cpu_fusion.cpp 178 KB
Newer Older
1
//*****************************************************************************
2
// Copyright 2017-2019 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
16 17 18 19 20 21 22 23

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
24
#include "misc.hpp"
25
#include "ngraph/autodiff/adjoints.hpp"
Louis Feng's avatar
Louis Feng committed
26
#include "ngraph/file_util.hpp"
27 28 29
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
30
#include "ngraph/op/batch_norm.hpp"
31
#include "ngraph/op/concat.hpp"
32
#include "ngraph/op/dequantize.hpp"
gaurides's avatar
gaurides committed
33
#include "ngraph/op/experimental/generate_mask.hpp"
34
#include "ngraph/op/experimental/quantized_conv_bias.hpp"
35
#include "ngraph/op/fused/conv_fused.hpp"
36
#include "ngraph/op/fused/group_conv.hpp"
37
#include "ngraph/op/get_output_element.hpp"
38
#include "ngraph/op/max_pool.hpp"
39
#include "ngraph/op/negative.hpp"
40
#include "ngraph/op/parameter.hpp"
41
#include "ngraph/op/quantize.hpp"
42
#include "ngraph/op/quantized_convolution.hpp"
43
#include "ngraph/op/relu.hpp"
gaurides's avatar
gaurides committed
44
#include "ngraph/op/result.hpp"
Pruthvi's avatar
Pruthvi committed
45
#include "ngraph/op/reverse_sequence.hpp"
46
#include "ngraph/op/sigmoid.hpp"
47
#include "ngraph/op/sum.hpp"
48
#include "ngraph/op/tanh.hpp"
49
#include "ngraph/pass/algebraic_simplification.hpp"
50
#include "ngraph/pass/batch_fusion.hpp"
51
#include "ngraph/pass/core_fusion.hpp"
52 53
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
Louis Feng's avatar
Louis Feng committed
54 55
#include "ngraph/pass/reshape_elimination.hpp"
#include "ngraph/pass/visualize_tree.hpp"
56 57
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp"
58
#include "ngraph/pattern/op/skip.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
59
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
60
#include "ngraph/runtime/cpu/cpu_tensor_view.hpp"
61
#include "ngraph/runtime/cpu/op/batch_mat_mul_transpose.hpp"
62
#include "ngraph/runtime/cpu/op/batch_norm_relu.hpp"
63
#include "ngraph/runtime/cpu/op/bounded_relu.hpp"
gaurides's avatar
gaurides committed
64
#include "ngraph/runtime/cpu/op/conv_add.hpp"
65
#include "ngraph/runtime/cpu/op/conv_relu.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
66
#include "ngraph/runtime/cpu/op/convert_layout.hpp"
gaurides's avatar
gaurides committed
67
#include "ngraph/runtime/cpu/op/deconv.hpp"
gaurides's avatar
gaurides committed
68
#include "ngraph/runtime/cpu/op/dropout.hpp"
69
#include "ngraph/runtime/cpu/op/group_conv_bias.hpp"
70
#include "ngraph/runtime/cpu/op/leaky_relu.hpp"
71
#include "ngraph/runtime/cpu/op/lstm.hpp"
72
#include "ngraph/runtime/cpu/op/matmul_bias.hpp"
73
#include "ngraph/runtime/cpu/op/rnn.hpp"
Pruthvi's avatar
Pruthvi committed
74
#include "ngraph/runtime/cpu/op/rnn_utils.hpp"
75
#include "ngraph/runtime/cpu/op/sigmoid_mul.hpp"
76
#include "ngraph/runtime/cpu/op/update_slice.hpp"
77
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
78
#include "ngraph/runtime/cpu/pass/cpu_mat_fusion.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
79
#include "ngraph/runtime/cpu/pass/cpu_post_layout_optimizations.hpp"
80
#include "ngraph/runtime/cpu/pass/cpu_rnn_fusion.hpp"
81
#include "ngraph/runtime/cpu/pass/cpu_workspace_insertion.hpp"
82 83 84
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
#include "util/all_close.hpp"
85
#include "util/all_close_f.hpp"
Pruthvi's avatar
Pruthvi committed
86 87
#include "util/autodiff/backprop_function.hpp"
#include "util/autodiff/numeric_compare.hpp"
88
#include "util/matcher.hpp"
89
#include "util/random.hpp"
90
#include "util/test_tools.hpp"
91

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
using namespace ngraph;
using namespace std;

TEST(cpu_fusion, gemm_pattern)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;

    auto W = std::make_shared<pattern::op::Label>(A);
    auto x = std::make_shared<pattern::op::Label>(B);

    auto reshape_pred = [](std::shared_ptr<Node> n) {
        return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
    };

115 116
    auto skip_w = std::make_shared<pattern::op::Skip>(W, reshape_pred);
    auto skip_x = std::make_shared<pattern::op::Skip>(x, reshape_pred);
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137

    auto pdot = make_shared<op::Dot>(skip_w, skip_x);
    auto b = std::make_shared<pattern::op::Label>(C);
    auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0});
    auto padd = pdot + pbroadcast;

    TestMatcher n(nullptr);
    ASSERT_TRUE(n.match(padd, add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape());
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape());
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto re_add = re_dot + broadcast;
    ASSERT_TRUE(n.match(padd, re_add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

138 139 140 141 142 143 144 145 146 147 148 149
    auto cg = make_shared<op::MatmulBias>(
        W, x, C, W->get_shape(), x->get_shape(), false, false, AxisSet{0});
}

TEST(cpu_fusion, gemm_cpu_broadcast_row)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

150
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
151 152

    auto cg = make_shared<op::MatmulBias>(
153
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{0});
154

155
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
156

157
    auto backend = runtime::Backend::create("CPU");
158

159 160 161
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
162 163 164 165 166 167

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

168
    auto handle = backend->compile(f);
169
    handle->call_with_validate({result}, {a, b});
170
    vector<float> expected{11, 30, 38, 111};
171
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
172 173
}

174 175 176 177 178 179 180 181
TEST(cpu_fusion, gemm_cpu_broadcast_column)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

182
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
183 184

    auto cg = make_shared<op::MatmulBias>(
185
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{1});
186

187
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
188

189
    auto backend = runtime::Backend::create("CPU");
190

191 192 193
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
194 195 196 197 198 199

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

200
    auto handle = backend->compile(f);
201
    handle->call_with_validate({result}, {a, b});
202
    vector<float> expected{11, 29, 39, 111};
203
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
204 205 206
}

TEST(cpu_fusion, gemm_cpu_broadcast_matrix)
207 208 209 210 211 212 213 214 215 216 217 218 219
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1});
220 221
    auto cg = make_shared<op::MatmulBias>(
        A, B, one, A->get_shape(), B->get_shape(), true, true, AxisSet{0, 1});
222

223
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
224

225
    auto backend = runtime::Backend::create("CPU");
226

227 228 229
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
230 231 232 233 234 235

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

236
    auto handle = backend->compile(f);
237
    handle->call_with_validate({result}, {a, b});
238
    vector<float> expected{10, 28, 37, 109};
239
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
240 241
}

242 243 244 245 246 247 248 249 250 251 252
TEST(cpu_fusion, gemm_cpu_no_bias)
{
    auto shapeA = Shape{3, 2};
    auto shapeB = Shape{2, 3};
    auto shapeC = Shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

253 254
    auto cg = make_shared<op::MatmulBias>(
        A, B, Output<Node>(), A->get_shape(), B->get_shape(), true, true);
255

256
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
257

258
    auto backend = runtime::Backend::create("CPU");
259

260 261 262
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
263 264 265 266 267 268

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

269
    auto handle = backend->compile(f);
270
    handle->call_with_validate({result}, {a, b});
271
    vector<float> expected{9, 27, 36, 108};
272
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
273 274
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
TEST(cpu_fusion, cpu_fusion_pass_basic)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
290
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
291
    auto func = make_shared<Function>(graph, ParameterVector{A, B, C});
292
    pass_manager.run_passes(func);
293
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
294 295
}

296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
TEST(cpu_fusion, commutative_matmul_bias)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = broadcast + dot;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
311
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
312
    auto func = make_shared<Function>(graph, ParameterVector{A, B, C});
313
    pass_manager.run_passes(func);
314
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
315 316
}

317 318 319 320 321 322 323 324 325 326
TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);
    auto b = make_shared<op::Parameter>(element::f32, shape_b);

    auto mmb = std::make_shared<op::MatmulBias>(
327
        W, x, Output<Node>(), W->get_shape(), x->get_shape(), false, false);
328 329 330 331 332
    auto broadcast = std::make_shared<op::Broadcast>(b, mmb->get_shape(), AxisSet{0});
    auto add = mmb + broadcast;

    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
333
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
334
    auto func = make_shared<Function>(graph, ParameterVector{W, x, b});
335
    pass_manager.run_passes(func);
336
    auto gmm = graph->get_argument(0);
337
    ASSERT_TRUE(std::dynamic_pointer_cast<op::MatmulBias>(gmm));
338
    ASSERT_EQ(gmm->get_argument(2), b);
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
}

TEST(cpu_fusion, cpu_fusion_pass_matmul_no_bias)
{
    Shape shape_w{4, 2};
    Shape shape_x{1, 4};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);

    auto reshape_w = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{2, 4});
    auto reshape_x = std::make_shared<op::Reshape>(x, AxisVector{1, 0}, Shape{4, 1});
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto graph = make_shared<op::Abs>(re_dot);

    pass::Manager pass_manager;
354
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
355
    auto func = make_shared<Function>(graph, ParameterVector{W, x});
356 357 358 359 360
    pass_manager.run_passes(func);
    size_t mmb = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmb, 1);
}

Louis Feng's avatar
Louis Feng committed
361
struct ConvolutionBiasTestData
Louis Feng's avatar
Louis Feng committed
362
{
Louis Feng's avatar
Louis Feng committed
363 364 365 366 367 368
    size_t n{0};
    size_t c{0};
    size_t filter{0};
    size_t kernel_size{0};
    size_t w{0};
    size_t h{0};
369 370 371 372 373 374 375 376
    shared_ptr<runtime::Tensor> data_val;
    shared_ptr<runtime::Tensor> weights_val;
    shared_ptr<runtime::Tensor> bias_val;
    shared_ptr<runtime::Tensor> result_val;
    shared_ptr<runtime::Tensor> delta_val;
    shared_ptr<runtime::Tensor> d_data_val;
    shared_ptr<runtime::Tensor> d_weights_val;
    shared_ptr<runtime::Tensor> d_bias_val;
Louis Feng's avatar
Louis Feng committed
377 378 379 380 381 382 383 384 385 386 387 388 389 390
    vector<float> expected_result_val;
    vector<float> expected_d_data_val;
    vector<float> expected_d_weights_val;
    vector<float> expected_d_bias_val;

    Shape data_shape;
    Shape weights_shape;
    Shape bias_shape;
    Shape result_shape;
    shared_ptr<op::Parameter> data;
    shared_ptr<op::Parameter> weights;
    shared_ptr<op::Parameter> bias;
    shared_ptr<op::Parameter> delta;

391
    void n1c1h3w3(runtime::Backend* backend)
Louis Feng's avatar
Louis Feng committed
392
    {
Louis Feng's avatar
Louis Feng committed
393 394 395 396 397 398 399 400 401 402 403 404 405
        n = 1;
        c = 1;
        filter = 1;
        kernel_size = 3;
        w = 3;
        h = w;

        data_shape = Shape{n, c, h, w};
        data = make_shared<op::Parameter>(element::f32, data_shape);
        weights_shape = Shape{filter, c, kernel_size, kernel_size};
        weights = make_shared<op::Parameter>(element::f32, weights_shape);
        bias_shape = Shape{filter};
        bias = make_shared<op::Parameter>(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
406
        result_shape = Shape{n, filter, 1, 1};
Louis Feng's avatar
Louis Feng committed
407

