodeVector{max_pool}, NodeVector{C});

    auto dinput = adjoints.backprop_node(input);

1422
    auto df = std::make_shared<Function>(NodeVector{dinput}, ParameterVector{input, C});
1423

1424
    auto f = std::make_shared<Function>(NodeVector{max_pool}, ParameterVector{input});
1425 1426 1427 1428 1429 1430 1431 1432

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_before.pdf");
        pass_manager.run_passes(f);
    }

    {
1433
        NodeVector nv_cwi;
1434 1435
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before.pdf");
1436
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after.pdf");
        pass_manager.run_passes(df);
    }

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_after.pdf");
        pass_manager.run_passes(f);
    }

    auto maxpool_goe_output =
        std::dynamic_pointer_cast<op::GetOutputElement>(f->get_results().at(0)->get_argument(0));
    ASSERT_TRUE(maxpool_goe_output);
    ASSERT_EQ(maxpool_goe_output->get_n(), 0);
    auto maxpool_with_indices = df->get_results().at(0)->get_argument(0);
    auto maxpool_goe_indices =
        std::dynamic_pointer_cast<op::GetOutputElement>(maxpool_with_indices->get_argument(2));
    ASSERT_TRUE(maxpool_goe_indices);
    ASSERT_EQ(maxpool_goe_indices->get_n(), 1);
}

TEST(cpu_fusion, backwards_maxpool_with_indices_n4_c1_hw4_2x2_max)
{
    Shape shape_a{1, 4, 4, 4};
    Shape maxpool_shape{1, 4, 3, 3};
    auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto window_movement_strides = Strides{1, 1};
    auto maxpool = std::make_shared<op::MaxPool>(A, window_shape, window_movement_strides);
1466
    auto f = std::make_shared<Function>(maxpool, ParameterVector{A});
1467 1468

    auto backend = runtime::Backend::create("CPU");
1469
    shared_ptr<runtime::Tensor> ep = backend->create_tensor(element::f32, maxpool_shape);
1470 1471
    vector<float> dataEp(shape_size(maxpool_shape), 4);

1472 1473
    shared_ptr<runtime::Tensor> input = backend->create_tensor(element::f32, shape_a);
    shared_ptr<runtime::Tensor> output = backend->create_tensor(element::f32, shape_a);
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495

    vector<float> dataInput{11.f, 31.f, 40.f, 47.f, 13.f, 61.f, 48.f, 59.f, 17.f, 39.f, 64.f,
                            62.f, 45.f, 55.f, 36.f, 19.f, 65.f, 33.f, 49.f, 30.f, 56.f, 41.f,
                            53.f, 58.f, 22.f, 35.f, 52.f, 50.f, 63.f, 54.f, 12.f, 26.f, 44.f,
                            21.f, 69.f, 24.f, 46.f, 25.f, 51.f, 29.f, 72.f, 15.f, 73.f, 10.f,
                            16.f, 37.f, 70.f, 32.f, 28.f, 66.f, 57.f, 27.f, 60.f, 42.f, 43.f,
                            71.f, 18.f, 38.f, 67.f, 68.f, 14.f, 20.f, 34.f, 23.f};

    vector<float> expected{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 12.0f, 0.0f, 4.0f, 0.0f, 0.0f,  16.0f,
                           0.0f, 0.0f, 4.0f, 0.0f, 0.0f, 4.0f,  0.0f, 0.0f, 0.0f, 4.0f,  0.0f,
                           8.0f, 8.0f, 0.0f, 0.0f, 4.0f, 0.0f,  4.0f, 4.0f, 0.0f, 0.0f,  0.0f,
                           0.0f, 8.0f, 0.0f, 4.0f, 0.0f, 0.0f,  0.0f, 8.0f, 0.0f, 16.0f, 0.0f,
                           0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 8.0f,  0.0f, 0.0f, 4.0f, 0.0f,  0.0f,
                           8.0f, 0.0f, 4.0f, 8.0f, 4.0f, 0.0f,  0.0f, 0.0f, 0.0f};

    copy_data(ep, dataEp);
    copy_data(input, dataInput);

    auto C = std::make_shared<op::Parameter>(element::f32, maxpool_shape);
    auto df = autodiff::backprop_function(f);

    {
1496
        NodeVector nv_cwi;
1497 1498
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before2.pdf");
1499
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1500 1501 1502 1503
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after2.pdf");
        pass_manager.run_passes(df);
    }

1504 1505
    auto handle = backend->compile(df);
    backend->call_with_validate(handle, {output}, {input, ep});
1506 1507
    ASSERT_TRUE(read_vector<float>(output) == expected);
}
1508

1509 1510 1511
#if defined(NGRAPH_HALIDE)

TEST(cpu_fusion, loop_kernel_one_input_one_output_halide)
1512 1513
{
    Shape shapeA{2, 2};
1514 1515 1516
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto relu_a = make_shared<op::Relu>(A);
    auto relu_relu_a = make_shared<op::Relu>(relu_a);
1517
    auto lk = make_shared<runtime::cpu::op::LoopKernel>(
1518
        NodeVector{relu_a, relu_relu_a}, NodeVector{relu_relu_a}, NodeVector{A});
1519
    auto f = make_shared<Function>(NodeVector{lk}, ParameterVector{A});
1520 1521

    auto backend = runtime::Backend::create("CPU");
1522 1523
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeA);
1524

1525
    vector<float> dataA{-1, 4, -1, 4};
1526
    copy_data(a, dataA);
1527
    vector<float> expected{0, 4, 0, 4};
1528

1529 1530
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {result}, {a});
1531

1532
    EXPECT_TRUE(test::all_close(read_vector<float>(result), expected));
1533 1534
}

1535
TEST(cpu_fusion, loop_kernel_two_input_two_output_halide)
1536 1537
{
    Shape shapeA{2, 2};
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
    auto relu_a = make_shared<op::Relu>(A);
    auto add_ab = make_shared<op::Add>(relu_a, B);

    auto lk = make_shared<runtime::cpu::op::LoopKernel>(
        NodeVector{relu_a, add_ab}, NodeVector{relu_a, add_ab}, NodeVector{A, B});

    auto goe1 = make_shared<op::GetOutputElement>(lk, 0);
    auto goe2 = make_shared<op::GetOutputElement>(lk, 1);
    auto f = make_shared<Function>(NodeVector{goe1, goe2}, ParameterVector{A, B});

    auto backend = runtime::Backend::create("CPU");
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result_relu = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result_add = backend->create_tensor(element::f32, shapeA);

    vector<float> dataA{-1, 4, -1, 4};
    vector<float> dataB{0, 4, 0, 4};
    copy_data(a, dataA);
    copy_data(b, dataB);
    vector<float> expected_relu{0, 4, 0, 4};
    vector<float> expected_add{4, 4, 4, 4};

    backend->call_with_validate(f, {result_relu, result_add}, {a, b});

