cpu_fusion.cpp 67.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
24
#include "ngraph/autodiff/adjoints.hpp"
Louis Feng's avatar
Louis Feng committed
25
#include "ngraph/file_util.hpp"
26 27 28
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
29 30
#include "ngraph/op/batch_norm.hpp"
#include "ngraph/op/get_output_element.hpp"
31
#include "ngraph/op/max_pool.hpp"
32
#include "ngraph/op/negative.hpp"
33
#include "ngraph/op/parameter.hpp"
34
#include "ngraph/op/relu.hpp"
35
#include "ngraph/op/sum.hpp"
36 37
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
Louis Feng's avatar
Louis Feng committed
38 39
#include "ngraph/pass/reshape_elimination.hpp"
#include "ngraph/pass/visualize_tree.hpp"
40 41
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp"
42
#include "ngraph/pattern/op/skip.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
43
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
44
#include "ngraph/runtime/cpu/op/batch_norm_relu.hpp"
45
#include "ngraph/runtime/cpu/op/conv_bias.hpp"
46
#include "ngraph/runtime/cpu/op/conv_relu.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
47
#include "ngraph/runtime/cpu/op/convert_layout.hpp"
48
#include "ngraph/runtime/cpu/op/lstm.hpp"
49
#include "ngraph/runtime/cpu/op/matmul_bias.hpp"
50
#include "ngraph/runtime/cpu/op/rnn.hpp"
51
#include "ngraph/runtime/cpu/op/sigmoid.hpp"
52
#include "ngraph/runtime/cpu/pass/cpu_concat_inputs.hpp"
53
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
54
#include "ngraph/runtime/cpu/pass/cpu_post_layout_optimizations.hpp"
55
#include "ngraph/runtime/cpu/pass/cpu_rnn_fusion.hpp"
56
#include "ngraph/runtime/cpu/pass/cpu_rnn_mat_fusion.hpp"
57
#include "ngraph/runtime/cpu/pass/cpu_workspace_insertion.hpp"
58 59
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
60
#include "nlohmann/json.hpp"
61
#include "util/all_close.hpp"
Pruthvi's avatar
Pruthvi committed
62 63
#include "util/autodiff/backprop_function.hpp"
#include "util/autodiff/numeric_compare.hpp"
64
#include "util/matcher.hpp"
65
#include "util/random.hpp"
66 67
#include "util/test_tools.hpp"

68 69
#include "util/random.hpp"

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
using namespace ngraph;
using namespace std;

TEST(cpu_fusion, gemm_pattern)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;

    auto W = std::make_shared<pattern::op::Label>(A);
    auto x = std::make_shared<pattern::op::Label>(B);

    auto reshape_pred = [](std::shared_ptr<Node> n) {
        return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
    };

93 94
    auto skip_w = std::make_shared<pattern::op::Skip>(W, reshape_pred);
    auto skip_x = std::make_shared<pattern::op::Skip>(x, reshape_pred);
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    auto pdot = make_shared<op::Dot>(skip_w, skip_x);
    auto b = std::make_shared<pattern::op::Label>(C);
    auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0});
    auto padd = pdot + pbroadcast;

    TestMatcher n(nullptr);
    ASSERT_TRUE(n.match(padd, add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape());
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape());
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto re_add = re_dot + broadcast;
    ASSERT_TRUE(n.match(padd, re_add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

116 117 118 119 120 121 122 123 124 125 126 127
    auto cg = make_shared<op::MatmulBias>(
        W, x, C, W->get_shape(), x->get_shape(), false, false, AxisSet{0});
}

TEST(cpu_fusion, gemm_cpu_broadcast_row)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

128
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
129 130

    auto cg = make_shared<op::MatmulBias>(
131
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{0});
132 133 134

    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});

135
    auto backend = runtime::Backend::create("CPU");
136

137 138 139
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
140 141 142 143 144 145

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

146
    backend->call(f, {result}, {a, b});
147 148
    vector<float> expected{11, 30, 38, 111};
    EXPECT_EQ(read_vector<float>(result), expected);
149 150
}

151 152 153 154 155 156 157 158
TEST(cpu_fusion, gemm_cpu_broadcast_column)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

159
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
160 161

    auto cg = make_shared<op::MatmulBias>(
162
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{1});
163 164 165

    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});

166
    auto backend = runtime::Backend::create("CPU");
167

168 169 170
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
171 172 173 174 175 176

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

177
    backend->call(f, {result}, {a, b});
178 179
    vector<float> expected{11, 29, 39, 111};
    EXPECT_EQ(read_vector<float>(result), expected);
180 181 182
}

TEST(cpu_fusion, gemm_cpu_broadcast_matrix)
183 184 185 186 187 188 189 190 191 192 193 194 195
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1});
196 197
    auto cg = make_shared<op::MatmulBias>(
        A, B, one, A->get_shape(), B->get_shape(), true, true, AxisSet{0, 1});
198

199
    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});
200

201
    auto backend = runtime::Backend::create("CPU");
202

203 204 205
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
206 207 208 209 210 211

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

212
    backend->call(f, {result}, {a, b});
213 214 215 216
    vector<float> expected{10, 28, 37, 109};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
TEST(cpu_fusion, gemm_cpu_no_bias)
{
    auto shapeA = Shape{3, 2};
    auto shapeB = Shape{2, 3};
    auto shapeC = Shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto cg =
        make_shared<op::MatmulBias>(A, B, nullptr, A->get_shape(), B->get_shape(), true, true);

    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});

233
    auto backend = runtime::Backend::create("CPU");
234

235 236 237
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
238 239 240 241 242 243

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

244
    backend->call(f, {result}, {a, b});
245 246 247 248
    vector<float> expected{9, 27, 36, 108};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
TEST(cpu_fusion, cpu_fusion_pass_basic)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
264 265
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
266
    auto func = make_shared<Function>(graph, op::ParameterVector{A, B, C});
267
    pass_manager.run_passes(func);
268
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
269 270
}

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
TEST(cpu_fusion, commutative_matmul_bias)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = broadcast + dot;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
286 287
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
288 289
    auto func = make_shared<Function>(graph, op::ParameterVector{A, B, C});
    pass_manager.run_passes(func);
290
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
291 292
}