408
        data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
409 410 411 412 413 414 415 416 417 418
        copy_data(data_val,
                  vector<float>{-0.67765152f,
                                0.10073948f,
                                0.57595438f,
                                -0.3469252f,
                                -0.22134334f,
                                -1.80471897f,
                                -0.80642909f,
                                1.22033095f,
                                2.23235631f});
419
        weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
420 421 422 423 424 425 426 427 428 429
        copy_data(weights_val,
                  vector<float>{0.20070229f,
                                -0.54968649f,
                                -0.19819015f,
                                -0.38577855f,
                                1.37109005f,
                                -0.23789984f,
                                0.14867957f,
                                -0.49851316f,
                                -0.84815776f});
430
        bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
431 432
        copy_data(bias_val, vector<float>{0.07811152f});

433
        result_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
434 435 436
        copy_data(result_val, vector<float>{0});

        delta = make_shared<op::Parameter>(element::f32, result_shape);
437
        delta_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
438 439
        copy_data(delta_val, vector<float>{-2.58936238f});

440
        d_data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
441
        copy_data(d_data_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
442

443
        d_weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
444
        copy_data(d_weights_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
445

446
        d_bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
447 448
        copy_data(d_bias_val, vector<float>{0});

Louis Feng's avatar
Louis Feng committed
449
        expected_result_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        expected_d_data_val = vector<float>{-0.51969099f,
                                            1.42333758f,
                                            0.5131861f,
                                            0.99892044f,
                                            -3.5502491f,
                                            0.61600888f,
                                            -0.3849853f,
                                            1.29083121f,
                                            2.19618773f};
        expected_d_weights_val = vector<float>{1.7546854f,
                                               -0.26085103f,
                                               -1.49135458f,
                                               0.89831507f,
                                               0.57313812f,
                                               4.67307138f,
                                               2.08813715f,
                                               -3.15987897f,
                                               -5.7803793f};
Louis Feng's avatar
Louis Feng committed
468
        expected_d_bias_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
469
    }
Louis Feng's avatar
Louis Feng committed
470
};
Louis Feng's avatar
Louis Feng committed
471

Louis Feng's avatar
Louis Feng committed
472
TEST(cpu_fusion, conv_bias_fprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
473
{
474
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
475 476

    ConvolutionBiasTestData conv_test;
477
    conv_test.n1c1h3w3(backend.get());
Louis Feng's avatar
Louis Feng committed
478 479 480 481

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
482
    auto f = make_shared<Function>(
483
        convolution_bias, ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
484

485
    auto handle = backend->compile(f);
486 487
    handle->call_with_validate({conv_test.result_val},
                               {conv_test.data_val, conv_test.weights_val, conv_test.bias_val});
Louis Feng's avatar
Louis Feng committed
488
    auto result_vec = read_vector<float>(conv_test.result_val);
Louis Feng's avatar
Louis Feng committed
489

Louis Feng's avatar
Louis Feng committed
490 491
    EXPECT_TRUE(
        test::all_close(conv_test.expected_result_val, read_vector<float>(conv_test.result_val)));
Louis Feng's avatar
Louis Feng committed
492 493
}

Louis Feng's avatar
Louis Feng committed
494
TEST(cpu_fusion, conv_bias_bprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
495
{
496
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
497

Louis Feng's avatar
Louis Feng committed
498
    ConvolutionBiasTestData conv_test;
499
    conv_test.n1c1h3w3(backend.get());
Louis Feng's avatar
Louis Feng committed
500 501 502 503

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
504
    auto f = make_shared<Function>(
505
        convolution_bias, ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
506

507 508
    ngraph::autodiff::Adjoints adjoints(OutputVector{convolution_bias},
                                        OutputVector{conv_test.delta});
509 510 511 512

    auto d_data = adjoints.backprop_node(conv_test.data);
    auto d_weights = adjoints.backprop_node(conv_test.weights);
    auto d_bias = adjoints.backprop_node(conv_test.bias);
Louis Feng's avatar
Louis Feng committed
513

Louis Feng's avatar
Louis Feng committed
514 515
    auto df = make_shared<Function>(
        NodeVector{d_data, d_weights, d_bias},
516
        ParameterVector{conv_test.data, conv_test.weights, conv_test.bias, conv_test.delta});
517 518 519
    auto handle = backend->compile(df);
    handle->call_with_validate(

520 521
        {conv_test.d_data_val, conv_test.d_weights_val, conv_test.d_bias_val},
        {conv_test.data_val, conv_test.weights_val, conv_test.bias_val, conv_test.delta_val});
Louis Feng's avatar
Louis Feng committed
522

Louis Feng's avatar
Louis Feng committed
523 524 525 526 527 528
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_data_val, read_vector<float>(conv_test.d_data_val)));
    EXPECT_TRUE(test::all_close(conv_test.expected_d_weights_val,
                                read_vector<float>(conv_test.d_weights_val)));
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_bias_val, read_vector<float>(conv_test.d_bias_val)));
Louis Feng's avatar
Louis Feng committed
529
}
Pruthvi's avatar
Pruthvi committed
530

531 532 533 534 535 536
TEST(cpu_fusion, conv_bias_bprop)
{
    Shape shape{2, 2, 1, 1};
    auto data_batch = std::make_shared<op::Parameter>(element::f32, shape);
    auto filters = std::make_shared<op::Parameter>(element::f32, shape);
    auto delta = std::make_shared<op::Parameter>(element::f32, shape);
537 538
    auto bias = make_shared<op::Parameter>(element::f32, Shape{shape[0]});
    auto pbroadcast = std::make_shared<op::Broadcast>(bias, shape, AxisSet{1, 2, 3});
539 540 541 542 543
    auto conv = std::make_shared<op::Convolution>(data_batch, filters);
    auto conv_bias = std::make_shared<op::Add>(conv, pbroadcast);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
544
    pass_manager.register_pass<pass::VisualizeTree>("conv_bias_bprop_fusion.png");
545
    auto f = make_shared<Function>(conv_bias, ParameterVector{data_batch, filters, bias});
546

547
    ngraph::autodiff::Adjoints adjoints(OutputVector{conv_bias}, OutputVector{delta});
548 549 550 551 552 553

    auto d_data = adjoints.backprop_node(data_batch);
    auto d_weights = adjoints.backprop_node(filters);
    auto d_bias = adjoints.backprop_node(bias);

    auto df = make_shared<Function>(NodeVector{d_data, d_weights, d_bias},
554
                                    ParameterVector{data_batch, filters, bias, delta});
555 556 557 558 559 560

    pass_manager.run_passes(df);
    size_t ccg = count_ops_of_type<op::ConvolutionBiasBackpropFiltersBias>(df);
    ASSERT_EQ(ccg, 1);
}

561
static void test_batchnorm_multiply_add_relu(Shape input_shape)
Amy Zhuang's avatar
Amy Zhuang committed
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
{
    auto make_bn_relu_function = [&]() {
        auto c_axis = input_shape[1];
        auto input = make_shared<op::Parameter>(element::f32, input_shape);
        auto mean_shape = Shape{c_axis};
        auto mean = std::make_shared<op::Parameter>(element::f32, mean_shape);
        auto var_shape = Shape{c_axis};
        auto var = std::make_shared<op::Parameter>(element::f32, var_shape);
        auto gamma_shape = Shape{c_axis};
        auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
        auto beta_shape = Shape{c_axis};
        auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
        double eps = 0.001;
        auto bn =
            std::make_shared<ngraph::op::BatchNormInference>(eps, gamma, beta, input, mean, var);

        std::vector<size_t> vec{0};
        for (auto i = 2; i < input_shape.size(); i++)
        {
            vec.push_back(i);
        }
        auto broadcast1_input = std::make_shared<op::Parameter>(element::f32, gamma_shape);
        auto broadcast1 =
            std::make_shared<ngraph::op::Broadcast>(broadcast1_input, input_shape, AxisSet(vec));
        auto multiply = std::make_shared<ngraph::op::Multiply>(bn, broadcast1);

        auto broadcast2_input = std::make_shared<op::Parameter>(element::f32, gamma_shape);
        auto broadcast2 =
            std::make_shared<ngraph::op::Broadcast>(broadcast2_input, input_shape, AxisSet(vec));

        auto add = std::make_shared<ngraph::op::Add>(multiply, broadcast2);
        auto relu = std::make_shared<ngraph::op::Relu>(add);
        auto f = make_shared<Function>(
            relu,
            ParameterVector{gamma, beta, input, mean, var, broadcast1_input, broadcast2_input});
        return f;
    };

    auto cpu_f = make_bn_relu_function();
    auto int_f = make_bn_relu_function();
602
    test::Uniform<float> rng(1.0f, 10.0f);
Amy Zhuang's avatar
Amy Zhuang committed
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }

    size_t bn_relu = count_ops_of_type<op::BatchNormInferenceRelu>(cpu_f);
    ASSERT_EQ(bn_relu, 1);
}

622
TEST(cpu_fusion, MLIR_DISABLE_TEST(batchnorm_multiply_add_relu))
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
{
    test_batchnorm_multiply_add_relu(Shape{1, 3, 2, 2});
    test_batchnorm_multiply_add_relu(Shape{1, 2, 2, 2, 2});
    test_batchnorm_multiply_add_relu(Shape{2, 2, 2, 4, 4});
}

TEST(cpu_fusion, batchnorm_multiply_add_relu_no_fusion)
{
    auto input_shape = Shape{3, 3, 2, 2};
    auto make_bn_relu_function = [&]() {
        auto c_axis = input_shape[1];
        auto input = make_shared<op::Parameter>(element::f32, input_shape);
        auto mean_shape = Shape{c_axis};
        auto mean = std::make_shared<op::Parameter>(element::f32, mean_shape);
        auto var_shape = Shape{c_axis};
        auto var = std::make_shared<op::Parameter>(element::f32, var_shape);
        auto gamma_shape = Shape{c_axis};
        auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
        auto beta_shape = Shape{c_axis};
        auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
        double eps = 0.001;
        auto bn =
            std::make_shared<ngraph::op::BatchNormInference>(eps, gamma, beta, input, mean, var);

        std::vector<size_t> vec;
        for (auto i = 1; i < input_shape.size(); i++)
        {
            vec.push_back(i);
        }
        auto broadcast1_input = std::make_shared<op::Parameter>(element::f32, Shape{3});
        auto broadcast1 =
            std::make_shared<ngraph::op::Broadcast>(broadcast1_input, input_shape, AxisSet(vec));
        auto multiply = std::make_shared<ngraph::op::Multiply>(bn, broadcast1);

        auto broadcast2_input = std::make_shared<op::Parameter>(element::f32, Shape{3});
        auto broadcast2 =
            std::make_shared<ngraph::op::Broadcast>(broadcast2_input, input_shape, AxisSet(vec));

        auto add = std::make_shared<ngraph::op::Add>(multiply, broadcast2);
        auto relu = std::make_shared<ngraph::op::Relu>(add);
        auto f = make_shared<Function>(
            relu,
            ParameterVector{gamma, beta, input, mean, var, broadcast1_input, broadcast2_input});
        return f;
    };

    auto cpu_f = make_bn_relu_function();
    auto int_f = make_bn_relu_function();
    test::Uniform<float> rng(1.0f, 10.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }

    size_t bn_relu = count_ops_of_type<op::BatchNormInferenceRelu>(cpu_f);
    ASSERT_EQ(bn_relu, 0);
}

691 692 693 694 695 696 697 698 699 700 701 702
TEST(cpu_fusion, batchnorm_fprop_relu_b1c2h2w2)
{
    auto input_shape = Shape{1, 2, 2, 2};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{2};
    auto var_shape = Shape{2};
    auto gamma_shape = Shape{2};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{2};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{1, 2, 2, 2};
703
    auto bn = make_shared<op::BatchNormTraining>(input, gamma, beta, eps);
704 705 706 707 708 709 710 711 712 713 714 715 716

    auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);
    // Note, op::Splice is used to break Relu(BatchNorm) fusion
    // otherwise we will be comparing two BatchNormRelus
    // Unfortunately, we can't use INTERPRETER for
    // verifying the results as it doesn't implement
    // BatchNorm op.
    auto slice =
        std::make_shared<op::Slice>(output_rt, Coordinate{0, 0, 0, 0}, Coordinate{1, 2, 2, 2});
    auto output_relu = std::make_shared<op::Relu>(slice);
    auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
    auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