    EXPECT_TRUE(test::all_close(read_vector<float>(result_relu), expected_relu));
}

TEST(cpu_fusion, loop_kernel_embedded_graph_halide)
{
    Shape shapeA{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
1573 1574 1575 1576 1577
    auto neg_a = make_shared<op::Negative>(A);
    auto neg_b = make_shared<op::Negative>(B);
    auto add = neg_a + neg_b;
    auto lk = make_shared<runtime::cpu::op::LoopKernel>(
        NodeVector{add}, NodeVector{add}, NodeVector{neg_a, neg_b});
1578
    auto f = make_shared<Function>(NodeVector{lk}, ParameterVector{A, B});
1579 1580

    auto backend = runtime::Backend::create("CPU");
1581 1582 1583
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeA);
1584

1585
    vector<float> dataA{1, 4, 1, 4};
1586
    copy_data(a, dataA);
1587
    vector<float> dataB{1, 2, 3, 4};
1588
    copy_data(b, dataB);
1589
    vector<float> expected{-2, -6, -4, -8};
1590 1591
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {result}, {a, b});
1592
    EXPECT_EQ(read_vector<float>(result), expected);
1593 1594
}

1595
TEST(cpu_fusion, loop_kernel_two_inputs_one_output_halide)
1596 1597
{
    Shape shapeA{2, 2};
1598 1599
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
1600 1601 1602
    auto add = A + B;
    auto lk = make_shared<runtime::cpu::op::LoopKernel>(
        NodeVector{add}, NodeVector{add}, NodeVector{A, B});
1603
    auto f = make_shared<Function>(NodeVector{lk}, ParameterVector{A, B});
1604 1605

    auto backend = runtime::Backend::create("CPU");
1606 1607 1608
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeA);
1609

1610
    vector<float> dataA{1, 4, 1, 4};
1611
    copy_data(a, dataA);
1612
    vector<float> dataB{1, 2, 3, 4};
1613
    copy_data(b, dataB);
1614
    vector<float> expected{2, 6, 4, 8};
1615

1616 1617
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {result}, {a, b});
1618

1619
    EXPECT_EQ(read_vector<float>(result), expected);
1620 1621
}

1622
TEST(cpu_fusion, loop_kernel_multiple_outputs_halide)
1623 1624
{
    Shape shapeA{2, 2};
1625 1626 1627 1628
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
    auto C = make_shared<op::Parameter>(element::f32, shapeA);
    auto D = make_shared<op::Parameter>(element::f32, shapeA);
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647

    auto neg_a = make_shared<op::Negative>(A);
    auto neg_b = make_shared<op::Negative>(B);
    auto add_ab = neg_a + neg_b;
    auto add_cd = C + B;
    auto add_cd_abs = make_shared<op::Abs>(add_cd);
    auto add_ab_abs = make_shared<op::Abs>(add_ab);
    auto add_aab = add_ab_abs + A;
    auto add_cdd = add_cd_abs + D;

    auto lk = make_shared<runtime::cpu::op::LoopKernel>(
        NodeVector{neg_a, neg_b, add_ab, add_cd, add_cd_abs, add_ab_abs, add_aab, add_cdd},
        NodeVector{add_aab, add_cdd, neg_b},
        NodeVector{A, B, C, D});
    auto add_aab_goe = std::make_shared<op::GetOutputElement>(lk, 0);
    auto add_cdd_goe = std::make_shared<op::GetOutputElement>(lk, 1);
    auto neg_b_goe = std::make_shared<op::GetOutputElement>(lk, 2);

    auto f = make_shared<Function>(NodeVector{add_aab_goe, add_cdd_goe, neg_b_goe},
1648
                                   ParameterVector{A, B, C, D});
1649 1650 1651

    auto backend = runtime::Backend::create("CPU");

1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> d = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> r1 = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> r2 = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> r3 = backend->create_tensor(element::f32, shapeA);

    vector<float> dataA{1, 4, 1, 4};
    vector<float> dataB{3, 3, 3, 9};
    vector<float> dataC{1, 2, 3, 4};
    vector<float> dataD{-2, 2, -1, 1};
1664 1665 1666 1667 1668
    copy_data(a, dataA);
    copy_data(b, dataB);
    copy_data(c, dataC);
    copy_data(d, dataD);

1669 1670
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {r1, r2, r3}, {a, b, c, d});
1671

1672 1673 1674 1675 1676 1677
    vector<float> expected1{5, 11, 5, 17};
    vector<float> expected2{2, 7, 5, 14};
    vector<float> expected3{-3, -3, -3, -9};
    EXPECT_EQ(read_vector<float>(r1), expected1);
    EXPECT_EQ(read_vector<float>(r2), expected2);
    EXPECT_EQ(read_vector<float>(r3), expected3);
1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
}

TEST(cpu_fusion, loop_kernel_copy_with_new_args)
{
    Shape shapeA{2, 2};
    auto A = make_shared<op::Parameter>(element::i32, shapeA);
    auto B = make_shared<op::Parameter>(element::i32, shapeA);
    auto C = make_shared<op::Parameter>(element::i32, shapeA);
    auto D = make_shared<op::Parameter>(element::i32, shapeA);

    auto neg_a = make_shared<op::Negative>(A);
    auto neg_b = make_shared<op::Negative>(B);
    auto add_ab = neg_a + neg_b;
    auto add_cd = C + B;
    auto add_cd_abs = make_shared<op::Abs>(add_cd);
    auto add_ab_abs = make_shared<op::Abs>(add_ab);
    auto add_aab = add_ab_abs + A;
    auto add_cdd = add_cd_abs + D;

    auto lk = make_shared<runtime::cpu::op::LoopKernel>(
        NodeVector{neg_a, neg_b, add_ab, add_cd, add_cd_abs, add_ab_abs, add_aab, add_cdd},
        NodeVector{add_aab, add_cdd, neg_b},
        NodeVector{A, B, C, D});
    auto add_aab_goe = std::make_shared<op::GetOutputElement>(lk, 0);
    auto add_cdd_goe = std::make_shared<op::GetOutputElement>(lk, 1);
    auto neg_b_goe = std::make_shared<op::GetOutputElement>(lk, 2);

    auto f = make_shared<Function>(NodeVector{add_aab_goe, add_cdd_goe, neg_b_goe},
1706
                                   ParameterVector{A, B, C, D});
1707 1708 1709 1710 1711

    auto copy_f = clone_function(*f);

    auto backend = runtime::Backend::create("CPU");