293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);
    auto b = make_shared<op::Parameter>(element::f32, shape_b);

    auto mmb = std::make_shared<op::MatmulBias>(
        W, x, nullptr, W->get_shape(), x->get_shape(), false, false);
    auto broadcast = std::make_shared<op::Broadcast>(b, mmb->get_shape(), AxisSet{0});
    auto add = mmb + broadcast;

    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
309 310
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
311 312
    auto func = make_shared<Function>(graph, op::ParameterVector{W, x, b});
    pass_manager.run_passes(func);
313
    auto gmm = graph->get_argument(0);
314
    ASSERT_TRUE(std::dynamic_pointer_cast<op::MatmulBias>(gmm));
315
    ASSERT_EQ(gmm->get_argument(2), b);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
}

TEST(cpu_fusion, cpu_fusion_pass_matmul_no_bias)
{
    Shape shape_w{4, 2};
    Shape shape_x{1, 4};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);

    auto reshape_w = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{2, 4});
    auto reshape_x = std::make_shared<op::Reshape>(x, AxisVector{1, 0}, Shape{4, 1});
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto graph = make_shared<op::Abs>(re_dot);

    pass::Manager pass_manager;
331 332
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
333 334 335 336 337 338
    auto func = make_shared<Function>(graph, op::ParameterVector{W, x});
    pass_manager.run_passes(func);
    size_t mmb = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmb, 1);
}

339 340 341 342 343 344 345
TEST(cpu_fusion, gemm_mlp)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass::Manager pass_manager;
346 347
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
348
    pass_manager.run_passes(func);
349 350
    auto mmbs = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmbs, 3);
351 352 353 354 355 356 357
}

TEST(cpu_fusion, fuse_fprop_bn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_before_fusion.png");
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
358 359
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
360 361 362 363 364 365 366 367 368
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_after_fusion.png");
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_fprop_b2c3h2w2.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchNorm>(func);
    ASSERT_EQ(ccg, 1);
}
nikolay.korovaiko's avatar
nikolay.korovaiko committed
369

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
TEST(cpu_fusion, zero_padded_reshaped_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 2, 2, 1});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 1, 0, 0}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto reshape = make_shared<op::Reshape>(pad, AxisVector{0, 3, 1, 2}, Shape{1, 1, 3, 3});

    auto conv = make_shared<op::Convolution>(reshape,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

394 395
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

TEST(cpu_fusion, zero_padded_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::Convolution>(pad,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

422 423
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

TEST(cpu_fusion, non_zero_padded_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::Convolution>(pad,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

450 451
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
452 453 454

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);
}
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478

TEST(cpu_fusion, zero_padded_conv_backprop_filters)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::ConvolutionBackpropFilters>(pad,
                                                            Shape{1, 1, 2, 2},
                                                            F,
                                                            Strides{1, 1},
                                                            Strides{1, 1},
                                                            CoordinateDiff{0, 0},
                                                            CoordinateDiff{0, 0},
                                                            Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

479 480
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
481 482 483 484

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

nikolay.korovaiko's avatar
nikolay.korovaiko committed
485 486 487 488
TEST(cpu_fusion, fuse_conv_bias)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
489 490
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::DIFFERENTIABLE_FUSIONS);
nikolay.korovaiko's avatar
nikolay.korovaiko committed
491 492 493 494 495 496 497 498
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "conv_bias.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionBias>(func);
    ASSERT_GT(cb, 0);
}
499

Louis Feng's avatar
Louis Feng committed
500
struct ConvolutionBiasTestData
Louis Feng's avatar
Louis Feng committed
501
{
Louis Feng's avatar
Louis Feng committed
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    size_t n{0};
    size_t c{0};
    size_t filter{0};
    size_t kernel_size{0};
    size_t w{0};
    size_t h{0};
    shared_ptr<runtime::TensorView> data_val;
    shared_ptr<runtime::TensorView> weights_val;
    shared_ptr<runtime::TensorView> bias_val;
    shared_ptr<runtime::TensorView> result_val;
    shared_ptr<runtime::TensorView> delta_val;
    shared_ptr<runtime::TensorView> d_data_val;
    shared_ptr<runtime::TensorView> d_weights_val;
    shared_ptr<runtime::TensorView> d_bias_val;
    vector<float> expected_result_val;
    vector<float> expected_d_data_val;
    vector<float> expected_d_weights_val;
    vector<float> expected_d_bias_val;

    Shape data_shape;
    Shape weights_shape;
    Shape bias_shape;
    Shape result_shape;
    shared_ptr<op::Parameter> data;
    shared_ptr<op::Parameter> weights;
    shared_ptr<op::Parameter> bias;
    shared_ptr<op::Parameter> delta;

Louis Feng's avatar
Louis Feng committed
530 531
    void n1c1h3w3(shared_ptr<runtime::Backend> backend)
    {
Louis Feng's avatar
Louis Feng committed
532 533 534 535 536 537 538 539 540 541 542 543 544
        n = 1;
        c = 1;
        filter = 1;
        kernel_size = 3;
        w = 3;
        h = w;

        data_shape = Shape{n, c, h, w};
        data = make_shared<op::Parameter>(element::f32, data_shape);
        weights_shape = Shape{filter, c, kernel_size, kernel_size};
        weights = make_shared<op::Parameter>(element::f32, weights_shape);
        bias_shape = Shape{filter};
        bias = make_shared<op::Parameter>(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
545
        result_shape = Shape{n, filter, 1, 1};
Louis Feng's avatar
Louis Feng committed
546

547
        data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
548 549 550 551 552 553 554 555 556 557
        copy_data(data_val,
                  vector<float>{-0.67765152f,
                                0.10073948f,
                                0.57595438f,
                                -0.3469252f,
                                -0.22134334f,
                                -1.80471897f,
                                -0.80642909f,
                                1.22033095f,
                                2.23235631f});
558
        weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
559 560 561 562 563 564 565 566 567 568
        copy_data(weights_val,
                  vector<float>{0.20070229f,
                                -0.54968649f,
                                -0.19819015f,
                                -0.38577855f,
                                1.37109005f,
                                -0.23789984f,
                                0.14867957f,
                                -0.49851316f,
                                -0.84815776f});
569
        bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
570 571
        copy_data(bias_val, vector<float>{0.07811152f});

