divide.in.cpp 8.54 KB
Newer Older
1
//*****************************************************************************
2
// Copyright 2017-2020 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>

// clang-format off
#ifdef ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#define DEFAULT_FLOAT_TOLERANCE_BITS ${BACKEND_NAME}_FLOAT_TOLERANCE_BITS
#endif

#ifdef ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#define DEFAULT_DOUBLE_TOLERANCE_BITS ${BACKEND_NAME}_DOUBLE_TOLERANCE_BITS
#endif
// clang-format on

#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"

using namespace std;
using namespace ngraph;

static string s_manifest = "${MANIFEST}";

NGRAPH_TEST(${BACKEND_NAME}, divide)
{
    Shape shape{2, 2};

    auto A = make_shared<op::Parameter>(element::f32, shape);
    auto B = make_shared<op::Parameter>(element::f32, shape);
    auto f = make_shared<Function>(make_shared<op::Divide>(A, B), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::f32, shape);
    copy_data(a, vector<float>{2, 4, 8, 16});
    auto b = backend->create_tensor(element::f32, shape);
    copy_data(b, vector<float>{1, 2, 4, 8});
    auto result = backend->create_tensor(element::f32, shape);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    EXPECT_TRUE(test::all_close_f((vector<float>{2, 2, 2, 2}), read_vector<float>(result)));
}

NGRAPH_TEST(${BACKEND_NAME}, divide_int32)
{
    Shape shape{2, 2};

    auto A = make_shared<op::Parameter>(element::i32, shape);
    auto B = make_shared<op::Parameter>(element::i32, shape);
    auto f = make_shared<Function>(make_shared<op::Divide>(A, B), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape);
    copy_data(a, vector<int32_t>{0x40000140, 0x40000001, 8, 16});
    auto b = backend->create_tensor(element::i32, shape);
    copy_data(b, vector<int32_t>{2, 5, 4, 8});
    auto result = backend->create_tensor(element::i32, shape);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    EXPECT_EQ((vector<int32_t>{536871072, 214748365, 2, 2}), read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, divide_cpp_rounding_int32)
{
    Shape shape{2, 2};

    auto A = make_shared<op::Parameter>(element::i32, shape);
    auto B = make_shared<op::Parameter>(element::i32, shape);
    auto f = make_shared<Function>(make_shared<op::Divide>(A, B, false), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape);
    copy_data(a, vector<int32_t>{-10, -10, 10, 10});
    auto b = backend->create_tensor(element::i32, shape);
    copy_data(b, vector<int32_t>{-3, 3, -3, 3});
    auto result = backend->create_tensor(element::i32, shape);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    EXPECT_EQ((vector<int32_t>{3, -3, -3, 3}), read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, divide_python_rounding_int32)
{
    Shape shape{2, 2};

    auto A = make_shared<op::Parameter>(element::i32, shape);
    auto B = make_shared<op::Parameter>(element::i32, shape);
    auto f = make_shared<Function>(make_shared<op::Divide>(A, B), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape);
    copy_data(a, vector<int32_t>{-10, -10, 10, 10});
    auto b = backend->create_tensor(element::i32, shape);
    copy_data(b, vector<int32_t>{-3, 3, -3, 3});
    auto result = backend->create_tensor(element::i32, shape);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    EXPECT_EQ((vector<int32_t>{3, -4, -4, 3}), read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, divide_overload)
{
    Shape shape{2, 2};

    auto A = make_shared<op::Parameter>(element::f32, shape);
    auto B = make_shared<op::Parameter>(element::f32, shape);
    auto f = make_shared<Function>(A / B, ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::f32, shape);
    copy_data(a, vector<float>{2, 4, 8, 16});
    auto b = backend->create_tensor(element::f32, shape);
    copy_data(b, vector<float>{1, 2, 4, 8});
    auto result = backend->create_tensor(element::f32, shape);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    EXPECT_TRUE(test::all_close_f((vector<float>{2, 2, 2, 2}), read_vector<float>(result)));
}

NGRAPH_TEST(${BACKEND_NAME}, divide_adjoint_stability)
{
    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    Shape shape{2, 2};

    auto make_external = [&]() {
        auto A = make_shared<op::Parameter>(element::f32, shape);
        auto B = make_shared<op::Parameter>(element::f32, shape);
        auto f = make_shared<Function>(make_shared<op::Divide>(A, B), ParameterVector{A, B});

        auto Y_out = f->output(0);
        auto Xs = f->get_parameters();
        auto C = std::make_shared<op::Parameter>(Y_out.get_element_type(), Y_out.get_shape());
        ngraph::autodiff::Adjoints adjoints(OutputVector{Y_out}, OutputVector{C});
172
        std::vector<Output<Node>> dYdXs(Xs.size());
173 174
        transform(
            Xs.begin(), Xs.end(), dYdXs.begin(), [C, &adjoints](const std::shared_ptr<Node>& X) {
175
                return adjoints.backprop_output(X);
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            });
        std::vector<std::shared_ptr<op::Parameter>> params(Xs);
        params.push_back(C);

        auto bf = std::make_shared<Function>(dYdXs, params);

        return bf;
    };

    auto bf = make_external();

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::f32, shape);
    copy_data(a, vector<float>{0, 0, 1, 1});
    auto b = backend->create_tensor(element::f32, shape);
    copy_data(b, vector<float>{2, 2, 2, 2});
    auto c = backend->create_tensor(element::f32, shape);
    copy_data(c, vector<float>{1, 1, 1, 1});

    auto resulta = backend->create_tensor(element::f32, shape);
    auto resultb = backend->create_tensor(element::f32, shape);

    auto handle = backend->compile(bf);
    handle->call_with_validate({resulta, resultb}, {a, b, c});
    EXPECT_TRUE(
        test::all_close_f((vector<float>{0.5, 0.5, 0.5, 0.5}), read_vector<float>(resulta)));
    EXPECT_TRUE(
        test::all_close_f((vector<float>{-0.0, -0.0, -0.25, -0.25}), read_vector<float>(resultb)));
}

NGRAPH_TEST(${BACKEND_NAME}, divide_by_zero_float32)
{
    Shape shape{2, 2};

    auto A = make_shared<op::Parameter>(element::f32, shape);
    auto B = make_shared<op::Parameter>(element::f32, shape);
    auto f = make_shared<Function>(make_shared<op::Divide>(A, B), ParameterVector{A, B});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::f32, shape);
    copy_data(a, vector<float>{2, 4, 8, 16});
    auto b = backend->create_tensor(element::f32, shape);
    copy_data(b, vector<float>{0, 0, 0, 0});
    auto result = backend->create_tensor(element::f32, shape);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a, b});
    EXPECT_EQ((vector<float>{std::numeric_limits<float>::infinity(),
                             std::numeric_limits<float>::infinity(),
                             std::numeric_limits<float>::infinity(),
                             std::numeric_limits<float>::infinity()}),
              read_vector<float>(result));
}