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> c = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> d = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> r1 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> r2 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> r3 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> copy_r1 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> copy_r2 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> copy_r3 = backend->create_tensor(element::i32, shapeA);
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731

    vector<int> dataA{1, 4, 1, 4};
    vector<int> dataB{3, 3, 3, 9};
    vector<int> dataC{1, 2, 3, 4};
    vector<int> dataD{-2, 2, -1, 1};
    copy_data(a, dataA);
    copy_data(b, dataB);
    copy_data(c, dataC);
    copy_data(d, dataD);

1732 1733
    auto handle = backend->compile(f);
    backend->call_with_validate(handle, {r1, r2, r3}, {a, b, c, d});
1734 1735
    backend->call_with_validate(
        backend->compile(copy_f), {copy_r1, copy_r2, copy_r3}, {a, b, c, d});
1736 1737 1738 1739 1740

    EXPECT_EQ(read_vector<int>(r1), read_vector<int>(copy_r1));
    EXPECT_EQ(read_vector<int>(r2), read_vector<int>(copy_r2));
    EXPECT_EQ(read_vector<int>(r3), read_vector<int>(copy_r3));
}
1741 1742 1743

#endif

1744 1745 1746 1747 1748 1749 1750 1751
static std::shared_ptr<ngraph::Function> make_forward_function()
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto neg = std::make_shared<op::Negative>(max_pool);
    auto absn = std::make_shared<op::Abs>(max_pool);
1752
    return std::make_shared<Function>(NodeVector{max_pool, neg, absn}, ParameterVector{input});
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
}

static std::pair<std::shared_ptr<ngraph::Function>, std::vector<std::shared_ptr<ngraph::Node>>>
    make_backward_function(std::shared_ptr<ngraph::Function> f)
{
    // get parameters
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = f->get_parameters();

    ngraph::NodeVector adjoints;
    ngraph::NodeVector outputs;
    for (auto Y : f->get_results())
    {
        // Get the output
        // Create the Adjoint
        auto C = std::make_shared<ngraph::op::Parameter>(Y->get_element_type(), Y->get_shape());
        outputs.push_back(Y);
        adjoints.push_back(C);
    }

    ngraph::autodiff::Adjoints adjoint{outputs, adjoints};

    // Perform autodiff
    std::vector<std::shared_ptr<Node>> dYdXs(back_parameters.size());
    transform(back_parameters.begin(),
              back_parameters.end(),
              dYdXs.begin(),
              [&adjoint](const std::shared_ptr<Node>& X) { return adjoint.backprop_node(X); });

    // create the backward function
    std::vector<std::shared_ptr<ngraph::op::Parameter>> param_adjoints;
    for (auto n : adjoints)
        param_adjoints.push_back(std::dynamic_pointer_cast<ngraph::op::Parameter>(n));
    back_parameters.insert(back_parameters.begin(), param_adjoints.begin(), param_adjoints.end());

    return {std::make_shared<ngraph::Function>(dYdXs, back_parameters), adjoints};
}

void optimize_graph(std::shared_ptr<ngraph::Function>& f, std::shared_ptr<ngraph::Function> bf)
{
    // start by removing excess reshapes
    NodeVector nv_cwi;
    ngraph::pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
    pass_manager.register_pass<pass::VisualizeTree>("before.fprop_cache.pdf");

    pass_manager.run_passes(f);
    pass_manager.run_passes(bf);
    if (nv_cwi.size() > 0)
    {
        NodeVector new_outputs;
        for (auto r : f->get_results())
        {
            new_outputs.push_back(r->get_argument(0));
        }

        new_outputs.insert(new_outputs.end(), nv_cwi.begin(), nv_cwi.end());
        f = std::make_shared<ngraph::Function>(new_outputs, f->get_parameters());
    }

    ngraph::NodeVector dYdXs;
    for (size_t i = 0; i < bf->get_output_size(); ++i)
    {
        dYdXs.push_back(bf->get_output_op(i)->get_argument(0));
    }

    ngraph::NodeVector combined_outputs;
    for (auto r : f->get_results())
    {
        combined_outputs.push_back(r->get_argument(0));
    }

    combined_outputs.insert(combined_outputs.end(), dYdXs.begin(), dYdXs.end());

    std::vector<std::shared_ptr<ngraph::op::Parameter>> combined_parameters = f->get_parameters();
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = bf->get_parameters();

    combined_parameters.insert(
        combined_parameters.end(), back_parameters.begin(), back_parameters.end());
    auto combinedf = std::make_shared<ngraph::Function>(combined_outputs, combined_parameters);
    // rerun Reshape elimination to help simplify the graph again, run CPUFusion
    // this replaces nodes in both f and bf due to shared-ptr - ness
    ngraph::pass::Manager pass_manager_comb;
    pass_manager_comb.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager_comb.register_pass<ngraph::runtime::cpu::pass::CPUFusion>();
    pass_manager_comb.run_passes(combinedf);
}

TEST(cpu_fusion, maxpool_with_indices_in_mxnet)
{
    auto f = make_forward_function();
    auto bfa = make_backward_function(f);
    auto maybe_bf = bfa.first;
    auto adjoints = bfa.second;
    optimize_graph(f, maybe_bf);
1849
    auto fprop_cache = ngraph::cache_fprop(f, maybe_bf);
1850 1851 1852 1853 1854 1855

    auto mpwi_bprop = fprop_cache.bprop->get_results().at(0)->get_argument(0);
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(0)));
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(2)));
}

1856
TEST(cpu_fusion, conv_batch_norm_folding)
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        double eps = 0.001;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
1871
        auto bn = std::make_shared<op::BatchNormInference>(conv, gamma, beta, mean, var, eps);
1872
        auto f = make_shared<Function>(NodeVector{bn},
1873
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
        {0.12f, 0.31f},
        {0.01f, 0.11f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
TEST(cpu_fusion, convbias_batch_norm_folding)
{
    Shape shape_input{2, 8, 5, 5};
    Shape shape_weights{2, 8, 2, 2};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{2});
        double eps = 1.01;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
1933
        auto bn = std::make_shared<op::BatchNormInference>(convbias, gamma, beta, mean, var, eps);
1934
        auto f = make_shared<Function>(
1935
            NodeVector{bn}, ParameterVector{input, weights, bias, gamma, beta, mean, var});
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(1.0f, 100.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