572
        result_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
573 574 575
        copy_data(result_val, vector<float>{0});

        delta = make_shared<op::Parameter>(element::f32, result_shape);
576
        delta_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
577 578
        copy_data(delta_val, vector<float>{-2.58936238f});

579
        d_data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
580
        copy_data(d_data_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
581

582
        d_weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
583
        copy_data(d_weights_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
584

585
        d_bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
586 587
        copy_data(d_bias_val, vector<float>{0});

Louis Feng's avatar
Louis Feng committed
588
        expected_result_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
        expected_d_data_val = vector<float>{-0.51969099f,
                                            1.42333758f,
                                            0.5131861f,
                                            0.99892044f,
                                            -3.5502491f,
                                            0.61600888f,
                                            -0.3849853f,
                                            1.29083121f,
                                            2.19618773f};
        expected_d_weights_val = vector<float>{1.7546854f,
                                               -0.26085103f,
                                               -1.49135458f,
                                               0.89831507f,
                                               0.57313812f,
                                               4.67307138f,
                                               2.08813715f,
                                               -3.15987897f,
                                               -5.7803793f};
Louis Feng's avatar
Louis Feng committed
607
        expected_d_bias_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
608
    }
Louis Feng's avatar
Louis Feng committed
609
};
Louis Feng's avatar
Louis Feng committed
610

Louis Feng's avatar
Louis Feng committed
611
TEST(cpu_fusion, conv_bias_fprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
612
{
613
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
614 615

    ConvolutionBiasTestData conv_test;
Louis Feng's avatar
Louis Feng committed
616
    conv_test.n1c1h3w3(backend);
Louis Feng's avatar
Louis Feng committed
617 618 619 620

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
621 622
    auto f = make_shared<Function>(
        convolution_bias, op::ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
623

624 625
    backend->call(
        f, {conv_test.result_val}, {conv_test.data_val, conv_test.weights_val, conv_test.bias_val});
Louis Feng's avatar
Louis Feng committed
626
    auto result_vec = read_vector<float>(conv_test.result_val);
Louis Feng's avatar
Louis Feng committed
627

Louis Feng's avatar
Louis Feng committed
628 629
    EXPECT_TRUE(
        test::all_close(conv_test.expected_result_val, read_vector<float>(conv_test.result_val)));
Louis Feng's avatar
Louis Feng committed
630 631
}

Louis Feng's avatar
Louis Feng committed
632
TEST(cpu_fusion, conv_bias_bprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
633
{
634
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
635

Louis Feng's avatar
Louis Feng committed
636
    ConvolutionBiasTestData conv_test;
Louis Feng's avatar
Louis Feng committed
637
    conv_test.n1c1h3w3(backend);
Louis Feng's avatar
Louis Feng committed
638 639 640 641

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
642 643
    auto f = make_shared<Function>(
        convolution_bias, op::ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
644

645 646 647 648 649
    ngraph::autodiff::Adjoints adjoints(NodeVector{convolution_bias}, NodeVector{conv_test.delta});

    auto d_data = adjoints.backprop_node(conv_test.data);
    auto d_weights = adjoints.backprop_node(conv_test.weights);
    auto d_bias = adjoints.backprop_node(conv_test.bias);
Louis Feng's avatar
Louis Feng committed
650

Louis Feng's avatar
Louis Feng committed
651 652 653
    auto df = make_shared<Function>(
        NodeVector{d_data, d_weights, d_bias},
        op::ParameterVector{conv_test.data, conv_test.weights, conv_test.bias, conv_test.delta});
654 655 656 657
    backend->call(
        df,
        {conv_test.d_data_val, conv_test.d_weights_val, conv_test.d_bias_val},
        {conv_test.data_val, conv_test.weights_val, conv_test.bias_val, conv_test.delta_val});
Louis Feng's avatar
Louis Feng committed
658

Louis Feng's avatar
Louis Feng committed
659 660 661 662 663 664
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_data_val, read_vector<float>(conv_test.d_data_val)));
    EXPECT_TRUE(test::all_close(conv_test.expected_d_weights_val,
                                read_vector<float>(conv_test.d_weights_val)));
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_bias_val, read_vector<float>(conv_test.d_bias_val)));
Louis Feng's avatar
Louis Feng committed
665
}
Pruthvi's avatar
Pruthvi committed
666

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
TEST(cpu_fusion, conv_bias_bprop)
{
    Shape shape{2, 2, 1, 1};
    auto data_batch = std::make_shared<op::Parameter>(element::f32, shape);
    auto filters = std::make_shared<op::Parameter>(element::f32, shape);
    auto delta = std::make_shared<op::Parameter>(element::f32, shape);
    auto bias = make_shared<op::Parameter>(element::f32, Shape{});
    auto pbroadcast = std::make_shared<op::Broadcast>(bias, shape, AxisSet{0, 1, 2, 3});
    auto conv = std::make_shared<op::Convolution>(data_batch, filters);
    auto conv_bias = std::make_shared<op::Add>(conv, pbroadcast);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.register_pass<pass::VisualizeTree>("conv_bias_bprop_fusion");
    auto f = make_shared<Function>(conv_bias, op::ParameterVector{data_batch, filters, bias});

    ngraph::autodiff::Adjoints adjoints(NodeVector{conv_bias}, NodeVector{delta});

    auto d_data = adjoints.backprop_node(data_batch);
    auto d_weights = adjoints.backprop_node(filters);
    auto d_bias = adjoints.backprop_node(bias);

    auto df = make_shared<Function>(NodeVector{d_data, d_weights, d_bias},
                                    op::ParameterVector{data_batch, filters, bias, delta});

    pass_manager.run_passes(df);
    size_t ccg = count_ops_of_type<op::ConvolutionBiasBackpropFiltersBias>(df);
    ASSERT_EQ(ccg, 1);
}