717
    auto bn_relu = make_shared<op::BatchNormTrainingRelu>(eps, gamma, beta, input);
718 719 720 721 722 723
    auto output_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 0);
    auto mean_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 1);
    auto variance_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 2);

    auto f = make_shared<Function>(
        NodeVector{output_relu, mean_rt, variance_rt, output_rt_bnr, mean_rt_bnr, variance_rt_bnr},
724
        ParameterVector{input, gamma, beta});
725
    auto backend = runtime::Backend::create("CPU");
726 727

    // Create some tensors for input/output
728
    auto input_t = backend->create_tensor(element::f32, Shape{1, 2, 2, 2});
729 730 731 732 733 734 735 736 737 738

    copy_data(input_t,
              vector<float>{0.54881352f,
                            0.71518934f,
                            0.60276335f,
                            0.54488319f,
                            0.42365479f,
                            0.64589411f,
                            0.4375872f,
                            0.89177299f});
739
    auto gamma_t = backend->create_tensor(element::f32, gamma_shape);
740
    copy_data(gamma_t, vector<float>{1.0f, 1.0f});
741
    auto beta_t = backend->create_tensor(element::f32, beta_shape);
742
    copy_data(beta_t, vector<float>{0.0f, 0.0f});
743 744 745 746 747 748 749 750
    auto bn_output = backend->create_tensor(element::f32, shape_r);
    auto result_mean = backend->create_tensor(element::f32, mean_shape);
    auto result_variance = backend->create_tensor(element::f32, var_shape);

    auto bn_output_bnr = backend->create_tensor(element::f32, shape_r);
    auto result_mean_bnr = backend->create_tensor(element::f32, mean_shape);
    auto result_variance_bnr = backend->create_tensor(element::f32, var_shape);

751
    auto handle = backend->compile(f);
752 753 754 755 756 757 758
    handle->call_with_validate({bn_output,
                                result_mean,
                                result_variance,
                                bn_output_bnr,
                                result_mean_bnr,
                                result_variance_bnr},
                               {input_t, gamma_t, beta_t});
759 760 761 762 763 764 765 766

    EXPECT_TRUE(test::all_close(read_vector<float>(bn_output), read_vector<float>(bn_output_bnr)));
    EXPECT_TRUE(
        test::all_close(read_vector<float>(result_mean), read_vector<float>(result_mean_bnr)));
    EXPECT_TRUE(test::all_close(read_vector<float>(result_variance),
                                read_vector<float>(result_variance_bnr)));
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
static void test_batchnorm_fprop_relu(Shape input_shape)
{
    auto make_bn_relu_function = [&]() {
        auto c_axis = input_shape[1];
        auto input = make_shared<op::Parameter>(element::f32, input_shape);
        auto mean_shape = Shape{c_axis};
        auto var_shape = Shape{c_axis};
        auto gamma_shape = Shape{c_axis};
        auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
        auto beta_shape = Shape{c_axis};
        auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
        double eps = 0.001;
        auto shape_r = input_shape;
        auto bn = make_shared<op::BatchNormTraining>(eps, gamma, beta, input);
        auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);

        auto output_relu = std::make_shared<op::Relu>(output_rt);
        auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
        auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

        auto f = make_shared<Function>(NodeVector{output_relu, mean_rt, variance_rt},
                                       ParameterVector{input, gamma, beta});
        return f;
    };
    auto cpu_f = make_bn_relu_function();
    auto int_f = make_bn_relu_function();
    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, batchnorm_fprop_relu)
{
    test_batchnorm_fprop_relu(Shape{1, 2, 2, 2});
    test_batchnorm_fprop_relu(Shape{1, 2, 2, 2, 2});
    test_batchnorm_fprop_relu(Shape{2, 2, 2, 4, 4});
}

817 818 819 820 821 822 823 824
TEST(cpu_fusion, fuse_conv_relu)
{
    auto A = std::make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = std::make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto convolution = std::make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto relu = std::make_shared<op::Relu>(convolution);
    auto abs_node =
        std::make_shared<op::Abs>(std::make_shared<op::Abs>(std::make_shared<op::Abs>(relu)));
825
    auto func = make_shared<Function>(abs_node, ParameterVector{A, weights});
826 827

    pass::Manager pass_manager;
828
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
829 830 831 832 833
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionRelu>(func);
    ASSERT_GT(cb, 0);
}

834
TEST(cpu_fusion, conv_relu_n2c1h2w2_2)
835 836 837 838
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};

839 840 841 842 843
    auto make_int_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto relu = std::make_shared<op::Relu>(conv);
844
        auto f = make_shared<Function>(NodeVector{relu}, ParameterVector{A, weights});
845 846
        return f;
    };
847

848
    auto int_f = make_int_function();
849

850 851 852 853 854
    auto make_cpu_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto conv_relu = std::make_shared<op::ConvolutionRelu>(conv);
855
        auto f = make_shared<Function>(NodeVector{conv_relu}, ParameterVector{A, weights});
856 857
        return f;
    };
858

859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
875

876 877 878 879 880 881 882 883 884 885 886 887 888 889
TEST(cpu_fusion, conv_bias_relu_n2c1h2w2_2)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_int_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto relu = std::make_shared<op::Relu>(conv_bias);
890
        auto f = make_shared<Function>(NodeVector{relu}, ParameterVector{A, weights, bias});
891 892 893 894 895 896 897 898 899 900
        return f;
    };

    auto int_f = make_int_function();

    auto make_cpu_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
901
        auto conv_bias_relu = std::make_shared<op::ConvolutionBias>(conv, bias, true);
902 903
        auto f =
            make_shared<Function>(NodeVector{conv_bias_relu}, ParameterVector{A, weights, bias});
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
        return f;
    };

    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
TEST(cpu_fusion, conv_horizontal_fusion)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights1 = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv1 = std::make_shared<op::Convolution>(A, weights1, Strides{2, 2}, Strides{1, 1});
        auto bias1 = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias1 =
            conv1 + std::make_shared<op::Broadcast>(bias1, conv1->get_shape(), AxisSet{0, 2, 3});
        auto relu1 = std::make_shared<op::Relu>(conv_bias1);

        auto weights2 = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv2 = std::make_shared<op::Convolution>(A, weights2, Strides{2, 2}, Strides{1, 1});
        auto bias2 = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias2 =
            conv2 + std::make_shared<op::Broadcast>(bias2, conv2->get_shape(), AxisSet{0, 2, 3});
        auto relu2 = std::make_shared<op::Relu>(conv_bias2);

        auto concat = std::make_shared<op::Concat>(NodeVector{relu1, relu2}, 1);
        auto f = make_shared<Function>(NodeVector{concat},
949
                                       ParameterVector{A, weights1, bias1, weights2, bias2});
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
        return f;
    };
    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f},
        {3., 3., 3., 3.},
        {0.2f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));

    size_t cpu_cb = count_ops_of_type<op::ConvolutionBias>(cpu_f);
    ASSERT_EQ(cpu_cb, 1);
}

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
// ConvolutionBiasAdd relies on an in-place fused MKLDNN kernel.
// Need to ensure that it is fused only when in-place buffer allocation is feasible
shared_ptr<Function> gen_conv_bias_add(bool param_input, bool result_output)
{
    auto A = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
    auto bias = make_shared<op::Parameter>(element::f32, Shape{1});
    auto conv = make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto bias_broadcast = make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
    auto convbias = conv + bias_broadcast;
    auto B = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto abs_B = make_shared<op::Abs>(B);
    auto add =
        param_input ? make_shared<op::Add>(convbias, B) : make_shared<op::Add>(convbias, abs_B);
    auto abs = make_shared<op::Abs>(add);

992 993
    return result_output ? make_shared<Function>(add, ParameterVector{A, weights, bias, B})
                         : make_shared<Function>(abs, ParameterVector{A, weights, bias, B});
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
}

TEST(cpu_fusion, fuse_conv_bias_add)
{
    auto func_fuse = gen_conv_bias_add(false, false);
    auto func_nofuse1 = gen_conv_bias_add(true, false);
    auto func_nofuse2 = gen_conv_bias_add(false, true);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func_fuse);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_fuse), 1);

    pass_manager.run_passes(func_nofuse1);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_nofuse1), 0);

    pass_manager.run_passes(func_nofuse2);
gaurides's avatar
gaurides committed
1011
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_nofuse2), 1);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
}

TEST(cpu_fusion, conv_bias_add)
{
    auto int_f = gen_conv_bias_add(false, false);
    auto cpu_f = gen_conv_bias_add(false, false);

    vector<vector<float>> args{{1.25f, 2.25f, 5.25f, 6.25f, -1.25f, -1.25f, 3.25f, -4.25f},
                               {-1.25f},
                               {2.25f},
                               {1.25f, 2.25f, -3.25f, 2.25f, 4.25f, 4.25f, 1.25f, 2.25f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

gaurides's avatar
gaurides committed
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
// ConvolutionAdd relies on an in-place fused MKLDNN kernel.
// Need to ensure that it is fused only when in-place buffer allocation is feasible
shared_ptr<Function> gen_conv_add(bool param_input, bool result_output)
{
    auto A = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
    auto conv = make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto B = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto abs_B = make_shared<op::Abs>(B);
    auto add = param_input ? make_shared<op::Add>(conv, B) : make_shared<op::Add>(conv, abs_B);
    auto abs = make_shared<op::Abs>(add);

1041 1042
    return result_output ? make_shared<Function>(add, ParameterVector{A, weights, B})
                         : make_shared<Function>(abs, ParameterVector{A, weights, B});
gaurides's avatar
gaurides committed
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
}

TEST(cpu_fusion, fuse_conv_add)
{
    auto func_fuse = gen_conv_add(false, false);
    auto func_nofuse1 = gen_conv_add(true, false);
    auto func_nofuse2 = gen_conv_add(false, true);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func_fuse);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_fuse), 1);

    pass_manager.run_passes(func_nofuse1);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_nofuse1), 0);

    pass_manager.run_passes(func_nofuse2);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_nofuse2), 1);
}

TEST(cpu_fusion, conv_add)
{
    auto int_f = gen_conv_add(false, false);
    auto cpu_f = gen_conv_add(false, false);

    vector<vector<float>> args{{1.25f, 2.25f, 5.25f, 6.25f, -1.25f, -1.25f, 3.25f, -4.25f},
                               {-1.25f},
                               {1.25f, 2.25f, -3.25f, 2.25f, 4.25f, 4.25f, 1.25f, 2.25f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));

    int_f = gen_conv_add(false, true);
    cpu_f = gen_conv_add(false, true);

    int_results = execute(int_f, args, "INTERPRETER");
    cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

gaurides's avatar
gaurides committed
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
shared_ptr<Function> gen_deconv(const bool add_goe)
{
    Shape conv_out_shape{100, 64, 1, 1};
    auto out_delta = std::make_shared<op::Parameter>(element::f32, conv_out_shape);

    Shape filters_shape{64, 512, 4, 4};
    Shape bias_shape{512};
    Shape data_batch_shape{100, 512, 4, 4};

    auto data_label = std::make_shared<pattern::op::Label>(element::f32, data_batch_shape);
    auto filters = std::make_shared<op::Parameter>(element::f32, filters_shape);

    auto conv = std::make_shared<op::ConvolutionBackpropData>(data_label->get_shape(),
                                                              filters,
                                                              out_delta,
                                                              Strides{1, 1},
                                                              Strides{1, 1},
                                                              CoordinateDiff{0, 0},
                                                              CoordinateDiff{0, 0},
                                                              Strides{1, 1});
    auto conv_label = std::make_shared<pattern::op::Label>(conv, nullptr, NodeVector{conv});

    auto mean = std::make_shared<op::Parameter>(element::f32, bias_shape);
    auto var = std::make_shared<op::Parameter>(element::f32, bias_shape);
    auto gamma = std::make_shared<op::Parameter>(element::f32, bias_shape);
    auto beta = std::make_shared<op::Parameter>(element::f32, bias_shape);
    double eps = 0.001;

    auto goe_bn = std::make_shared<op::GetOutputElement>(conv, 0);