TEST(cpu_fusion, conv_affine_folding)
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                conv, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{0, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{0, 2, 3}));
1973
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, a, b});
1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
TEST(cpu_fusion, convbias_affine_folding)
{
    Shape shape_input{1, 6, 3, 3};
    Shape shape_weights{3, 6, 1, 1};
    Shape shape_norm{3};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{3});

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                convbias, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{0, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{0, 2, 3}));
        auto f =
2034
            make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, bias, a, b});
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(20.0f, 300.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
TEST(cpu_fusion, group_convolution_fusion)
{
    Shape shape_a{1, 32, 2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
    Shape shape_b{2, 16, 1, 1};
    auto B = make_shared<op::Parameter>(element::f32, shape_b);
    Shape shape_r{1, 2, 2, 2};

    auto a_slice0 = std::make_shared<op::Slice>(A, Coordinate{0, 0, 0, 0}, Coordinate{1, 16, 2, 2});
    auto a_slice1 =
        std::make_shared<op::Slice>(A, Coordinate{0, 16, 0, 0}, Coordinate{1, 32, 2, 2});

    auto b_slice0 = std::make_shared<op::Slice>(B, Coordinate{0, 0, 0, 0}, Coordinate{1, 16, 1, 1});
    auto b_slice1 = std::make_shared<op::Slice>(B, Coordinate{1, 0, 0, 0}, Coordinate{2, 16, 1, 1});

    auto conv_lower = make_shared<op::Convolution>(a_slice0,
                                                   b_slice0,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto conv_upper = make_shared<op::Convolution>(a_slice1,
                                                   b_slice1,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto concat = make_shared<op::Concat>(NodeVector{conv_lower, conv_upper}, 1);

2088
    auto f = make_shared<Function>(NodeVector{concat}, ParameterVector{A, B});
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("before_group.pdf");
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    pass_manager.register_pass<pass::VisualizeTree>("after_group.pdf");
    pass_manager.run_passes(f);
    auto gc =
        std::dynamic_pointer_cast<op::GroupConvolution>(f->get_results().at(0)->get_argument(0));
    ASSERT_TRUE(gc);
}

TEST(cpu_fusion, group_convolution)
{
    auto backend = runtime::Backend::create("CPU");
    test::Uniform<float> rng(2.0f, 10.0f);

    const size_t GROUPS = 2;
    Shape shape_a{1, 32, 2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
    Shape shape_b{2, 16, 1, 1};
    auto B = make_shared<op::Parameter>(element::f32, shape_b);
    Shape shape_r{1, 2, 2, 2};
    auto group_conv = make_shared<op::GroupConvolution>(A,
                                                        B,
                                                        Strides{1, 1},
                                                        Strides{1, 1},
                                                        CoordinateDiff{0, 0},
                                                        CoordinateDiff{0, 0},
                                                        Strides{1, 1},
                                                        GROUPS,
                                                        shape_r);

    Shape shape_c{1, 16, 2, 2};
    auto C = make_shared<op::Parameter>(element::f32, shape_c);
    Shape shape_d{1, 16, 1, 1};
    auto D = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_lower = make_shared<op::Convolution>(C,
                                                   D,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto E = make_shared<op::Parameter>(element::f32, shape_c);
    auto F = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_upper = make_shared<op::Convolution>(E,
                                                   F,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto f = make_shared<Function>(NodeVector{group_conv, conv_lower, conv_upper},
2143
                                   ParameterVector{A, B, C, D, E, F});
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153

    auto a_ = rng.initialize(backend->create_tensor(element::f32, shape_a));
    auto b_ = rng.initialize(backend->create_tensor(element::f32, shape_b));

    vector<float> rv(shape_size(shape_r), 0);
    auto group_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_r, rv.data()));

    auto av = read_vector<float>(a_);
    auto bv = read_vector<float>(b_);
2154 2155
    auto c_ = backend->create_tensor(element::f32, shape_c, av.data()); // lower data
    auto d_ = backend->create_tensor(element::f32, shape_d, bv.data()); // upper data
2156 2157

    auto e_ =
2158
        backend->create_tensor(element::f32, shape_c, av.data() + av.size() / 2); // lower weights
2159
    auto f_ =
2160
        backend->create_tensor(element::f32, shape_d, bv.data() + bv.size() / 2); // upper weights
2161 2162

    Shape shape_ur{1, 1, 2, 2};
2163
    // allocate a contigious storage for both lower and upper halves.
2164 2165 2166 2167 2168
    vector<float> erv(shape_size(shape_r), 0);
    auto lower_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data()));
    auto upper_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data() + erv.size() / 2));
2169
    backend->call_with_validate(
2170
        backend->compile(f), {group_result, lower_result, upper_result}, {a_, b_, c_, d_, e_, f_});
2171 2172 2173
    ASSERT_EQ(rv, erv);
}

2174 2175 2176 2177
TEST(cpu_fusion, rnn_fprop_1_lstm_cell)
{
    auto src_layer = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto src_iter = make_shared<op::Parameter>(element::f32, Shape{20, 100});
2178 2179
    auto weights_layer = make_shared<op::Parameter>(element::f32, Shape{100, 400});
    auto weights_iter = make_shared<op::Parameter>(element::f32, Shape{100, 400});
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
    auto biases = make_shared<op::Parameter>(element::f32, Shape{400});
    const int number_of_timesteps = 1;
    const int number_of_gates_per_cell = 4;
    const int src_seq_length = 1;
    const int num_rnn_cell_states = 2;
    const int rnn_direction = 1;
    const int num_of_rnn_fused_layer = 1;
    auto rnn_node = make_shared<op::Rnn>(src_layer,
                                         src_iter,
                                         weights_layer,
                                         weights_iter,
                                         biases,
                                         number_of_timesteps,
                                         number_of_gates_per_cell,
                                         src_seq_length,
                                         num_rnn_cell_states,
                                         rnn_direction,
                                         num_of_rnn_fused_layer);
    auto rnn_ht_output = make_shared<op::GetOutputElement>(rnn_node, 0);
    auto rnn_ct_output = make_shared<op::GetOutputElement>(rnn_node, 1);

    auto func = make_shared<Function>(
        NodeVector{rnn_ht_output, rnn_ct_output},
2203
        ParameterVector{src_layer, src_iter, weights_layer, weights_iter, biases});
2204 2205
    auto backend = runtime::Backend::create("CPU");