Pruthvi's avatar
Pruthvi committed
697 698 699
TEST(cpu_fusion, sigmoid_fprop_fusion)
{
    pass::Manager pass_manager;
700 701
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
Pruthvi's avatar
Pruthvi committed
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/Graph_fprop_sigmoid.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::Sigmoid>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, sigmoid_n1c1h2w2)
{
    auto input = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto sigmoid_node = make_shared<op::Sigmoid>(input);
    auto func = make_shared<Function>(sigmoid_node, op::ParameterVector{input});

717
    auto backend = runtime::Backend::create("CPU");
Pruthvi's avatar
Pruthvi committed
718

719
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
720
    shared_ptr<runtime::TensorView> result =
721
        backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
722 723 724 725

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f};
    copy_data(a, dataA);

726
    backend->call(func, {result}, {a});
Pruthvi's avatar
Pruthvi committed
727 728 729 730 731 732 733 734 735 736
    vector<float> expected{0.73105858f, 0.98201379f, 0.73105858f, 0.98201379f};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

TEST(cpu_fusion, sigmoid_n1c1h4)
{
    auto input = make_shared<op::Parameter>(element::f32, Shape{1, 1, 4});
    auto sigmoid_node = make_shared<op::Sigmoid>(input);
    auto func = make_shared<Function>(sigmoid_node, op::ParameterVector{input});

737
    auto backend = runtime::Backend::create("CPU");
Pruthvi's avatar
Pruthvi committed
738

739
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
740
    shared_ptr<runtime::TensorView> result =
741
        backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
742 743 744 745

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f};
    copy_data(a, dataA);

746
    backend->call(func, {result}, {a});
Pruthvi's avatar
Pruthvi committed
747 748 749
    vector<float> expected{0.73105858f, 0.98201379f, 0.73105858f, 0.98201379f};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}
Pruthvi's avatar
Pruthvi committed
750 751 752 753 754 755 756 757

TEST(cpu_fusion, sigmoid_bprop_fusion)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/Graph_fprop_sigmoid.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    auto df = autodiff::backprop_function(func);
758 759
    auto backend = runtime::Backend::create("CPU");
    backend->compile(df);
Pruthvi's avatar
Pruthvi committed
760 761 762 763 764 765 766 767 768 769
    size_t ccg = count_ops_of_type<op::SigmoidBackprop>(df);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, sigmoid_bprop_n1c1h4)
{
    auto input = make_shared<op::Parameter>(element::f32, Shape{1, 1, 4});
    auto delta = make_shared<op::Parameter>(element::f32, Shape{1, 1, 4});
    auto sigmoid_node = make_shared<op::SigmoidBackprop>(input, delta);
    auto func = make_shared<Function>(sigmoid_node, op::ParameterVector{input, delta});
770 771 772 773
    auto backend = runtime::Backend::create("CPU");

    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, input->get_shape());
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, delta->get_shape());
Pruthvi's avatar
Pruthvi committed
774
    shared_ptr<runtime::TensorView> result =
775
        backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
776 777 778 779 780 781

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{1.0f, 1.0f, 1.0f, 1.0f};

    copy_data(a, dataA);
    copy_data(b, dataB);
782
    backend->call(func, {result}, {a, b});
Pruthvi's avatar
Pruthvi committed
783 784 785 786

    vector<float> expected{0.196612f, 0.0176627f, 0.196612f, 0.0176627f};
    EXPECT_TRUE(test::all_close(expected, read_vector<float>(result)));
}
Pruthvi's avatar
Pruthvi committed
787

788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
TEST(cpu_fusion, batchnorm_fprop_relu_b1c2h2w2)
{
    auto input_shape = Shape{1, 2, 2, 2};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{2};
    auto var_shape = Shape{2};
    auto gamma_shape = Shape{2};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{2};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{1, 2, 2, 2};
    auto bn = make_shared<op::BatchNorm>(eps, gamma, beta, input);

    auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);
    // Note, op::Splice is used to break Relu(BatchNorm) fusion
    // otherwise we will be comparing two BatchNormRelus
    // Unfortunately, we can't use INTERPRETER for
    // verifying the results as it doesn't implement
    // BatchNorm op.
    auto slice =
        std::make_shared<op::Slice>(output_rt, Coordinate{0, 0, 0, 0}, Coordinate{1, 2, 2, 2});
    auto output_relu = std::make_shared<op::Relu>(slice);
    auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
    auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

    auto bn_relu = make_shared<op::BatchNormRelu>(eps, gamma, beta, input);
    auto output_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 0);
    auto mean_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 1);
    auto variance_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 2);

    auto f = make_shared<Function>(
        NodeVector{output_relu, mean_rt, variance_rt, output_rt_bnr, mean_rt_bnr, variance_rt_bnr},
        op::ParameterVector{input, gamma, beta});
822
    auto backend = runtime::Backend::create("CPU");
823 824

    // Create some tensors for input/output
825
    auto input_t = backend->create_tensor(element::f32, Shape{1, 2, 2, 2});
826 827 828 829 830 831 832 833 834 835

    copy_data(input_t,
              vector<float>{0.54881352f,
                            0.71518934f,
                            0.60276335f,
                            0.54488319f,
                            0.42365479f,
                            0.64589411f,
                            0.4375872f,
                            0.89177299f});
836
    auto gamma_t = backend->create_tensor(element::f32, gamma_shape);
837
    copy_data(gamma_t, vector<float>{1.0f, 1.0f});
838
    auto beta_t = backend->create_tensor(element::f32, beta_shape);
839
    copy_data(beta_t, vector<float>{0.0f, 0.0f});
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
    auto bn_output = backend->create_tensor(element::f32, shape_r);
    auto result_mean = backend->create_tensor(element::f32, mean_shape);
    auto result_variance = backend->create_tensor(element::f32, var_shape);

    auto bn_output_bnr = backend->create_tensor(element::f32, shape_r);
    auto result_mean_bnr = backend->create_tensor(element::f32, mean_shape);
    auto result_variance_bnr = backend->create_tensor(element::f32, var_shape);

    backend->call(f,
                  {bn_output,
                   result_mean,
                   result_variance,
                   bn_output_bnr,
                   result_mean_bnr,
                   result_variance_bnr},
                  {input_t, gamma_t, beta_t});
856 857 858 859 860 861 862 863