    // Adding a goe will stop fusion since the patterns wont expect to see this op
    auto bn = add_goe
                  ? std::make_shared<op::BatchNormInference>(goe_bn, gamma, beta, mean, var, eps)
                  : std::make_shared<op::BatchNormInference>(conv, gamma, beta, mean, var, eps);

    return make_shared<Function>(NodeVector{bn},
                                 ParameterVector{filters, out_delta, gamma, beta, mean, var});
}

TEST(cpu_fusion, fuse_deconv)
{
    bool use_deconv_fuse = (getenv("NGRAPH_DECONV_FUSE") != nullptr);
    if (!use_deconv_fuse)
    {
        set_environment("NGRAPH_DECONV_FUSE", "1", 1);
    }

    auto fuse_func = gen_deconv(false);
    auto nofuse_func = gen_deconv(true);

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(fuse_func);
        ASSERT_EQ(count_ops_of_type<op::DeconvolutionBias>(fuse_func), 1);
    }

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(nofuse_func);
        ASSERT_EQ(count_ops_of_type<op::DeconvolutionBias>(nofuse_func), 0);
        ASSERT_EQ(count_ops_of_type<op::Relu>(nofuse_func), 0);
    }

    // Test values
    {
        test::Uniform<float> rng(1.0f, 100.0f);
        vector<vector<float>> args;
        for (shared_ptr<op::Parameter> param : fuse_func->get_parameters())
        {
            auto name = param->get_name();
            vector<float> tensor_val(shape_size(param->get_shape()));
            rng.initialize(tensor_val);
            args.push_back(tensor_val);
        }
        auto nofuse_results = execute(nofuse_func, args, "CPU");
        auto fuse_results = execute(fuse_func, args, "CPU");

        EXPECT_TRUE(test::all_close(fuse_results.at(0), nofuse_results.at(0)));
    }

    if (!use_deconv_fuse)
    {
        unset_environment("NGRAPH_DECONV_FUSE");
    }
}

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
shared_ptr<Function> gen_groupconv_batchnorm(const bool add_goe,
                                             const bool with_relu,
                                             const Shape shape_in,
                                             const Shape shape_weights,
                                             const Shape shape_out,
                                             const size_t groups)
{
    auto input = make_shared<op::Parameter>(element::f32, shape_in);
    auto weights = make_shared<op::Parameter>(element::f32, shape_weights);

    unsigned long OC = shape_out.at(1);
    Shape shape_bn{OC};
    auto group_conv = make_shared<op::GroupConvolution>(input,
                                                        weights,
                                                        Strides{1, 1},
                                                        Strides{1, 1},
                                                        CoordinateDiff{0, 0},
                                                        CoordinateDiff{0, 0},
                                                        Strides{1, 1},
1191
                                                        groups);
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

    double eps = 0.001;
    auto gamma = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto beta = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto mean = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto var = std::make_shared<op::Parameter>(element::f32, shape_bn);

    auto goe_bn = std::make_shared<op::GetOutputElement>(group_conv, 0);

    // Adding a goe will stop fusion since the patterns wont expect to see this op
    auto bn =
1203 1204
        add_goe ? std::make_shared<op::BatchNormInference>(goe_bn, gamma, beta, mean, var, eps)
                : std::make_shared<op::BatchNormInference>(group_conv, gamma, beta, mean, var, eps);
1205 1206 1207 1208
    if (with_relu)
    {
        auto prelu = std::make_shared<op::Relu>(bn);
        auto f = make_shared<Function>(NodeVector{prelu},
1209
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1210 1211 1212 1213 1214
        return f;
    }
    else
    {
        auto f = make_shared<Function>(NodeVector{bn},
1215
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
        return f;
    }
}

void fuse_groupconv_batchnorm_helper(Shape shape_in,
                                     Shape shape_weights,
                                     Shape shape_r,
                                     size_t groups)
{
    auto func_fuse =
        gen_groupconv_batchnorm(false, false, shape_in, shape_weights, shape_r, groups);
    auto func_fuse2 =
        gen_groupconv_batchnorm(false, true, shape_in, shape_weights, shape_r, groups);

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(func_fuse);
        ASSERT_EQ(count_ops_of_type<op::GroupConvolutionBias>(func_fuse), 1);
    }

    {
        // test groupconv + batchnorm + relu fusion
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(func_fuse2);
        ASSERT_EQ(count_ops_of_type<op::GroupConvolutionBias>(func_fuse2), 1);
        ASSERT_EQ(count_ops_of_type<op::Relu>(func_fuse2), 0);
    }
}

void groupconv_batchnorm_test_val_helper(
    const bool with_relu, Shape shape_in, Shape shape_weights, Shape shape_r, size_t groups)
{
    shared_ptr<Function> fuse_func =
        gen_groupconv_batchnorm(false, with_relu, shape_in, shape_weights, shape_r, groups);
    shared_ptr<Function> nofuse_func =
        gen_groupconv_batchnorm(true, with_relu, shape_in, shape_weights, shape_r, groups);

    test::Uniform<float> rng(1.0f, 100.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : fuse_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto fuse_results = execute(fuse_func, args, "CPU");
    auto nofuse_results = execute(nofuse_func, args, "CPU");

    EXPECT_TRUE(test::all_close(fuse_results.at(0), nofuse_results.at(0)));
}

TEST(cpu_fusion, fuse_groupconv_batchnorm1)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{8, 10, 3, 3};
    Shape shape_r{1, 8, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 2);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 2);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 2);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm2)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{5, 4, 3, 3};
    Shape shape_r{1, 5, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 5);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 5);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 5);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm3)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{20, 1, 3, 3};
    Shape shape_r{1, 20, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 20);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 20);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 20);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm4)
{
    Shape shape_in{1, 20, 4, 4};
    Shape shape_weights{5, 20, 1, 1};
    Shape shape_r{1, 5, 4, 4};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 1);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 1);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 1);
}

1310 1311 1312 1313 1314 1315 1316 1317
std::vector<shared_ptr<runtime::Tensor>> rnn_matrix_fusion_eval(const size_t time_steps,
                                                                const Shape& data_shape,
                                                                const Shape& weights_shape,
                                                                const Shape& bias_shape,
                                                                const vector<float>& data_val,
                                                                const vector<float>& weights_val,
                                                                const vector<float>& bias_val,
                                                                const bool enable_pass)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
{
    auto data = make_shared<op::Parameter>(element::f32, data_shape);
    auto weights = make_shared<op::Parameter>(element::f32, weights_shape);
    auto bias = make_shared<op::Parameter>(element::f32, bias_shape);

    // results from each time step
    NodeVector results;
    for (size_t t = 0; t < time_steps; ++t)
    {
        auto data_slice = make_shared<op::Slice>(
            data, Coordinate{0, t, 0}, Coordinate{data_shape[0], t + 1, data_shape[2]});
        auto data_reshape = make_shared<op::Reshape>(
            data_slice, AxisVector{0, 1, 2}, Shape{data_shape[0], data_shape[2]});
        auto weights_reshape = make_shared<op::Reshape>(
            weights, AxisVector{1, 0}, Shape{weights_shape[1], weights_shape[0]});
        auto dot = make_shared<op::Dot>(data_reshape, weights_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add = make_shared<op::Add>(dot, bias_broadcast);
        results.push_back(add);
    }
1338
    auto func = make_shared<Function>(results, ParameterVector{data, weights, bias});
1339 1340 1341 1342
    if (enable_pass)
    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1343 1344
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
            pass::FusionType::REGULAR_FUSIONS);
1345 1346 1347 1348 1349 1350
        pass_manager.run_passes(func);
        // check all of our dot/add are converted to a single MatmulBias op.
        size_t count = count_ops_of_type<op::MatmulBias>(func);
        EXPECT_EQ(count, 1);
    }

1351
    auto backend = runtime::Backend::create("CPU");
1352

1353
    shared_ptr<runtime::Tensor> data_tensor =
1354
        backend->create_tensor(element::f32, data->get_shape());
1355
    shared_ptr<runtime::Tensor> weights_tensor =
1356
        backend->create_tensor(element::f32, weights->get_shape());
1357
    shared_ptr<runtime::Tensor> bias_tensor =
1358
        backend->create_tensor(element::f32, bias->get_shape());
1359

1360
    std::vector<shared_ptr<runtime::Tensor>> result_tensors;
1361 1362
    for (auto r : results)
    {
1363
        result_tensors.push_back(backend->create_tensor(element::f32, r->get_shape()));
1364 1365 1366 1367 1368
    }

    copy_data(data_tensor, data_val);
    copy_data(weights_tensor, weights_val);
    copy_data(bias_tensor, bias_val);
1369 1370
    auto handle = backend->compile(func);
    handle->call_with_validate(result_tensors, {data_tensor, weights_tensor, bias_tensor});
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
    return result_tensors;
}

TEST(cpu_fusion, rnn_matrix_fusion_eval_pass)
{
    const size_t time_steps = 4;
    Shape data_shape{3, time_steps, 5};
    Shape weights_shape{6, data_shape[2]};
    Shape bias_shape{6};

    test::Uniform<float> rng{0, 1, 0};
    vector<float> data_val(shape_size(data_shape));
    vector<float> weights_val(shape_size(weights_shape));
    vector<float> bias_val(shape_size(bias_shape));
    rng.initialize(data_val);
    rng.initialize(weights_val);
    rng.initialize(bias_val);

1389
    std::vector<shared_ptr<runtime::Tensor>> result_expected = rnn_matrix_fusion_eval(
1390
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, false);
1391
    std::vector<shared_ptr<runtime::Tensor>> result_fused = rnn_matrix_fusion_eval(
1392 1393 1394 1395 1396 1397
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, true);
    for (size_t i = 0; i < result_expected.size(); ++i)
    {
        EXPECT_TRUE(test::all_close<float>(result_expected[i], result_fused[i]));
    }
}
1398

Nick Korovaiko's avatar
Nick Korovaiko committed
1399 1400 1401 1402 1403 1404
TEST(cpu_fusion, weight_fusion)
{
    auto param = std::make_shared<op::Parameter>(element::f32, Shape{64});
    auto reshape_conv =
        std::make_shared<ngraph::op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto data_conv = std::make_shared<op::Parameter>(element::f32, Shape{16, 4, 7, 7});
1405
    auto tvt = &reshape_conv->output(0).get_tensor();
1406
    auto lt_desc = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt);
Nick Korovaiko's avatar
Nick Korovaiko committed
1407 1408 1409 1410 1411 1412 1413
    auto cvt_lt_conv = std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv, lt_desc);
    auto conv = std::make_shared<ngraph::op::Convolution>(
        data_conv, cvt_lt_conv, Strides{1, 1}, Strides{1, 1});

    auto reshape_conv_bprop =
        std::make_shared<op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto dummy_arg_conv_bprop = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 7, 7});
1414
    auto tvt_bprop = &reshape_conv_bprop->output(0).get_tensor();
1415
    auto lt_desc_bprop = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt_bprop);
Nick Korovaiko's avatar
Nick Korovaiko committed
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
    auto cvt_lt_conv_bprop =
        std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv_bprop, lt_desc_bprop);
    auto conv_bprop = std::make_shared<op::ConvolutionBackpropData>(Shape{1, 4, 7, 7},
                                                                    cvt_lt_conv_bprop,
                                                                    dummy_arg_conv_bprop,
                                                                    Strides{1, 1},
                                                                    Strides{1, 1},
                                                                    CoordinateDiff{0, 0},
                                                                    CoordinateDiff{0, 0},
                                                                    Strides{1, 1});

    auto conv_relu = std::make_shared<op::Relu>(conv);
    auto conv_bprop_abs = std::make_shared<op::Abs>(conv_bprop);

    auto f = make_shared<Function>(NodeVector{conv_relu, conv_bprop_abs},
1431
                                   ParameterVector{param, data_conv, dummy_arg_conv_bprop});
Nick Korovaiko's avatar
Nick Korovaiko committed
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUPostLayoutOptimizations>();
    pass_manager.run_passes(f);

    auto new_conv_bprop_data = conv_bprop_abs->get_argument(0);
    auto new_convert_layout = new_conv_bprop_data->get_argument(0);