2206
    shared_ptr<runtime::Tensor> src_layer_t =
2207
        backend->create_tensor(element::f32, src_layer->get_shape());
2208
    shared_ptr<runtime::Tensor> src_iter_t =
2209
        backend->create_tensor(element::f32, src_iter->get_shape());
2210
    shared_ptr<runtime::Tensor> weights_layer_t =
2211
        backend->create_tensor(element::f32, weights_layer->get_shape());
2212
    shared_ptr<runtime::Tensor> weights_iter_t =
2213
        backend->create_tensor(element::f32, weights_iter->get_shape());
2214
    shared_ptr<runtime::Tensor> biases_t =
2215
        backend->create_tensor(element::f32, biases->get_shape());
2216
    shared_ptr<runtime::Tensor> result_ht = backend->create_tensor(element::f32, {10, 100});
2217
    shared_ptr<runtime::Tensor> result_ct = backend->create_tensor(element::f32, Shape{20, 100});
2218 2219 2220 2221 2222 2223 2224

    copy_data(src_layer_t, vector<float>(1000, 1));
    copy_data(src_iter_t, vector<float>(2000, 1));
    copy_data(weights_layer_t, vector<float>(400 * 100, 1));
    copy_data(weights_iter_t, vector<float>(400 * 100, 1));
    copy_data(biases_t, vector<float>(400, 1));

2225
    backend->call_with_validate(
2226
        backend->compile(func),
2227 2228
        {result_ht, result_ct},
        {src_layer_t, src_iter_t, weights_layer_t, weights_iter_t, biases_t});
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    vector<float> expected_ht(10 * 100, 0.964028f);
    vector<float> expected_ct;
    for (size_t i = 0; i < 20 * 100; i++)
    {
        if (i < 1000)
        {
            expected_ct.push_back(0.964028f);
        }
        else
        {
            expected_ct.push_back(2.0f);
        }
    }

    EXPECT_TRUE(test::all_close(expected_ht, read_vector<float>(result_ht)));
    EXPECT_TRUE(test::all_close(expected_ct, read_vector<float>(result_ct)));
}

TEST(cpu_fusion, fuse_lstm_cells)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    auto lstm_ops = get_ops_of_type<op::Lstm>(func);
    EXPECT_EQ(lstm_ops.size(), 6);
}

TEST(cpu_fusion, fuse_2_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

TEST(cpu_fusion, fuse_1_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/1rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), 1);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

static std::shared_ptr<Function> make_function(const std::string& file_name)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, file_name);
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    return func;
}

2313
TEST(cpu_fusion, rnn_fusion_1lstm_cell)
2314 2315 2316 2317
{
    const std::string file_name("mxnet/1_lstm_cell_forward.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
2318
    test::Uniform<float> rng(-1.0f, 1.0f);
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

2335
TEST(cpu_fusion, rnn_fusion_1rnn_layer_3lstm_cell)
2336 2337 2338 2339
{
    const std::string file_name("mxnet/1rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
2340
    test::Uniform<float> rng(-1.0f, 1.0f);
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

2357
TEST(cpu_fusion, rnn_fusion_2rnn_layer_3lstm_cell)
2358 2359 2360 2361
{
    const std::string file_name("mxnet/2rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
2362
    test::Uniform<float> rng(-1.0f, 1.0f);
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
2378

2379 2380
#if 0

2381
TEST(cpu_fusion, loop_kernel_fusion_multiple_groups_pruned)
2382
{
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto b = make_shared<op::Parameter>(element::f32, shape);
        auto c = make_shared<op::Parameter>(element::f32, shape);
        auto add_ab = a + b;
        auto add_abs = std::make_shared<op::Abs>(add_ab);
        auto abs_neg = std::make_shared<op::Negative>(add_abs);
        auto sub_c_neg = c - abs_neg;

        auto d = make_shared<op::Parameter>(element::f32, shape);
        auto d_abs = std::make_shared<op::Abs>(d);
        auto add_d = d_abs + add_ab;
        auto neg_d = std::make_shared<op::Negative>(add_d);

        auto mul_cd = neg_d * sub_c_neg;
        auto f =
2400
            std::make_shared<Function>(ngraph::NodeVector{mul_cd}, ParameterVector{a, b, c, d});
2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416

        return f;
    };

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPULoopKernelFusion>(3);
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;

    size_t lkn = count_ops_of_type<runtime::cpu::op::LoopKernel>(cpu_f);
    ASSERT_GT(lkn, 0);

    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
2417
    {
2418 2419 2420
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
2421
    }
2422 2423 2424 2425 2426 2427 2428
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
2429

2430
TEST(cpu_fusion, loop_kernel_fusion_bounded_relu)
2431
{
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto relu = make_shared<op::Relu>(a);
        auto upper_bound =
            op::Constant::create<float>(element::f32, shape, std::vector<float>{6.0f});
        auto minn = make_shared<op::Minimum>(relu, upper_bound);
        auto absn = make_shared<op::Abs>(minn);
        auto negn = std::make_shared<op::Negative>(absn);

2442
        auto f = std::make_shared<Function>(ngraph::NodeVector{negn}, ParameterVector{a});
2443

2444 2445
        return f;
    };
2446

2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("before_relu_fusion.pdf");
    pass_manager.register_pass<runtime::cpu::pass::CPULoopKernelFusion>(3);
    pass_manager.register_pass<pass::VisualizeTree>("after_relu_fusion.pdf");
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;

    size_t lkn = count_ops_of_type<runtime::cpu::op::LoopKernel>(cpu_f);
    ASSERT_GT(lkn, 0);
2459

2460
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
2461
    {
2462 2463 2464
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
2465
    }
2466 2467 2468
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
2469
    {
2470
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
2471
    }
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
}

TEST(cpu_fusion, loop_kernel_fusion_multiple_groups)
{
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto b = make_shared<op::Parameter>(element::f32, shape);
        auto c = make_shared<op::Parameter>(element::f32, shape);
        auto add_ab = a + b;
        auto add_abs = std::make_shared<op::Abs>(add_ab);
        auto abs_neg = std::make_shared<op::Negative>(add_abs);
        auto sub_c_neg = c - abs_neg;

        auto d = make_shared<op::Parameter>(element::f32, shape);
        auto d_abs = std::make_shared<op::Abs>(d);
        auto add_d = d_abs + add_ab;
        auto neg_d = std::make_shared<op::Negative>(add_d);

        auto mul_cd = neg_d * sub_c_neg;
        auto f =
2493
            std::make_shared<Function>(ngraph::NodeVector{mul_cd}, ParameterVector{a, b, c, d});
2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507

        return f;
    };