    EXPECT_TRUE(test::all_close(read_vector<float>(bn_output), read_vector<float>(bn_output_bnr)));
    EXPECT_TRUE(
        test::all_close(read_vector<float>(result_mean), read_vector<float>(result_mean_bnr)));
    EXPECT_TRUE(test::all_close(read_vector<float>(result_variance),
                                read_vector<float>(result_variance_bnr)));
}

864 865 866 867 868 869 870 871 872 873 874
TEST(cpu_fusion, fuse_conv_relu)
{
    auto A = std::make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = std::make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto convolution = std::make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto relu = std::make_shared<op::Relu>(convolution);
    auto abs_node =
        std::make_shared<op::Abs>(std::make_shared<op::Abs>(std::make_shared<op::Abs>(relu)));
    auto func = make_shared<Function>(abs_node, op::ParameterVector{A, weights});

    pass::Manager pass_manager;
875 876
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
877 878 879 880 881
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionRelu>(func);
    ASSERT_GT(cb, 0);
}

882 883 884 885
template <typename T>
static std::vector<std::vector<T>>
    execute(std::shared_ptr<Function> f, std::vector<std::vector<T>> args, std::string cbackend)
{
886
    auto backend = runtime::Backend::create(cbackend);
887 888 889 890 891 892 893 894 895 896 897

    auto parms = f->get_parameters();

    if (parms.size() != args.size())
    {
        throw ngraph_error("number of parameters and arguments don't match");
    }

    std::vector<std::shared_ptr<ngraph::runtime::TensorView>> arg_tensors(args.size());
    for (size_t i = 0; i < args.size(); i++)
    {
898
        auto t = backend->create_tensor(parms.at(i)->get_element_type(), parms.at(i)->get_shape());
899 900 901 902 903 904 905 906 907
        copy_data(t, args.at(i));
        arg_tensors.at(i) = t;
    }

    auto results = f->get_results();
    std::vector<std::shared_ptr<ngraph::runtime::TensorView>> result_tensors(results.size());

    for (size_t i = 0; i < results.size(); i++)
    {
908 909
        result_tensors.at(i) =
            backend->create_tensor(results.at(i)->get_element_type(), results.at(i)->get_shape());
910 911
    }

912
    backend->call(f, result_tensors, arg_tensors);
913 914 915 916 917 918 919 920 921 922

    std::vector<std::vector<T>> result_vectors;
    for (auto rt : result_tensors)
    {
        result_vectors.push_back(read_vector<T>(rt));
    }
    return result_vectors;
}

TEST(cpu_fusion, conv_relu_n2c1h2w2_2)
923 924 925 926
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};

927 928 929 930 931 932 933 934
    auto make_int_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto relu = std::make_shared<op::Relu>(conv);
        auto f = make_shared<Function>(NodeVector{relu}, op::ParameterVector{A, weights});
        return f;
    };
935

936
    auto int_f = make_int_function();
937

938 939 940 941 942 943 944 945
    auto make_cpu_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto conv_relu = std::make_shared<op::ConvolutionRelu>(conv);
        auto f = make_shared<Function>(NodeVector{conv_relu}, op::ParameterVector{A, weights});
        return f;
    };
946

947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
TEST(cpu_fusion, conv_bias_relu_n2c1h2w2_2)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_int_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto relu = std::make_shared<op::Relu>(conv_bias);
        auto f = make_shared<Function>(NodeVector{relu}, op::ParameterVector{A, weights, bias});
        return f;
    };

    auto int_f = make_int_function();

    auto make_cpu_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto conv_bias_relu = std::make_shared<op::ConvolutionBiasRelu>(
            std::make_shared<op::ConvolutionBias>(conv, bias));
        auto f = make_shared<Function>(NodeVector{conv_bias_relu},
                                       op::ParameterVector{A, weights, bias});
        return f;
    };

    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
std::vector<shared_ptr<runtime::TensorView>>
    rnn_matrix_fusion_eval(const size_t time_steps,
                           const Shape& data_shape,
                           const Shape& weights_shape,
                           const Shape& bias_shape,
                           const vector<float>& data_val,
                           const vector<float>& weights_val,
                           const vector<float>& bias_val,
                           const bool enable_pass)
{
    auto data = make_shared<op::Parameter>(element::f32, data_shape);
    auto weights = make_shared<op::Parameter>(element::f32, weights_shape);
    auto bias = make_shared<op::Parameter>(element::f32, bias_shape);

    // results from each time step
    NodeVector results;
    for (size_t t = 0; t < time_steps; ++t)
    {
        auto data_slice = make_shared<op::Slice>(
            data, Coordinate{0, t, 0}, Coordinate{data_shape[0], t + 1, data_shape[2]});
        auto data_reshape = make_shared<op::Reshape>(
            data_slice, AxisVector{0, 1, 2}, Shape{data_shape[0], data_shape[2]});
        auto weights_reshape = make_shared<op::Reshape>(
            weights, AxisVector{1, 0}, Shape{weights_shape[1], weights_shape[0]});
        auto dot = make_shared<op::Dot>(data_reshape, weights_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add = make_shared<op::Add>(dot, bias_broadcast);
        results.push_back(add);
    }
    auto func = make_shared<Function>(results, op::ParameterVector{data, weights, bias});
    if (enable_pass)
    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1048 1049
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
            runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
1050 1051 1052 1053 1054 1055
        pass_manager.run_passes(func);
        // check all of our dot/add are converted to a single MatmulBias op.
        size_t count = count_ops_of_type<op::MatmulBias>(func);
        EXPECT_EQ(count, 1);
    }