    ASSERT_EQ(std::dynamic_pointer_cast<runtime::cpu::op::ConvertLayout>(
                  new_convert_layout->get_argument(0)),
              cvt_lt_conv);
}
1444 1445 1446 1447 1448 1449 1450 1451 1452

TEST(cpu_fusion, max_pool_with_indices)
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto C = std::make_shared<op::Parameter>(element::f32, max_pool->get_shape());

1453
    ngraph::autodiff::Adjoints adjoints(ngraph::OutputVector{max_pool}, ngraph::OutputVector{C});
1454 1455 1456

    auto dinput = adjoints.backprop_node(input);

1457
    auto df = std::make_shared<Function>(NodeVector{dinput}, ParameterVector{input, C});
1458

1459
    auto f = std::make_shared<Function>(NodeVector{max_pool}, ParameterVector{input});
1460 1461 1462

    {
        pass::Manager pass_manager;
1463
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_before.png");
1464 1465 1466 1467
        pass_manager.run_passes(f);
    }

    {
1468
        NodeVector nv_cwi;
1469
        pass::Manager pass_manager;
1470
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before.png");
1471
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1472
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after.png");
1473 1474 1475 1476 1477
        pass_manager.run_passes(df);
    }

    {
        pass::Manager pass_manager;
1478
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_after.png");
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
        pass_manager.run_passes(f);
    }

    auto maxpool_goe_output =
        std::dynamic_pointer_cast<op::GetOutputElement>(f->get_results().at(0)->get_argument(0));
    ASSERT_TRUE(maxpool_goe_output);
    ASSERT_EQ(maxpool_goe_output->get_n(), 0);
    auto maxpool_with_indices = df->get_results().at(0)->get_argument(0);
    auto maxpool_goe_indices =
        std::dynamic_pointer_cast<op::GetOutputElement>(maxpool_with_indices->get_argument(2));
    ASSERT_TRUE(maxpool_goe_indices);
    ASSERT_EQ(maxpool_goe_indices->get_n(), 1);
}

TEST(cpu_fusion, backwards_maxpool_with_indices_n4_c1_hw4_2x2_max)
{
    Shape shape_a{1, 4, 4, 4};
    Shape maxpool_shape{1, 4, 3, 3};
    auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto window_movement_strides = Strides{1, 1};
    auto maxpool = std::make_shared<op::MaxPool>(A, window_shape, window_movement_strides);
1501
    auto f = std::make_shared<Function>(maxpool, ParameterVector{A});
1502 1503

    auto backend = runtime::Backend::create("CPU");
1504
    shared_ptr<runtime::Tensor> ep = backend->create_tensor(element::f32, maxpool_shape);
1505 1506
    vector<float> dataEp(shape_size(maxpool_shape), 4);

1507 1508
    shared_ptr<runtime::Tensor> input = backend->create_tensor(element::f32, shape_a);
    shared_ptr<runtime::Tensor> output = backend->create_tensor(element::f32, shape_a);
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530

    vector<float> dataInput{11.f, 31.f, 40.f, 47.f, 13.f, 61.f, 48.f, 59.f, 17.f, 39.f, 64.f,
                            62.f, 45.f, 55.f, 36.f, 19.f, 65.f, 33.f, 49.f, 30.f, 56.f, 41.f,
                            53.f, 58.f, 22.f, 35.f, 52.f, 50.f, 63.f, 54.f, 12.f, 26.f, 44.f,
                            21.f, 69.f, 24.f, 46.f, 25.f, 51.f, 29.f, 72.f, 15.f, 73.f, 10.f,
                            16.f, 37.f, 70.f, 32.f, 28.f, 66.f, 57.f, 27.f, 60.f, 42.f, 43.f,
                            71.f, 18.f, 38.f, 67.f, 68.f, 14.f, 20.f, 34.f, 23.f};

    vector<float> expected{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 12.0f, 0.0f, 4.0f, 0.0f, 0.0f,  16.0f,
                           0.0f, 0.0f, 4.0f, 0.0f, 0.0f, 4.0f,  0.0f, 0.0f, 0.0f, 4.0f,  0.0f,
                           8.0f, 8.0f, 0.0f, 0.0f, 4.0f, 0.0f,  4.0f, 4.0f, 0.0f, 0.0f,  0.0f,
                           0.0f, 8.0f, 0.0f, 4.0f, 0.0f, 0.0f,  0.0f, 8.0f, 0.0f, 16.0f, 0.0f,
                           0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 8.0f,  0.0f, 0.0f, 4.0f, 0.0f,  0.0f,
                           8.0f, 0.0f, 4.0f, 8.0f, 4.0f, 0.0f,  0.0f, 0.0f, 0.0f};

    copy_data(ep, dataEp);
    copy_data(input, dataInput);

    auto C = std::make_shared<op::Parameter>(element::f32, maxpool_shape);
    auto df = autodiff::backprop_function(f);

    {
1531
        NodeVector nv_cwi;
1532
        pass::Manager pass_manager;
1533
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before2.png");
1534
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1535
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after2.png");
1536 1537 1538
        pass_manager.run_passes(df);
    }

1539
    auto handle = backend->compile(df);
1540
    handle->call_with_validate({output}, {input, ep});
1541
    EXPECT_TRUE(test::all_close_f(read_vector<float>(output), expected, MIN_FLOAT_TOLERANCE_BITS));
1542
}
1543

1544 1545 1546 1547 1548 1549 1550 1551
static std::shared_ptr<ngraph::Function> make_forward_function()
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto neg = std::make_shared<op::Negative>(max_pool);
    auto absn = std::make_shared<op::Abs>(max_pool);
1552
    return std::make_shared<Function>(NodeVector{max_pool, neg, absn}, ParameterVector{input});
1553 1554
}

1555
static std::pair<std::shared_ptr<ngraph::Function>, OutputVector>
1556 1557 1558 1559 1560
    make_backward_function(std::shared_ptr<ngraph::Function> f)
{
    // get parameters
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = f->get_parameters();

1561 1562
    ngraph::OutputVector adjoints;
    ngraph::OutputVector outputs;
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574
    for (auto Y : f->get_results())
    {
        // Get the output
        // Create the Adjoint
        auto C = std::make_shared<ngraph::op::Parameter>(Y->get_element_type(), Y->get_shape());
        outputs.push_back(Y);
        adjoints.push_back(C);
    }

    ngraph::autodiff::Adjoints adjoint{outputs, adjoints};

    // Perform autodiff
1575
    OutputVector dYdXs(back_parameters.size());
1576 1577 1578 1579 1580 1581 1582 1583
    transform(back_parameters.begin(),
              back_parameters.end(),
              dYdXs.begin(),
              [&adjoint](const std::shared_ptr<Node>& X) { return adjoint.backprop_node(X); });

    // create the backward function
    std::vector<std::shared_ptr<ngraph::op::Parameter>> param_adjoints;
    for (auto n : adjoints)
1584 1585
        param_adjoints.push_back(
            std::dynamic_pointer_cast<ngraph::op::Parameter>(n.get_node_shared_ptr()));
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
    back_parameters.insert(back_parameters.begin(), param_adjoints.begin(), param_adjoints.end());

    return {std::make_shared<ngraph::Function>(dYdXs, back_parameters), adjoints};
}

void optimize_graph(std::shared_ptr<ngraph::Function>& f, std::shared_ptr<ngraph::Function> bf)
{
    // start by removing excess reshapes
    NodeVector nv_cwi;
    ngraph::pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1599
    pass_manager.register_pass<pass::VisualizeTree>("before.fprop_cache.png");
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

    pass_manager.run_passes(f);
    pass_manager.run_passes(bf);
    if (nv_cwi.size() > 0)
    {
        NodeVector new_outputs;
        for (auto r : f->get_results())
        {
            new_outputs.push_back(r->get_argument(0));
        }

        new_outputs.insert(new_outputs.end(), nv_cwi.begin(), nv_cwi.end());
        f = std::make_shared<ngraph::Function>(new_outputs, f->get_parameters());
    }

    ngraph::NodeVector dYdXs;
    for (size_t i = 0; i < bf->get_output_size(); ++i)
    {
        dYdXs.push_back(bf->get_output_op(i)->get_argument(0));
    }

    ngraph::NodeVector combined_outputs;
    for (auto r : f->get_results())
    {
        combined_outputs.push_back(r->get_argument(0));
    }

    combined_outputs.insert(combined_outputs.end(), dYdXs.begin(), dYdXs.end());

    std::vector<std::shared_ptr<ngraph::op::Parameter>> combined_parameters = f->get_parameters();
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = bf->get_parameters();

    combined_parameters.insert(
        combined_parameters.end(), back_parameters.begin(), back_parameters.end());
    auto combinedf = std::make_shared<ngraph::Function>(combined_outputs, combined_parameters);
    // rerun Reshape elimination to help simplify the graph again, run CPUFusion
    // this replaces nodes in both f and bf due to shared-ptr - ness
    ngraph::pass::Manager pass_manager_comb;
    pass_manager_comb.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager_comb.register_pass<ngraph::runtime::cpu::pass::CPUFusion>();
    pass_manager_comb.run_passes(combinedf);
}

TEST(cpu_fusion, maxpool_with_indices_in_mxnet)
{
    auto f = make_forward_function();
    auto bfa = make_backward_function(f);
    auto maybe_bf = bfa.first;
    auto adjoints = bfa.second;
    optimize_graph(f, maybe_bf);
1650
    auto fprop_cache = ngraph::cache_fprop(f, maybe_bf);
1651 1652 1653 1654 1655 1656

    auto mpwi_bprop = fprop_cache.bprop->get_results().at(0)->get_argument(0);
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(0)));
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(2)));
}

1657
TEST(cpu_fusion, conv_batch_norm_folding)
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        double eps = 0.001;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
1672
        auto bn = std::make_shared<op::BatchNormInference>(conv, gamma, beta, mean, var, eps);
1673
        auto f = make_shared<Function>(NodeVector{bn},
1674
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
        {0.12f, 0.31f},
        {0.01f, 0.11f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
1715

1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
TEST(cpu_fusion, convbias_batch_norm_folding)
{
    Shape shape_input{2, 8, 5, 5};
    Shape shape_weights{2, 8, 2, 2};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{2});
        double eps = 1.01;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
1734
        auto bn = std::make_shared<op::BatchNormInference>(convbias, gamma, beta, mean, var, eps);
1735
        auto f = make_shared<Function>(
1736
            NodeVector{bn}, ParameterVector{input, weights, bias, gamma, beta, mean, var});
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(1.0f, 100.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

TEST(cpu_fusion, conv_affine_folding)
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                conv, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{0, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{0, 2, 3}));
1774
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, a, b});
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

1814
TEST(cpu_fusion, convbias_affine_folding1)
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
{
    Shape shape_input{1, 6, 3, 3};
    Shape shape_weights{3, 6, 1, 1};
    Shape shape_norm{3};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{3});

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                convbias, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{0, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{0, 2, 3}));
        auto f =
1835
            make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, bias, a, b});
1836 1837 1838
        return f;
    };

1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    auto func = make_function();
    pass_manager.run_passes(func);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func), 1);

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(20.0f, 300.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

TEST(cpu_fusion, convbias_affine_folding2)
{
    Shape shape_input{1, 6, 3, 3};
    Shape shape_weights{3, 6, 1, 1};
    Shape shape_norm{1};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{3});