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPULoopKernelFusion>(2);
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;

    size_t lkn = count_ops_of_type<runtime::cpu::op::LoopKernel>(cpu_f);
    ASSERT_GT(lkn, 0);
2508

2509
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
2510
    {
2511 2512 2513
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
2514
    }
2515 2516 2517
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
2518
    {
2519
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
2520 2521 2522
    }
}

2523
TEST(cpu_fusion, loop_kernel_fusion_one_group)
2524
{
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto b = make_shared<op::Parameter>(element::f32, shape);
        auto c = make_shared<op::Parameter>(element::f32, shape);
        auto add_ab = a + b;
        auto add_abs = std::make_shared<op::Abs>(add_ab);
        auto abs_neg = std::make_shared<op::Negative>(add_abs);
        auto sub_c_neg = c - abs_neg;
        auto d = make_shared<op::Parameter>(element::f32, shape);
        auto add_d = sub_c_neg + d;
        auto abs_add_d = std::make_shared<op::Abs>(add_d);
        auto e = make_shared<op::Parameter>(element::f32, shape);
        auto add_e = e + abs_add_d;
        auto neg_e = std::make_shared<op::Negative>(add_e);

        auto f = std::make_shared<Function>(ngraph::NodeVector{neg_e},
2542
                                            ParameterVector{a, b, c, d, e});
2543 2544 2545 2546 2547

        return f;

    };

2548
    pass::Manager pass_manager;
2549 2550 2551 2552 2553 2554
    pass_manager.register_pass<runtime::cpu::pass::CPULoopKernelFusion>(2);
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;
2555

2556 2557
    size_t lkn = count_ops_of_type<runtime::cpu::op::LoopKernel>(cpu_f);
    ASSERT_GT(lkn, 0);
2558

2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
2571 2572
}

2573 2574
#endif

2575 2576 2577
TEST(cpu_fusion, sigmoid_multiply_fusion)
{
    pass::Manager pass_manager;
2578
    pass_manager.register_pass<pass::CoreFusion>();
2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/3_lstm_cell_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::SigmoidMultiply>(func);
    ASSERT_EQ(ccg, 18);
}

2589
void sigmoid_multiply_fusion_forward_compute(runtime::Backend* backend,
2590
                                             const ParameterVector& input_params,
2591 2592 2593 2594 2595 2596 2597
                                             const vector<vector<float>>& input_data,
                                             const vector<Shape>& input_shapes,
                                             const Shape& result_shape,
                                             shared_ptr<Node> input_0_node,
                                             shared_ptr<Node> input_1_node,
                                             const vector<float>& expected)
{
2598
    shared_ptr<runtime::Tensor> result_tensor = backend->create_tensor(element::f32, result_shape);
2599

2600
    vector<shared_ptr<runtime::Tensor>> input_tensors;
2601 2602 2603 2604 2605 2606 2607 2608
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto mul_node = input_0_node * input_1_node;
    auto func = make_shared<Function>(mul_node, input_params);
2609 2610
    auto handle = backend->compile(func);
    backend->call_with_validate(handle, {result_tensor}, input_tensors);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
    EXPECT_TRUE(test::all_close(read_vector<float>(result_tensor), expected));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_forward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.3f, 3.5f, 4.7f};
    vector<float> const_data{1.2f};
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected{1.60833f, 3.78743f, 6.19173f, 8.54352f};
2631
        ParameterVector input_params{input_0_param, input_1_param, input_2_param};
2632 2633
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
2634
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_0_param);
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
2649
        ParameterVector input_params{input_0_param, input_1_param};
2650 2651
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2652
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
2667
        ParameterVector input_params{input_0_param, input_1_param};
2668 2669
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2670
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.561837f, 0.800536f, 0.924652f, 0.973163f};
2685
        ParameterVector input_params{input_0_param, input_1_param};
2686 2687
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2688
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.60945f, 0.863266f, 0.950838f, 0.981851f};
2703
        ParameterVector input_params{input_0_param, input_1_param};
2704 2705
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2706
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.585304f, 0.876182f, 0.965887f, 0.990322f};
2721
        ParameterVector input_params{input_0_param, input_1_param};
2722 2723
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2724
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.634907f, 0.94484f, 0.993242f, 0.999164f};
2739
        ParameterVector input_params{input_0_param, input_1_param};
2740 2741
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2742
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
}

2753
void sigmoid_multiply_fusion_backward_compute(runtime::Backend* backend,
2754
                                              const ParameterVector& input_params,
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
                                              const vector<vector<float>>& input_data,
                                              const vector<Shape>& input_shapes,
                                              const vector<float> delta_data,
                                              const Shape& delta_shape,
                                              const Shape& d_input_0_shape,
                                              const Shape& d_input_1_shape,
                                              shared_ptr<Node> input_0_node,
                                              shared_ptr<Node> input_1_node,
                                              shared_ptr<Node> input_0_adjoint,
                                              shared_ptr<Node> input_1_adjoint,
                                              const vector<float>& expected_0,
                                              const vector<float>& expected_1)
{
2768
    vector<shared_ptr<runtime::Tensor>> input_tensors;
2769 2770 2771 2772 2773 2774 2775
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto delta_param = make_shared<op::Parameter>(element::f32, delta_shape);
2776
    shared_ptr<runtime::Tensor> delta_tensor = backend->create_tensor(element::f32, delta_shape);
2777 2778
    copy_data(delta_tensor, delta_data);

2779
    ParameterVector back_params(input_params);
2780 2781 2782
    back_params.push_back(delta_param);
    input_tensors.push_back(delta_tensor);