1056
    auto backend = runtime::Backend::create("CPU");
1057 1058

    shared_ptr<runtime::TensorView> data_tensor =
1059
        backend->create_tensor(element::f32, data->get_shape());
1060
    shared_ptr<runtime::TensorView> weights_tensor =
1061
        backend->create_tensor(element::f32, weights->get_shape());
1062
    shared_ptr<runtime::TensorView> bias_tensor =
1063
        backend->create_tensor(element::f32, bias->get_shape());
1064 1065 1066 1067

    std::vector<shared_ptr<runtime::TensorView>> result_tensors;
    for (auto r : results)
    {
1068
        result_tensors.push_back(backend->create_tensor(element::f32, r->get_shape()));
1069 1070 1071 1072 1073
    }

    copy_data(data_tensor, data_val);
    copy_data(weights_tensor, weights_val);
    copy_data(bias_tensor, bias_val);
1074
    backend->call(func, result_tensors, {data_tensor, weights_tensor, bias_tensor});
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
    return result_tensors;
}

TEST(cpu_fusion, rnn_matrix_fusion_eval_pass)
{
    const size_t time_steps = 4;
    Shape data_shape{3, time_steps, 5};
    Shape weights_shape{6, data_shape[2]};
    Shape bias_shape{6};

    test::Uniform<float> rng{0, 1, 0};
    vector<float> data_val(shape_size(data_shape));
    vector<float> weights_val(shape_size(weights_shape));
    vector<float> bias_val(shape_size(bias_shape));
    rng.initialize(data_val);
    rng.initialize(weights_val);
    rng.initialize(bias_val);

    std::vector<shared_ptr<runtime::TensorView>> result_expected = rnn_matrix_fusion_eval(
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, false);
    std::vector<shared_ptr<runtime::TensorView>> result_fused = rnn_matrix_fusion_eval(
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, true);
    for (size_t i = 0; i < result_expected.size(); ++i)
    {
        EXPECT_TRUE(test::all_close<float>(result_expected[i], result_fused[i]));
    }
}
1102 1103 1104 1105 1106

TEST(cpu_fusion, rnn_fusion_from_json_model)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1107 1108
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
1109 1110 1111 1112 1113 1114 1115
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/rnn-10-step-fusion-test.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    const size_t NUM_STEPS = 10;
1116
    auto mmb_predicate = [](std::shared_ptr<Node> node) {
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        auto users = node->get_users();
        return users.size() == NUM_STEPS &&
               std::all_of(begin(users), end(users), [](std::shared_ptr<Node> n) {
                   return std::dynamic_pointer_cast<op::Slice>(n) != nullptr;
               });
    };

    auto mmbs = get_ops_of_type<op::MatmulBias>(func);
    ASSERT_TRUE(std::any_of(begin(mmbs), end(mmbs), mmb_predicate));
}
Nick Korovaiko's avatar
Nick Korovaiko committed
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173

TEST(cpu_fusion, weight_fusion)
{
    auto param = std::make_shared<op::Parameter>(element::f32, Shape{64});
    auto reshape_conv =
        std::make_shared<ngraph::op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto data_conv = std::make_shared<op::Parameter>(element::f32, Shape{16, 4, 7, 7});
    auto tvt = reshape_conv->get_outputs().at(0).get_tensor_view().get();
    auto lt_desc = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt, AxisVector{0, 1, 2, 3});
    auto cvt_lt_conv = std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv, lt_desc);
    auto conv = std::make_shared<ngraph::op::Convolution>(
        data_conv, cvt_lt_conv, Strides{1, 1}, Strides{1, 1});

    auto reshape_conv_bprop =
        std::make_shared<op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto dummy_arg_conv_bprop = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 7, 7});
    auto tvt_bprop = reshape_conv_bprop->get_outputs().at(0).get_tensor_view().get();
    auto lt_desc_bprop =
        std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt_bprop, AxisVector{0, 1, 2, 3});
    auto cvt_lt_conv_bprop =
        std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv_bprop, lt_desc_bprop);
    auto conv_bprop = std::make_shared<op::ConvolutionBackpropData>(Shape{1, 4, 7, 7},
                                                                    cvt_lt_conv_bprop,
                                                                    dummy_arg_conv_bprop,
                                                                    Strides{1, 1},
                                                                    Strides{1, 1},
                                                                    CoordinateDiff{0, 0},
                                                                    CoordinateDiff{0, 0},
                                                                    Strides{1, 1});

    auto conv_relu = std::make_shared<op::Relu>(conv);
    auto conv_bprop_abs = std::make_shared<op::Abs>(conv_bprop);

    auto f = make_shared<Function>(NodeVector{conv_relu, conv_bprop_abs},
                                   op::ParameterVector{param, data_conv, dummy_arg_conv_bprop});

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUPostLayoutOptimizations>();
    pass_manager.run_passes(f);

    auto new_conv_bprop_data = conv_bprop_abs->get_argument(0);
    auto new_convert_layout = new_conv_bprop_data->get_argument(0);

    ASSERT_EQ(std::dynamic_pointer_cast<runtime::cpu::op::ConvertLayout>(
                  new_convert_layout->get_argument(0)),
              cvt_lt_conv);
}
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

TEST(cpu_fusion, max_pool_with_indices)
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto C = std::make_shared<op::Parameter>(element::f32, max_pool->get_shape());

    ngraph::autodiff::Adjoints adjoints(NodeVector{max_pool}, NodeVector{C});

    auto dinput = adjoints.backprop_node(input);

    auto df = std::make_shared<Function>(NodeVector{dinput}, op::ParameterVector{input, C});

    auto f = std::make_shared<Function>(NodeVector{max_pool}, op::ParameterVector{input});

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_before.pdf");
        pass_manager.run_passes(f);
    }

    {
1198
        NodeVector nv_cwi;
1199 1200
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before.pdf");
1201
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after.pdf");
        pass_manager.run_passes(df);
    }

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_after.pdf");
        pass_manager.run_passes(f);
    }

    auto maxpool_goe_output =
        std::dynamic_pointer_cast<op::GetOutputElement>(f->get_results().at(0)->get_argument(0));
    ASSERT_TRUE(maxpool_goe_output);
    ASSERT_EQ(maxpool_goe_output->get_n(), 0);
    auto maxpool_with_indices = df->get_results().at(0)->get_argument(0);
    auto maxpool_goe_indices =
        std::dynamic_pointer_cast<op::GetOutputElement>(maxpool_with_indices->get_argument(2));
    ASSERT_TRUE(maxpool_goe_indices);
    ASSERT_EQ(maxpool_goe_indices->get_n(), 1);
}