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                convbias, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{1, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{1, 2, 3}));
        auto f =
            make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, bias, a, b});
        return f;
    };

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    auto func = make_function();
    pass_manager.run_passes(func);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func), 1);

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(20.0f, 300.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

1910
TEST(batch_fusion, group_convolution)
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
{
    auto backend = runtime::Backend::create("CPU");
    test::Uniform<float> rng(2.0f, 10.0f);

    const size_t GROUPS = 2;
    Shape shape_a{1, 32, 2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
    Shape shape_b{2, 16, 1, 1};
    auto B = make_shared<op::Parameter>(element::f32, shape_b);
    Shape shape_r{1, 2, 2, 2};
    auto group_conv = make_shared<op::GroupConvolution>(A,
                                                        B,
                                                        Strides{1, 1},
                                                        Strides{1, 1},
                                                        CoordinateDiff{0, 0},
                                                        CoordinateDiff{0, 0},
                                                        Strides{1, 1},
1928
                                                        GROUPS);
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952

    Shape shape_c{1, 16, 2, 2};
    auto C = make_shared<op::Parameter>(element::f32, shape_c);
    Shape shape_d{1, 16, 1, 1};
    auto D = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_lower = make_shared<op::Convolution>(C,
                                                   D,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto E = make_shared<op::Parameter>(element::f32, shape_c);
    auto F = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_upper = make_shared<op::Convolution>(E,
                                                   F,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto f = make_shared<Function>(NodeVector{group_conv, conv_lower, conv_upper},
1953
                                   ParameterVector{A, B, C, D, E, F});
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963

    auto a_ = rng.initialize(backend->create_tensor(element::f32, shape_a));
    auto b_ = rng.initialize(backend->create_tensor(element::f32, shape_b));

    vector<float> rv(shape_size(shape_r), 0);
    auto group_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_r, rv.data()));

    auto av = read_vector<float>(a_);
    auto bv = read_vector<float>(b_);
1964 1965
    auto c_ = backend->create_tensor(element::f32, shape_c, av.data()); // lower data
    auto d_ = backend->create_tensor(element::f32, shape_d, bv.data()); // upper data
1966 1967

    auto e_ =
1968
        backend->create_tensor(element::f32, shape_c, av.data() + av.size() / 2); // lower weights
1969
    auto f_ =
1970
        backend->create_tensor(element::f32, shape_d, bv.data() + bv.size() / 2); // upper weights
1971 1972

    Shape shape_ur{1, 1, 2, 2};
1973
    // allocate a contigious storage for both lower and upper halves.
1974 1975 1976 1977 1978
    vector<float> erv(shape_size(shape_r), 0);
    auto lower_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data()));
    auto upper_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data() + erv.size() / 2));
1979 1980 1981
    auto handle = backend->compile(f);
    handle->call_with_validate({group_result, lower_result, upper_result},
                               {a_, b_, c_, d_, e_, f_});
1982
    EXPECT_TRUE(test::all_close_f(rv, erv));
1983 1984
}

1985
#if MKLDNN_VERSION_MAJOR < 1
1986 1987 1988 1989
TEST(cpu_fusion, rnn_fprop_1_lstm_cell)
{
    auto src_layer = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto src_iter = make_shared<op::Parameter>(element::f32, Shape{20, 100});
1990 1991
    auto weights_layer = make_shared<op::Parameter>(element::f32, Shape{100, 400});
    auto weights_iter = make_shared<op::Parameter>(element::f32, Shape{100, 400});
1992 1993 1994 1995 1996 1997 1998
    auto biases = make_shared<op::Parameter>(element::f32, Shape{400});
    const int number_of_timesteps = 1;
    const int number_of_gates_per_cell = 4;
    const int src_seq_length = 1;
    const int num_rnn_cell_states = 2;
    const int rnn_direction = 1;
    const int num_of_rnn_fused_layer = 1;
Pruthvi's avatar
Pruthvi committed
1999 2000 2001
    ngraph::runtime::cpu::rnn_utils::rnntype rnn_type =
        ngraph::runtime::cpu::rnn_utils::rnntype::vanilla_lstm;

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
    auto rnn_node = make_shared<op::Rnn>(src_layer,
                                         src_iter,
                                         weights_layer,
                                         weights_iter,
                                         biases,
                                         number_of_timesteps,
                                         number_of_gates_per_cell,
                                         src_seq_length,
                                         num_rnn_cell_states,
                                         rnn_direction,
Pruthvi's avatar
Pruthvi committed
2012 2013 2014
                                         num_of_rnn_fused_layer,
                                         rnn_type);

2015 2016 2017 2018 2019
    auto rnn_ht_output = make_shared<op::GetOutputElement>(rnn_node, 0);
    auto rnn_ct_output = make_shared<op::GetOutputElement>(rnn_node, 1);

    auto func = make_shared<Function>(
        NodeVector{rnn_ht_output, rnn_ct_output},
2020
        ParameterVector{src_layer, src_iter, weights_layer, weights_iter, biases});
2021 2022
    auto backend = runtime::Backend::create("CPU");

2023
    shared_ptr<runtime::Tensor> src_layer_t =
2024
        backend->create_tensor(element::f32, src_layer->get_shape());
2025
    shared_ptr<runtime::Tensor> src_iter_t =
2026
        backend->create_tensor(element::f32, src_iter->get_shape());
2027
    shared_ptr<runtime::Tensor> weights_layer_t =
2028
        backend->create_tensor(element::f32, weights_layer->get_shape());
2029
    shared_ptr<runtime::Tensor> weights_iter_t =
2030
        backend->create_tensor(element::f32, weights_iter->get_shape());
2031
    shared_ptr<runtime::Tensor> biases_t =
2032
        backend->create_tensor(element::f32, biases->get_shape());
2033
    shared_ptr<runtime::Tensor> result_ht = backend->create_tensor(element::f32, {10, 100});
2034
    shared_ptr<runtime::Tensor> result_ct = backend->create_tensor(element::f32, Shape{20, 100});
2035 2036 2037 2038 2039 2040 2041

    copy_data(src_layer_t, vector<float>(1000, 1));
    copy_data(src_iter_t, vector<float>(2000, 1));
    copy_data(weights_layer_t, vector<float>(400 * 100, 1));
    copy_data(weights_iter_t, vector<float>(400 * 100, 1));
    copy_data(biases_t, vector<float>(400, 1));

2042 2043
    auto handle = backend->compile(func);
    handle->call_with_validate(
2044 2045
        {result_ht, result_ct},
        {src_layer_t, src_iter_t, weights_layer_t, weights_iter_t, biases_t});
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
    vector<float> expected_ht(10 * 100, 0.964028f);
    vector<float> expected_ct;
    for (size_t i = 0; i < 20 * 100; i++)
    {
        if (i < 1000)
        {
            expected_ct.push_back(0.964028f);
        }
        else
        {
            expected_ct.push_back(2.0f);
        }
    }

    EXPECT_TRUE(test::all_close(expected_ht, read_vector<float>(result_ht)));
    EXPECT_TRUE(test::all_close(expected_ct, read_vector<float>(result_ct)));
}
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
#else
TEST(cpu_fusion, rnn_fprop_1_lstm_cell)
{
    auto src_layer = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto src_iter = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto src_iter_c = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto weights_layer = make_shared<op::Parameter>(element::f32, Shape{100, 400});
    auto weights_iter = make_shared<op::Parameter>(element::f32, Shape{100, 400});
    auto biases = make_shared<op::Parameter>(element::f32, Shape{400});
    const int number_of_timesteps = 1;
    const int number_of_gates_per_cell = 4;
    const int src_seq_length = 1;
    const int num_rnn_cell_states = 2;
    const int rnn_direction = 1;
    const int num_of_rnn_fused_layer = 1;
    ngraph::runtime::cpu::rnn_utils::rnntype rnn_type =
        ngraph::runtime::cpu::rnn_utils::rnntype::vanilla_lstm;

    auto rnn_node = make_shared<op::Rnn>(src_layer,
                                         src_iter,
                                         src_iter_c,
                                         weights_layer,
                                         weights_iter,
                                         biases,
                                         number_of_timesteps,
                                         number_of_gates_per_cell,
                                         src_seq_length,
                                         num_rnn_cell_states,
                                         rnn_direction,
                                         num_of_rnn_fused_layer,
                                         rnn_type);

    auto rnn_ht_output = make_shared<op::GetOutputElement>(rnn_node, 1);
    auto rnn_ct_output = make_shared<op::GetOutputElement>(rnn_node, 2);

    auto func = make_shared<Function>(
        NodeVector{rnn_ht_output, rnn_ct_output},
        ParameterVector{src_layer, src_iter, src_iter_c, weights_layer, weights_iter, biases});
    auto backend = runtime::Backend::create("CPU");

    shared_ptr<runtime::Tensor> src_layer_t =
        backend->create_tensor(element::f32, src_layer->get_shape());
    shared_ptr<runtime::Tensor> src_iter_t =
        backend->create_tensor(element::f32, src_iter->get_shape());
    shared_ptr<runtime::Tensor> src_iter_c_t =
        backend->create_tensor(element::f32, src_iter_c->get_shape());
    shared_ptr<runtime::Tensor> weights_layer_t =
        backend->create_tensor(element::f32, weights_layer->get_shape());
    shared_ptr<runtime::Tensor> weights_iter_t =
        backend->create_tensor(element::f32, weights_iter->get_shape());
    shared_ptr<runtime::Tensor> biases_t =
        backend->create_tensor(element::f32, biases->get_shape());
    shared_ptr<runtime::Tensor> result_ht = backend->create_tensor(element::f32, {10, 100});
    shared_ptr<runtime::Tensor> result_ct = backend->create_tensor(element::f32, Shape{10, 100});

    copy_data(src_layer_t, vector<float>(1000, 1));
    copy_data(src_iter_t, vector<float>(1000, 1));
    copy_data(src_iter_c_t, vector<float>(1000, 1));
    copy_data(weights_layer_t, vector<float>(400 * 100, 1));
    copy_data(weights_iter_t, vector<float>(400 * 100, 1));
    copy_data(biases_t, vector<float>(400, 1));

    auto handle = backend->compile(func);
    handle->call_with_validate(
        {result_ht, result_ct},
        {src_layer_t, src_iter_t, src_iter_c_t, weights_layer_t, weights_iter_t, biases_t});
    vector<float> expected_ht(10 * 100, 0.964028f);
    vector<float> expected_ct(10 * 100, 2.0f);

    EXPECT_TRUE(test::all_close(expected_ht, read_vector<float>(result_ht)));
    EXPECT_TRUE(test::all_close(expected_ct, read_vector<float>(result_ct)));
}
#endif
2136

2137
void sigmoid_multiply_fusion_forward_compute(runtime::Backend* backend,
2138
                                             const ParameterVector& input_params,
2139 2140 2141 2142 2143 2144 2145
                                             const vector<vector<float>>& input_data,
                                             const vector<Shape>& input_shapes,
                                             const Shape& result_shape,
                                             shared_ptr<Node> input_0_node,
                                             shared_ptr<Node> input_1_node,
                                             const vector<float>& expected)
{
2146
    shared_ptr<runtime::Tensor> result_tensor = backend->create_tensor(element::f32, result_shape);
2147