2783
    shared_ptr<runtime::Tensor> d_input_0_tensor =
2784
        backend->create_tensor(element::f32, d_input_0_shape);
2785
    shared_ptr<runtime::Tensor> d_input_1_tensor =
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
        backend->create_tensor(element::f32, d_input_1_shape);

    using FunctionType = op::SigmoidMultiply::FunctionType;
    auto input_0_type = op::SigmoidMultiply::identify_node_type(input_0_node);
    auto input_1_type = op::SigmoidMultiply::identify_node_type(input_1_node);
    // for Identity functions, we use the node itself, otherwise use its input
    // where we will apply the function of input node
    auto input_0_alt =
        (input_0_type == FunctionType::Identity) ? input_0_node : input_0_node->get_argument(0);
    auto input_1_alt =
        (input_1_type == FunctionType::Identity) ? input_1_node : input_1_node->get_argument(0);
    auto sigmoid_mul =
        make_shared<op::SigmoidMultiply>(input_0_alt, input_1_alt, input_0_type, input_1_type);

    ngraph::autodiff::Adjoints adjoints(NodeVector{sigmoid_mul}, NodeVector{delta_param});
    auto d_input_0 = adjoints.backprop_node(input_0_adjoint);
    auto d_input_1 = adjoints.backprop_node(input_1_adjoint);
    auto df = make_shared<Function>(NodeVector{d_input_0, d_input_1}, back_params);
2804 2805
    backend->call_with_validate(
        backend->compile(df), {d_input_0_tensor, d_input_1_tensor}, input_tensors);
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_0_tensor), expected_0));
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_1_tensor), expected_1));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_backward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.2f, 3.2f, 4.2f};
    vector<float> const_data{1.2f};
    vector<float> delta_data(shape_size(data_shape), 20.0f);

    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected_0{8.65093f, 8.81946f, 5.60191f, 2.89668f};
        vector<float> expected_1{14.6212f, 17.6159f, 19.0515f, 19.6403f};
2830
        ParameterVector input_params{input_0_param, input_1_param, input_2_param};
2831 2832
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
2833
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Tanh>(input_0_param);
        vector<float> expected_0{15.2319f, 19.2806f, 19.9011f, 19.9866f};
        vector<float> expected_1{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
2855
        ParameterVector input_params{input_0_param, input_1_param};
2856 2857
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2858
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 sigmoid_0,
                                                 input_0_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected_0{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
        vector<float> expected_1{15.2319f, 19.2806f, 19.9011f, 19.9866f};
2880
        ParameterVector input_params{input_0_param, input_1_param};
2881 2882
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2883
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{3.02202f, 1.89041f, 0.868146f, 0.348035f};
        vector<float> expected_1{2.60102f, 1.58192f, 0.716941f, 0.285879f};
2905
        ParameterVector input_params{input_0_param, input_1_param};
2906 2907
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2908
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{3.27813f, 2.04894f, 0.900536f, 0.353095f};
        vector<float> expected_1{4.45975f, 0.84425f, 0.126201f, 0.0176579f};
2930
        ParameterVector input_params{input_0_param, input_1_param};
2931 2932
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2933
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{6.45521f, 1.27207f, 0.189593f, 0.0264228f};
        vector<float> expected_1{2.70967f, 1.7314f, 0.748913f, 0.29092f};
2955
        ParameterVector input_params{input_0_param, input_1_param};
2956 2957
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2958
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{7.00227f, 1.37874f, 0.196666f, 0.026807f};
        vector<float> expected_1{4.64603f, 0.924027f, 0.131829f, 0.0179692f};
2980
        ParameterVector input_params{input_0_param, input_1_param};
2981 2982
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2983
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
}
2999 3000 3001 3002

TEST(cpu_fusion, fuse_batch_dot)
{
    pass::Manager pass_manager;
3003
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/batch_dot_3.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchDot>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, fuse_batch_dot_forward)
{
    pass::Manager pass_manager;
3016
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037

    const std::string file_name("mxnet/batch_dot_3.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < int_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
3038

3039
TEST(cpu_fusion, fuse_rnn_across_layer_2layer_3timestep)
3040
{
3041
    const std::string file_name("mxnet/2layer_3timestep_ic100oc100.json");
3042 3043
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
3044
    test::Uniform<float> rng(-1.0f, 1.0f);
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");

3056
    EXPECT_EQ(1, count_ops_of_type<op::Rnn>(cpu_f));
3057 3058
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
3059
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
3060 3061
    }
}
3062 3063 3064 3065 3066 3067 3068 3069 3070

static void check_bounded_relu(Shape param_shape, float constant_val)
{
    auto make_function = [](Shape input_shape, float alpha_val) {
        auto relu_input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto relu = std::make_shared<op::Relu>(relu_input);
        auto alpha = op::Constant::create<float>(
            element::f32, input_shape, std::vector<float>(1.0f, alpha_val));
        auto min = std::make_shared<op::Minimum>(relu, alpha);
3071
        auto f = make_shared<Function>(NodeVector{min}, ParameterVector{relu_input});
3072 3073 3074 3075 3076
        return f;
    };

    auto cpu_f = make_function(param_shape, constant_val);
    auto int_f = make_function(param_shape, constant_val);
3077
    test::Uniform<float> rng(-10.0f, 10.0f);
3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");

    EXPECT_EQ(1, count_ops_of_type<op::BoundedRelu>(cpu_f));
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0), 1.0e-4f, 1.0e-4f));
}

TEST(cpu_fusion, fuse_bounded_relu_inter_vs_cpu)
{
    check_bounded_relu(Shape{4, 3, 2, 2}, 6.0f);
    check_bounded_relu(Shape{4, 3}, 4.0f);
    check_bounded_relu(Shape{4, 3, 2}, 2.0f);
}
3099

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
TEST(cpu_fusion, fuse_leaky_relu)
{
    auto make_function = [](Shape input_shape, vector<float> alpha_val) {
        auto input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto alpha = op::Constant::create<float>(element::f32, input_shape, alpha_val);
        auto out =
            std::make_shared<op::Maximum>(input, std::make_shared<op::Multiply>(input, alpha));
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input});
        return f;
    };

    auto no_fuse1 = make_function(Shape{1, 2, 3}, std::vector<float>(6, -1.0f));
    auto no_fuse2 = make_function(Shape{1, 3}, std::vector<float>{1.4f, 1.2f, 1.4f});

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(no_fuse1);
    pass_manager.run_passes(no_fuse2);
    EXPECT_EQ(0, count_ops_of_type<op::LeakyRelu>(no_fuse1));
    EXPECT_EQ(0, count_ops_of_type<op::LeakyRelu>(no_fuse2));