TEST(cpu_fusion, backwards_maxpool_with_indices_n4_c1_hw4_2x2_max)
{
    Shape shape_a{1, 4, 4, 4};
    Shape maxpool_shape{1, 4, 3, 3};
    auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto window_movement_strides = Strides{1, 1};
    auto maxpool = std::make_shared<op::MaxPool>(A, window_shape, window_movement_strides);
    auto f = std::make_shared<Function>(maxpool, op::ParameterVector{A});

    auto backend = runtime::Backend::create("CPU");
    shared_ptr<runtime::TensorView> ep = backend->create_tensor(element::f32, maxpool_shape);
    vector<float> dataEp(shape_size(maxpool_shape), 4);

    shared_ptr<runtime::TensorView> input = backend->create_tensor(element::f32, shape_a);
    shared_ptr<runtime::TensorView> output = backend->create_tensor(element::f32, shape_a);

    vector<float> dataInput{11.f, 31.f, 40.f, 47.f, 13.f, 61.f, 48.f, 59.f, 17.f, 39.f, 64.f,
                            62.f, 45.f, 55.f, 36.f, 19.f, 65.f, 33.f, 49.f, 30.f, 56.f, 41.f,
                            53.f, 58.f, 22.f, 35.f, 52.f, 50.f, 63.f, 54.f, 12.f, 26.f, 44.f,
                            21.f, 69.f, 24.f, 46.f, 25.f, 51.f, 29.f, 72.f, 15.f, 73.f, 10.f,
                            16.f, 37.f, 70.f, 32.f, 28.f, 66.f, 57.f, 27.f, 60.f, 42.f, 43.f,
                            71.f, 18.f, 38.f, 67.f, 68.f, 14.f, 20.f, 34.f, 23.f};

    vector<float> expected{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 12.0f, 0.0f, 4.0f, 0.0f, 0.0f,  16.0f,
                           0.0f, 0.0f, 4.0f, 0.0f, 0.0f, 4.0f,  0.0f, 0.0f, 0.0f, 4.0f,  0.0f,
                           8.0f, 8.0f, 0.0f, 0.0f, 4.0f, 0.0f,  4.0f, 4.0f, 0.0f, 0.0f,  0.0f,
                           0.0f, 8.0f, 0.0f, 4.0f, 0.0f, 0.0f,  0.0f, 8.0f, 0.0f, 16.0f, 0.0f,
                           0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 8.0f,  0.0f, 0.0f, 4.0f, 0.0f,  0.0f,
                           8.0f, 0.0f, 4.0f, 8.0f, 4.0f, 0.0f,  0.0f, 0.0f, 0.0f};

    copy_data(ep, dataEp);
    copy_data(input, dataInput);

    auto C = std::make_shared<op::Parameter>(element::f32, maxpool_shape);
    auto df = autodiff::backprop_function(f);

    {
1261
        NodeVector nv_cwi;
1262 1263
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before2.pdf");
1264
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1265 1266 1267 1268 1269 1270 1271
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after2.pdf");
        pass_manager.run_passes(df);
    }

    backend->call(df, {output}, {input, ep});
    ASSERT_TRUE(read_vector<float>(output) == expected);
}
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static std::shared_ptr<ngraph::Function> make_forward_function()
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto neg = std::make_shared<op::Negative>(max_pool);
    auto absn = std::make_shared<op::Abs>(max_pool);
    return std::make_shared<Function>(NodeVector{max_pool, neg, absn}, op::ParameterVector{input});
}

static std::pair<std::shared_ptr<ngraph::Function>, std::vector<std::shared_ptr<ngraph::Node>>>
    make_backward_function(std::shared_ptr<ngraph::Function> f)
{
    // get parameters
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = f->get_parameters();

    ngraph::NodeVector adjoints;
    ngraph::NodeVector outputs;
    for (auto Y : f->get_results())
    {
        // Get the output
        // Create the Adjoint
        auto C = std::make_shared<ngraph::op::Parameter>(Y->get_element_type(), Y->get_shape());
        outputs.push_back(Y);
        adjoints.push_back(C);
    }

    ngraph::autodiff::Adjoints adjoint{outputs, adjoints};

    // Perform autodiff
    std::vector<std::shared_ptr<Node>> dYdXs(back_parameters.size());
    transform(back_parameters.begin(),
              back_parameters.end(),
              dYdXs.begin(),
              [&adjoint](const std::shared_ptr<Node>& X) { return adjoint.backprop_node(X); });

    // create the backward function
    std::vector<std::shared_ptr<ngraph::op::Parameter>> param_adjoints;
    for (auto n : adjoints)
        param_adjoints.push_back(std::dynamic_pointer_cast<ngraph::op::Parameter>(n));
    back_parameters.insert(back_parameters.begin(), param_adjoints.begin(), param_adjoints.end());

    return {std::make_shared<ngraph::Function>(dYdXs, back_parameters), adjoints};
}

void optimize_graph(std::shared_ptr<ngraph::Function>& f, std::shared_ptr<ngraph::Function> bf)
{
    // start by removing excess reshapes
    NodeVector nv_cwi;
    ngraph::pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
    pass_manager.register_pass<pass::VisualizeTree>("before.fprop_cache.pdf");

    pass_manager.run_passes(f);
    pass_manager.run_passes(bf);
    if (nv_cwi.size() > 0)
    {
        NodeVector new_outputs;
        for (auto r : f->get_results())
        {
            new_outputs.push_back(r->get_argument(0));
        }

        new_outputs.insert(new_outputs.end(), nv_cwi.begin(), nv_cwi.end());
        f = std::make_shared<ngraph::Function>(new_outputs, f->get_parameters());
    }

    ngraph::NodeVector dYdXs;
    for (size_t i = 0; i < bf->get_output_size(); ++i)
    {
        dYdXs.push_back(bf->get_output_op(i)->get_argument(0));
    }