2148
    vector<shared_ptr<runtime::Tensor>> input_tensors;
2149 2150 2151 2152 2153 2154 2155 2156
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto mul_node = input_0_node * input_1_node;
    auto func = make_shared<Function>(mul_node, input_params);
2157
    auto handle = backend->compile(func);
2158
    handle->call_with_validate({result_tensor}, input_tensors);
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
    EXPECT_TRUE(test::all_close(read_vector<float>(result_tensor), expected));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_forward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.3f, 3.5f, 4.7f};
    vector<float> const_data{1.2f};
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected{1.60833f, 3.78743f, 6.19173f, 8.54352f};
2179
        ParameterVector input_params{input_0_param, input_1_param, input_2_param};
2180 2181
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
2182
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_0_param);
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
2197
        ParameterVector input_params{input_0_param, input_1_param};
2198 2199
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2200
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
2215
        ParameterVector input_params{input_0_param, input_1_param};
2216 2217
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2218
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.561837f, 0.800536f, 0.924652f, 0.973163f};
2233
        ParameterVector input_params{input_0_param, input_1_param};
2234 2235
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2236
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.60945f, 0.863266f, 0.950838f, 0.981851f};
2251
        ParameterVector input_params{input_0_param, input_1_param};
2252 2253
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2254
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.585304f, 0.876182f, 0.965887f, 0.990322f};
2269
        ParameterVector input_params{input_0_param, input_1_param};
2270 2271
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2272
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.634907f, 0.94484f, 0.993242f, 0.999164f};
2287
        ParameterVector input_params{input_0_param, input_1_param};
2288 2289
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2290
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2291 2292 2293 2294 2295 2296 2297 2298 2299 2300
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
}

2301
void sigmoid_multiply_fusion_backward_compute(runtime::Backend* backend,
2302
                                              const ParameterVector& input_params,
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315
                                              const vector<vector<float>>& input_data,
                                              const vector<Shape>& input_shapes,
                                              const vector<float> delta_data,
                                              const Shape& delta_shape,
                                              const Shape& d_input_0_shape,
                                              const Shape& d_input_1_shape,
                                              shared_ptr<Node> input_0_node,
                                              shared_ptr<Node> input_1_node,
                                              shared_ptr<Node> input_0_adjoint,
                                              shared_ptr<Node> input_1_adjoint,
                                              const vector<float>& expected_0,
                                              const vector<float>& expected_1)
{
2316
    vector<shared_ptr<runtime::Tensor>> input_tensors;
2317 2318 2319 2320 2321 2322 2323
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto delta_param = make_shared<op::Parameter>(element::f32, delta_shape);
2324
    shared_ptr<runtime::Tensor> delta_tensor = backend->create_tensor(element::f32, delta_shape);
2325 2326
    copy_data(delta_tensor, delta_data);

2327
    ParameterVector back_params(input_params);
2328 2329 2330
    back_params.push_back(delta_param);
    input_tensors.push_back(delta_tensor);

2331
    shared_ptr<runtime::Tensor> d_input_0_tensor =
2332
        backend->create_tensor(element::f32, d_input_0_shape);
2333
    shared_ptr<runtime::Tensor> d_input_1_tensor =
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347
        backend->create_tensor(element::f32, d_input_1_shape);

    using FunctionType = op::SigmoidMultiply::FunctionType;
    auto input_0_type = op::SigmoidMultiply::identify_node_type(input_0_node);
    auto input_1_type = op::SigmoidMultiply::identify_node_type(input_1_node);
    // for Identity functions, we use the node itself, otherwise use its input
    // where we will apply the function of input node
    auto input_0_alt =
        (input_0_type == FunctionType::Identity) ? input_0_node : input_0_node->get_argument(0);
    auto input_1_alt =
        (input_1_type == FunctionType::Identity) ? input_1_node : input_1_node->get_argument(0);
    auto sigmoid_mul =
        make_shared<op::SigmoidMultiply>(input_0_alt, input_1_alt, input_0_type, input_1_type);

2348
    ngraph::autodiff::Adjoints adjoints(OutputVector{sigmoid_mul}, OutputVector{delta_param});
2349 2350 2351
    auto d_input_0 = adjoints.backprop_node(input_0_adjoint);
    auto d_input_1 = adjoints.backprop_node(input_1_adjoint);
    auto df = make_shared<Function>(NodeVector{d_input_0, d_input_1}, back_params);
2352 2353
    auto handle = backend->compile(df);
    handle->call_with_validate({d_input_0_tensor, d_input_1_tensor}, input_tensors);
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_0_tensor), expected_0));
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_1_tensor), expected_1));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_backward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.2f, 3.2f, 4.2f};
    vector<float> const_data{1.2f};
    vector<float> delta_data(shape_size(data_shape), 20.0f);

    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected_0{8.65093f, 8.81946f, 5.60191f, 2.89668f};
        vector<float> expected_1{14.6212f, 17.6159f, 19.0515f, 19.6403f};
2378
        ParameterVector input_params{input_0_param, input_1_param, input_2_param};
2379 2380
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
2381
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Tanh>(input_0_param);
        vector<float> expected_0{15.2319f, 19.2806f, 19.9011f, 19.9866f};
        vector<float> expected_1{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
2403
        ParameterVector input_params{input_0_param, input_1_param};
2404 2405
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2406
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 sigmoid_0,
                                                 input_0_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected_0{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
        vector<float> expected_1{15.2319f, 19.2806f, 19.9011f, 19.9866f};
2428
        ParameterVector input_params{input_0_param, input_1_param};
2429 2430
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2431
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{3.02202f, 1.89041f, 0.868146f, 0.348035f};
        vector<float> expected_1{2.60102f, 1.58192f, 0.716941f, 0.285879f};
2453
        ParameterVector input_params{input_0_param, input_1_param};
2454 2455
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2456
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{3.27813f, 2.04894f, 0.900536f, 0.353095f};
        vector<float> expected_1{4.45975f, 0.84425f, 0.126201f, 0.0176579f};
2478
        ParameterVector input_params{input_0_param, input_1_param};
2479 2480
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2481
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{6.45521f, 1.27207f, 0.189593f, 0.0264228f};
        vector<float> expected_1{2.70967f, 1.7314f, 0.748913f, 0.29092f};
2503
        ParameterVector input_params{input_0_param, input_1_param};
2504 2505
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2506
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{7.00227f, 1.37874f, 0.196666f, 0.026807f};
        vector<float> expected_1{4.64603f, 0.924027f, 0.131829f, 0.0179692f};
2528
        ParameterVector input_params{input_0_param, input_1_param};
2529 2530
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2531
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
}
2547

2548
static void check_bounded_relu(Shape param_shape, float constant_val)
2549
{
2550 2551 2552 2553 2554 2555 2556 2557 2558
    auto make_function = [](Shape input_shape, float alpha_val) {
        auto relu_input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto relu = std::make_shared<op::Relu>(relu_input);
        auto alpha = op::Constant::create<float>(
            element::f32, input_shape, std::vector<float>(1.0f, alpha_val));
        auto min = std::make_shared<op::Minimum>(relu, alpha);
        auto f = make_shared<Function>(NodeVector{min}, ParameterVector{relu_input});
        return f;
    };
2559

2560 2561 2562
    auto cpu_f = make_function(param_shape, constant_val);
    auto int_f = make_function(param_shape, constant_val);
    test::Uniform<float> rng(-10.0f, 10.0f);
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
2573 2574 2575

    EXPECT_EQ(1, count_ops_of_type<op::BoundedRelu>(cpu_f));
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0), 1.0e-4f, 1.0e-4f));
2576
}
2577

2578
TEST(cpu_fusion, MLIR_DISABLE_TEST(fuse_bounded_relu_inter_vs_cpu))
2579
{
2580 2581 2582 2583
    check_bounded_relu(Shape{4, 3, 2, 2}, 6.0f);
    check_bounded_relu(Shape{4, 3}, 4.0f);
    check_bounded_relu(Shape{4, 3, 2}, 2.0f);
}
2584

2585
TEST(cpu_fusion, MLIR_DISABLE_TEST(fuse_dropout))
gaurides's avatar
gaurides committed
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
{
    auto make_function = [](Shape input_shape,
                            const uint32_t seed_val,
                            double one_minus_prob,
                            bool fuse,
                            bool use_seed) {
        auto input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto value = op::Constant::create(element::f32, input_shape, {one_minus_prob});
        auto const1 = op::Constant::create(input->get_element_type(), Shape{}, {1});

        auto gen_mask = std::make_shared<op::GenerateMask>(const1,
                                                           input->get_shape(),
                                                           input->get_element_type(),
                                                           seed_val,
                                                           one_minus_prob,
                                                           use_seed);

        auto mult = std::make_shared<op::Multiply>(gen_mask, input);

        auto goe = std::make_shared<op::GetOutputElement>(mult, 0);

        auto pdivide = fuse ? std::make_shared<op::Divide>(mult, value)
                            : std::make_shared<op::Divide>(goe, value);

        auto f = make_shared<Function>(NodeVector{pdivide, gen_mask}, ParameterVector{input});

        return f;
    };

    uint32_t seed = rand();
    auto fuse_func = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, true);
    auto fuse_func2 = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, true);
    auto nofuse_func = make_function(Shape{2, 2, 256, 256}, 1, 0.9, false, false);
    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(fuse_func);
        pass_manager.run_passes(nofuse_func);
        ASSERT_EQ(count_ops_of_type<op::Dropout>(fuse_func), 1);
        ASSERT_EQ(count_ops_of_type<op::GenerateMask>(fuse_func), 0);
        ASSERT_EQ(count_ops_of_type<op::Dropout>(nofuse_func), 0);
    }

    auto fuse_func3 = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, false);
    auto fuse_func4 = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, false);
    {
        test::Uniform<float> rng(1.0f, 100.0f);
        vector<vector<float>> args;
        for (shared_ptr<op::Parameter> param : fuse_func->get_parameters())
        {
            auto name = param->get_name();
            vector<float> tensor_val(shape_size(param->get_shape()));
            rng.initialize(tensor_val);
            args.push_back(tensor_val);
        }

        auto fuse_results = execute(fuse_func, args, "CPU");
        auto fuse_results2 = execute(fuse_func2, args, "CPU");
        EXPECT_TRUE(test::all_close(fuse_results.at(0), fuse_results2.at(0)));
        EXPECT_TRUE(test::all_close(fuse_results.at(1), fuse_results2.at(1)));

        auto fuse_results3 = execute(fuse_func3, args, "CPU");
        auto fuse_results4 = execute(fuse_func4, args, "CPU");
        EXPECT_FALSE(test::all_close(fuse_results3.at(0), fuse_results4.at(0)));
        EXPECT_FALSE(test::all_close(fuse_results3.at(1), fuse_results4.at(1)));

        // Note: Since the RNG used in Dropout kernel is different than RNG used in GenerateMask
        // kernel, we can't compare fuse_results and nofuse_results
    }
}

2657
TEST(cpu_fusion, MLIR_DISABLE_TEST(fuse_leaky_relu))
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
{
    auto make_function = [](Shape input_shape, vector<float> alpha_val) {
        auto input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto alpha = op::Constant::create<float>(element::f32, input_shape, alpha_val);
        auto out =
            std::make_shared<op::Maximum>(input, std::make_shared<op::Multiply>(input, alpha));
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input});
        return f;
    };

    auto no_fuse1 = make_function(Shape{1, 2, 3}, std::vector<float>(6, -1.0f));
    auto no_fuse2 = make_function(Shape{1, 3}, std::vector<float>{1.4f, 1.2f, 1.4f});

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(no_fuse1);
    pass_manager.run_passes(no_fuse2);
2675 2676
    EXPECT_EQ(0, count_ops_of_type<op::CPULeakyRelu>(no_fuse1));
    EXPECT_EQ(0, count_ops_of_type<op::CPULeakyRelu>(no_fuse2));
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

    // non-mkldnn kernel
    auto cpu_f1 = make_function(Shape{1, 2, 3}, std::vector<float>(6, 0.1f));
    // mkldnn kernel
    auto cpu_f2 = make_function(Shape{2, 3}, std::vector<float>(6, 0.1f));

    vector<vector<float>> args;
    args.push_back(std::vector<float>{-1, -2, 0, 1, 2, 3});
    std::vector<float> expected_result{-0.1f, -0.2f, 0.0f, 1.0f, 2.0f, 3.0f};

    auto cpu1_results = execute(cpu_f1, args, "CPU");
2688
    EXPECT_EQ(1, count_ops_of_type<op::CPULeakyRelu>(cpu_f1));
2689 2690 2691
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), expected_result));

    auto cpu2_results = execute(cpu_f2, args, "CPU");
2692
    EXPECT_EQ(1, count_ops_of_type<op::CPULeakyRelu>(cpu_f2));
2693 2694 2695
    EXPECT_TRUE(test::all_close(cpu2_results.at(0), expected_result));
}