    // non-mkldnn kernel
    auto cpu_f1 = make_function(Shape{1, 2, 3}, std::vector<float>(6, 0.1f));
    // mkldnn kernel
    auto cpu_f2 = make_function(Shape{2, 3}, std::vector<float>(6, 0.1f));

    vector<vector<float>> args;
    args.push_back(std::vector<float>{-1, -2, 0, 1, 2, 3});
    std::vector<float> expected_result{-0.1f, -0.2f, 0.0f, 1.0f, 2.0f, 3.0f};

    auto cpu1_results = execute(cpu_f1, args, "CPU");
    EXPECT_EQ(1, count_ops_of_type<op::LeakyRelu>(cpu_f1));
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), expected_result));

    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_EQ(1, count_ops_of_type<op::LeakyRelu>(cpu_f2));
    EXPECT_TRUE(test::all_close(cpu2_results.at(0), expected_result));
}

3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
TEST(cpu_fusion, fuse_update_slice)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        auto slice = std::make_shared<op::Slice>(
            input, fuse ? lower_bounds : Shape{3, 0, 0}, fuse ? upper_bounds : Shape{4, 32, 16});
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 32, 16});
        auto add = std::make_shared<op::Add>(slice, update);
        auto out = std::make_shared<op::ReplaceSlice>(input, add, lower_bounds, upper_bounds);
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        return f;
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_inplace)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        auto abs = std::make_shared<op::Abs>(input);
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        auto slice = std::make_shared<op::Slice>(abs, lower_bounds, upper_bounds);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 32, 16});
        auto add = std::make_shared<op::Add>(slice, update);
        auto rs = std::make_shared<op::ReplaceSlice>(abs, add, lower_bounds, upper_bounds);
        auto out = std::make_shared<op::Abs>(rs);
        if (fuse)
        {
            return make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        }
        else
        {
            return make_shared<Function>(NodeVector{out, add}, ParameterVector{input, update});
        }
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_strided)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        Strides strides{1, 2, 2};
        auto slice = std::make_shared<op::Slice>(input,
                                                 fuse ? lower_bounds : Shape{3, 0, 0},
                                                 fuse ? upper_bounds : Shape{4, 32, 16},
                                                 strides);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 8});
        auto add = std::make_shared<op::Add>(slice, update);
        auto out =
            std::make_shared<op::ReplaceSlice>(input, add, lower_bounds, upper_bounds, strides);
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        return f;
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_strided_inplace)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        auto abs = std::make_shared<op::Abs>(input);
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        Strides strides{1, 4, 2};
        auto slice = std::make_shared<op::Slice>(abs, lower_bounds, upper_bounds, strides);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 8, 8});
        auto add = std::make_shared<op::Add>(slice, update);
        auto rs = std::make_shared<op::ReplaceSlice>(abs, add, lower_bounds, upper_bounds, strides);
        auto out = std::make_shared<op::Abs>(rs);
        if (fuse)
        {
            return make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        }
        else
        {
            return make_shared<Function>(NodeVector{out, add}, ParameterVector{input, update});
        }
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

3334 3335 3336 3337 3338 3339 3340 3341 3342
TEST(cpu_fusion, dot_batch_forward)
{
    const Shape shape_a{2, 3, 2};
    const Shape shape_b{2, 3};

    auto generate_func = [&shape_a, &shape_b]() -> shared_ptr<Function> {
        auto a = make_shared<op::Parameter>(element::f32, shape_a);
        auto b = make_shared<op::Parameter>(element::f32, shape_b);
        auto dot = make_shared<op::Dot>(a, b);
3343
        return make_shared<Function>(dot, ParameterVector{a, b});
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
    };
    shared_ptr<Function> cpu_func = generate_func();
    shared_ptr<Function> int_func = generate_func();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
Pruthvi's avatar
Pruthvi committed
3364
static std::shared_ptr<Function>
3365
    create_rnn_input_linear_transformation_function(size_t num_timesteps, bool data_is_4d = false)
Pruthvi's avatar
Pruthvi committed
3366 3367 3368
{
    auto W = std::make_shared<op::Parameter>(element::f32, Shape{400, 50});
    auto bias = std::make_shared<op::Parameter>(element::f32, Shape{400});
3369
    ParameterVector params{W, bias};
Pruthvi's avatar
Pruthvi committed
3370
    auto create_graph = [&]() -> std::shared_ptr<Node> {
3371 3372 3373 3374

        auto data_param = (data_is_4d)
                              ? std::make_shared<op::Parameter>(element::f32, Shape{2, 5, 1, 50})
                              : std::make_shared<op::Parameter>(element::f32, Shape{10, 1, 50});
Pruthvi's avatar
Pruthvi committed
3375
        params.push_back(data_param);
3376
        auto reshape_axis_order = data_is_4d ? AxisVector{0, 1, 2, 3} : AxisVector{0, 1, 2};
Pruthvi's avatar
Pruthvi committed
3377
        auto data_param_reshape =
3378
            std::make_shared<op::Reshape>(data_param, reshape_axis_order, Shape{10, 50});
Pruthvi's avatar
Pruthvi committed
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
        auto W_reshape = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{50, 400});
        auto dot = std::make_shared<op::Dot>(data_param_reshape, W_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add_bias = std::make_shared<op::Add>(dot, bias_broadcast);
        return add_bias;

    };

    NodeVector graph_nodes;
    for (size_t i = 0; i < num_timesteps; i++)
    {
        graph_nodes.push_back(create_graph());
    }
    auto concat = std::make_shared<op::Concat>(graph_nodes, 0);
    return make_shared<Function>(NodeVector{concat}, params);
}

TEST(cpu_fusion, fuse_rnn_input_across_time_steps)
{
    auto func = create_rnn_input_linear_transformation_function(10);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func);
    size_t ref_matmulbias_count = 1;
    auto matmulbias_count = count_ops_of_type<op::MatmulBias>(func);
    EXPECT_EQ(ref_matmulbias_count, matmulbias_count);
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
TEST(cpu_fusion, fuse_rnn_input_across_time_steps_4d_data)
{
    auto func = create_rnn_input_linear_transformation_function(10, true);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func);
    size_t ref_matmulbias_count = 10; // no CPURnnMatFusion transformations
    auto matmulbias_count = count_ops_of_type<op::MatmulBias>(func);
    EXPECT_EQ(ref_matmulbias_count, matmulbias_count);
}

Pruthvi's avatar
Pruthvi committed
3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
TEST(cpu_fusion, rnn_input_fusion_inter_vs_cpu)
{
    shared_ptr<Function> cpu_func = create_rnn_input_linear_transformation_function(10);
    shared_ptr<Function> int_func = create_rnn_input_linear_transformation_function(10);

    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}