    ngraph::NodeVector combined_outputs;
    for (auto r : f->get_results())
    {
        combined_outputs.push_back(r->get_argument(0));
    }

    combined_outputs.insert(combined_outputs.end(), dYdXs.begin(), dYdXs.end());

    std::vector<std::shared_ptr<ngraph::op::Parameter>> combined_parameters = f->get_parameters();
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = bf->get_parameters();

    combined_parameters.insert(
        combined_parameters.end(), back_parameters.begin(), back_parameters.end());
    auto combinedf = std::make_shared<ngraph::Function>(combined_outputs, combined_parameters);
    // rerun Reshape elimination to help simplify the graph again, run CPUFusion
    // this replaces nodes in both f and bf due to shared-ptr - ness
    ngraph::pass::Manager pass_manager_comb;
    pass_manager_comb.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager_comb.register_pass<ngraph::runtime::cpu::pass::CPUFusion>();
    pass_manager_comb.run_passes(combinedf);
}

TEST(cpu_fusion, maxpool_with_indices_in_mxnet)
{
    auto f = make_forward_function();
    auto bfa = make_backward_function(f);
    auto maybe_bf = bfa.first;
    auto adjoints = bfa.second;
    optimize_graph(f, maybe_bf);
    auto fprop_cache = ngraph::cache_fprop(f, maybe_bf, adjoints);

    auto mpwi_bprop = fprop_cache.bprop->get_results().at(0)->get_argument(0);
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(0)));
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(2)));
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
TEST(cpu_fusion, batch_norm_folding)
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        double eps = 0.001;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto bn = std::make_shared<op::BatchNorm>(eps, gamma, beta, conv, mean, var);
        auto f = make_shared<Function>(NodeVector{bn},
                                       op::ParameterVector{input, weights, gamma, beta, mean, var});
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
        {0.12f, 0.31f},
        {0.01f, 0.11f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

TEST(cpu_fusion, rnn_fprop_1_lstm_cell)
{
    auto src_layer = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto src_iter = make_shared<op::Parameter>(element::f32, Shape{20, 100});
    auto weights_layer = make_shared<op::Parameter>(element::f32, Shape{400, 100});
    auto weights_iter = make_shared<op::Parameter>(element::f32, Shape{400, 100});
    auto biases = make_shared<op::Parameter>(element::f32, Shape{400});
    const int number_of_timesteps = 1;
    const int number_of_gates_per_cell = 4;
    const int src_seq_length = 1;
    const int src_layer_feature_size = 100;
    const int feature_size = 100;
    const int num_rnn_cell_states = 2;
    const int rnn_direction = 1;
    const int num_of_rnn_fused_layer = 1;
    auto rnn_node = make_shared<op::Rnn>(src_layer,
                                         src_iter,
                                         weights_layer,
                                         weights_iter,
                                         biases,
                                         number_of_timesteps,
                                         number_of_gates_per_cell,
                                         src_seq_length,
                                         src_layer_feature_size,
                                         feature_size,
                                         num_rnn_cell_states,
                                         rnn_direction,
                                         num_of_rnn_fused_layer);
    auto rnn_ht_output = make_shared<op::GetOutputElement>(rnn_node, 0);
    auto rnn_ct_output = make_shared<op::GetOutputElement>(rnn_node, 1);

    auto func = make_shared<Function>(
        NodeVector{rnn_ht_output, rnn_ct_output},
        op::ParameterVector{src_layer, src_iter, weights_layer, weights_iter, biases});
    auto backend = runtime::Backend::create("CPU");

    shared_ptr<runtime::TensorView> src_layer_t =
        backend->create_tensor(element::f32, src_layer->get_shape());
    shared_ptr<runtime::TensorView> src_iter_t =
        backend->create_tensor(element::f32, src_iter->get_shape());
    shared_ptr<runtime::TensorView> weights_layer_t =
        backend->create_tensor(element::f32, weights_layer->get_shape());
    shared_ptr<runtime::TensorView> weights_iter_t =
        backend->create_tensor(element::f32, weights_iter->get_shape());
    shared_ptr<runtime::TensorView> biases_t =
        backend->create_tensor(element::f32, biases->get_shape());
    shared_ptr<runtime::TensorView> result_ht = backend->create_tensor(element::f32, {10, 100});
    shared_ptr<runtime::TensorView> result_ct =
        backend->create_tensor(element::f32, Shape{20, 100});

    copy_data(src_layer_t, vector<float>(1000, 1));
    copy_data(src_iter_t, vector<float>(2000, 1));
    copy_data(weights_layer_t, vector<float>(400 * 100, 1));
    copy_data(weights_iter_t, vector<float>(400 * 100, 1));
    copy_data(biases_t, vector<float>(400, 1));

    backend->call(func,
                  {result_ht, result_ct},
                  {src_layer_t, src_iter_t, weights_layer_t, weights_iter_t, biases_t});
    vector<float> expected_ht(10 * 100, 0.964028f);
    vector<float> expected_ct;
    for (size_t i = 0; i < 20 * 100; i++)
    {
        if (i < 1000)
        {
            expected_ct.push_back(0.964028f);
        }
        else
        {
            expected_ct.push_back(2.0f);
        }
    }

    EXPECT_TRUE(test::all_close(expected_ht, read_vector<float>(result_ht)));
    EXPECT_TRUE(test::all_close(expected_ct, read_vector<float>(result_ct)));
}

TEST(cpu_fusion, fuse_lstm_cells)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::ConcatInputs>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    auto lstm_ops = get_ops_of_type<op::Lstm>(func);
    EXPECT_EQ(lstm_ops.size(), 6);
}

TEST(cpu_fusion, fuse_2_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

TEST(cpu_fusion, fuse_1_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/1rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), 1);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

static std::shared_ptr<Function> make_function(const std::string& file_name)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, file_name);
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    return func;
}

TEST(cpu_fusion, rnn_fusion_inter_vs_cpu_1lstm_cell)
{
    const std::string file_name("mxnet/1_lstm_cell_forward.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, rnn_fusion_inter_vs_cpu_1rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/1rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, rnn_fusion_inter_vs_cpu_2rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/2rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}