2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
TEST(cpu_fusion, fuse_update_slice)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        auto slice = std::make_shared<op::Slice>(
            input, fuse ? lower_bounds : Shape{3, 0, 0}, fuse ? upper_bounds : Shape{4, 32, 16});
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 32, 16});
        auto add = std::make_shared<op::Add>(slice, update);
        auto out = std::make_shared<op::ReplaceSlice>(input, add, lower_bounds, upper_bounds);
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        return f;
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_inplace)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        auto abs = std::make_shared<op::Abs>(input);
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        auto slice = std::make_shared<op::Slice>(abs, lower_bounds, upper_bounds);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 32, 16});
        auto add = std::make_shared<op::Add>(slice, update);
        auto rs = std::make_shared<op::ReplaceSlice>(abs, add, lower_bounds, upper_bounds);
        auto out = std::make_shared<op::Abs>(rs);
        if (fuse)
        {
            return make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        }
        else
        {
            return make_shared<Function>(NodeVector{out, add}, ParameterVector{input, update});
        }
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_strided)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        Strides strides{1, 2, 2};
        auto slice = std::make_shared<op::Slice>(input,
                                                 fuse ? lower_bounds : Shape{3, 0, 0},
                                                 fuse ? upper_bounds : Shape{4, 32, 16},
                                                 strides);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 8});
        auto add = std::make_shared<op::Add>(slice, update);
        auto out =
            std::make_shared<op::ReplaceSlice>(input, add, lower_bounds, upper_bounds, strides);
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        return f;
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_strided_inplace)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        auto abs = std::make_shared<op::Abs>(input);
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        Strides strides{1, 4, 2};
        auto slice = std::make_shared<op::Slice>(abs, lower_bounds, upper_bounds, strides);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 8, 8});
        auto add = std::make_shared<op::Add>(slice, update);
        auto rs = std::make_shared<op::ReplaceSlice>(abs, add, lower_bounds, upper_bounds, strides);
        auto out = std::make_shared<op::Abs>(rs);
        if (fuse)
        {
            return make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        }
        else
        {
            return make_shared<Function>(NodeVector{out, add}, ParameterVector{input, update});
        }
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

2891 2892 2893 2894 2895 2896 2897 2898 2899
TEST(cpu_fusion, dot_batch_forward)
{
    const Shape shape_a{2, 3, 2};
    const Shape shape_b{2, 3};

    auto generate_func = [&shape_a, &shape_b]() -> shared_ptr<Function> {
        auto a = make_shared<op::Parameter>(element::f32, shape_a);
        auto b = make_shared<op::Parameter>(element::f32, shape_b);
        auto dot = make_shared<op::Dot>(a, b);
2900
        return make_shared<Function>(dot, ParameterVector{a, b});
2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
    };
    shared_ptr<Function> cpu_func = generate_func();
    shared_ptr<Function> int_func = generate_func();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
2921

Pruthvi's avatar
Pruthvi committed
2922
static std::shared_ptr<Function>
2923
    create_rnn_input_linear_transformation_function(size_t num_timesteps, bool data_is_4d = false)
Pruthvi's avatar
Pruthvi committed
2924 2925 2926
{
    auto W = std::make_shared<op::Parameter>(element::f32, Shape{400, 50});
    auto bias = std::make_shared<op::Parameter>(element::f32, Shape{400});
2927
    ParameterVector params{W, bias};
Pruthvi's avatar
Pruthvi committed
2928
    auto create_graph = [&]() -> std::shared_ptr<Node> {
2929 2930 2931
        auto data_param = (data_is_4d)
                              ? std::make_shared<op::Parameter>(element::f32, Shape{2, 5, 1, 50})
                              : std::make_shared<op::Parameter>(element::f32, Shape{10, 1, 50});
Pruthvi's avatar
Pruthvi committed
2932
        params.push_back(data_param);
2933
        auto reshape_axis_order = data_is_4d ? AxisVector{0, 1, 2, 3} : AxisVector{0, 1, 2};
Pruthvi's avatar
Pruthvi committed
2934
        auto data_param_reshape =
2935
            std::make_shared<op::Reshape>(data_param, reshape_axis_order, Shape{10, 50});
Pruthvi's avatar
Pruthvi committed
2936 2937 2938 2939
        auto W_reshape = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{50, 400});
        auto dot = std::make_shared<op::Dot>(data_param_reshape, W_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add_bias = std::make_shared<op::Add>(dot, bias_broadcast);
2940
        return move(add_bias);
Pruthvi's avatar
Pruthvi committed
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
    };

    NodeVector graph_nodes;
    for (size_t i = 0; i < num_timesteps; i++)
    {
        graph_nodes.push_back(create_graph());
    }
    auto concat = std::make_shared<op::Concat>(graph_nodes, 0);
    return make_shared<Function>(NodeVector{concat}, params);
}

TEST(cpu_fusion, fuse_rnn_input_across_time_steps)
{
    auto func = create_rnn_input_linear_transformation_function(10);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func);
    size_t ref_matmulbias_count = 1;
    auto matmulbias_count = count_ops_of_type<op::MatmulBias>(func);
    EXPECT_EQ(ref_matmulbias_count, matmulbias_count);
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
TEST(cpu_fusion, fuse_rnn_input_across_time_steps_4d_data)
{
    auto func = create_rnn_input_linear_transformation_function(10, true);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func);
    size_t ref_matmulbias_count = 10; // no CPURnnMatFusion transformations
    auto matmulbias_count = count_ops_of_type<op::MatmulBias>(func);
    EXPECT_EQ(ref_matmulbias_count, matmulbias_count);
}

Pruthvi's avatar
Pruthvi committed
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
TEST(cpu_fusion, rnn_input_fusion_inter_vs_cpu)
{
    shared_ptr<Function> cpu_func = create_rnn_input_linear_transformation_function(10);
    shared_ptr<Function> int_func = create_rnn_input_linear_transformation_function(10);

    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022
TEST(cpu_quant_fusion, qconv_relu)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto conv = std::make_shared<op::QuantizedConvolution>(q_input,
                                                               q_weights,
                                                               Strides{1, 1},
                                                               Strides{1, 1},
                                                               CoordinateDiff{0, 0},
                                                               CoordinateDiff{0, 0},
                                                               Strides{1, 1},
3023 3024 3025 3026 3027 3028 3029
                                                               input_scale,
                                                               uint8_zero,
                                                               weights_scale,
                                                               int8_zero,
                                                               output_scale,
                                                               int8_zero,
                                                               element::i8,
3030 3031
                                                               AxisSet{},
                                                               AxisSet{},
3032
                                                               AxisSet{});
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
        auto dq = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto relu = std::make_shared<op::Relu>(dq);
        auto q = std::make_shared<op::Quantize>(
            relu, output_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_f =
            std::make_shared<op::Dequantize>(q, output_scale, uint8_zero, element::f32, AxisSet{});
        return make_shared<Function>(NodeVector{q_f}, ParameterVector{input, weights});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    // Expected output - [2, 2, ...]
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
TEST(cpu_quant_fusion, qconvb_relu)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias = std::make_shared<op::Quantize>(
            bias, input_scale * weights_scale, int32_zero, element::i32, AxisSet{}, round_mode);
        auto requant_scale = (input_scale * weights_scale) / output_scale;
        auto conv = std::make_shared<op::QuantizedConvolutionBias>(q_input,
                                                                   q_weights,
                                                                   bias,
                                                                   Strides{1, 1},
                                                                   Strides{1, 1},
                                                                   CoordinateDiff{0, 0},
                                                                   CoordinateDiff{0, 0},
                                                                   Strides{1, 1},
                                                                   requant_scale);
        auto dq = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto relu = std::make_shared<op::Relu>(dq);
        auto q = std::make_shared<op::Quantize>(
            relu, output_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_f =
            std::make_shared<op::Dequantize>(q, output_scale, uint8_zero, element::f32, AxisSet{});
        return make_shared<Function>(NodeVector{q_f}, ParameterVector{input, weights, bias});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
TEST(cpu_quant_fusion, qavg_pool)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 4, 4};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto dq = std::make_shared<op::Dequantize>(
            q_input, input_scale, uint8_zero, element::f32, AxisSet{});
        auto avg_pool = std::make_shared<op::AvgPool>(dq, Shape{2, 2});
        return make_shared<Function>(NodeVector{avg_pool}, ParameterVector{input});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(4.0f, 4.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

TEST(cpu_quant_fusion, qmax_pool)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 4, 4};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto dq = std::make_shared<op::Dequantize>(
            q_input, input_scale, uint8_zero, element::f32, AxisSet{});
        auto maxpool = std::make_shared<op::MaxPool>(dq, Shape{2, 2});
        return make_shared<Function>(NodeVector{maxpool}, ParameterVector{input});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(1.0f, 10.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

3199
TEST(cpu_quant_fusion, MLIR_DISABLE_TEST(qconcat))
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
{
    auto make_function = []() {
        auto get_input_slice = [](std::shared_ptr<op::Parameter>& input) {
            auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
            auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
            auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

            op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
            auto q_input = std::make_shared<op::Quantize>(
                input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
            auto dq = std::make_shared<op::Dequantize>(
                q_input, input_scale, uint8_zero, element::f32, AxisSet{});
            return dq;
        };

        NodeVector concat_inputs, concats;
        ParameterVector inputs;
        Shape shape_input{1, 2, 4, 4};
        inputs.push_back(std::make_shared<op::Parameter>(element::f32, shape_input));
        concat_inputs.push_back(get_input_slice(inputs.back()));
        // Concat2  -- Concat7
        for (size_t i = 0; i < 6; i++)
        {
            inputs.push_back(std::make_shared<op::Parameter>(element::f32, shape_input));
            concat_inputs.push_back(get_input_slice(inputs.back()));
            concats.push_back(std::make_shared<op::Concat>(concat_inputs, 0));
        }
        return make_shared<Function>(concats, inputs);
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    // Expect Concat2 -- Concat6 to be fused and not Concat7
3247
    ASSERT_EQ(count_ops_of_type<op::Concat>(cpu_f2), 6);
3248 3249 3250
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
TEST(cpu_quant_fusion, dq_q)
{
    auto make_function = [](bool match_scales = true, bool match_et = true) {
        Shape shape_input{1, 2, 2};
        auto input = std::make_shared<op::Parameter>(element::i8, shape_input);
        auto dq_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto dq =
            std::make_shared<op::Dequantize>(input, dq_scale, int8_zero, element::f32, AxisSet{});
        float q_scalev = 2.0f;
        if (!match_scales)
        {
            q_scalev = 1.0f;
        }
        auto q_scale = op::Constant::create(element::f32, Shape{}, {q_scalev});
        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        if (match_et)
        {
            auto q = std::make_shared<op::Quantize>(
                dq, q_scale, int8_zero, element::i8, AxisSet{}, round_mode);
            return make_shared<Function>(NodeVector{q}, ParameterVector{input});
        }
        else
        {
            auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});
            auto q = std::make_shared<op::Quantize>(
                dq, q_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
            return make_shared<Function>(NodeVector{q}, ParameterVector{input});
        }
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    vector<vector<int8_t>> args;
    args.push_back({-1, 2, 3, 4});

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));

    auto backend = runtime::Backend::create("CPU");
    auto fuse = make_function(true, true);
    auto no_fuse1 = make_function(false, true);
    auto no_fuse2 = make_function(true, false);
    backend->compile(fuse);
    backend->compile(no_fuse1);
    backend->compile(no_fuse2);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(fuse), 0);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(no_fuse1), 1);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(no_fuse2), 1);
}

TEST(cpu_quant_fusion, qconvbsa)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        Shape shape_summand{1, 1, 2, 2};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto summand = std::make_shared<op::Parameter>(element::f32, shape_summand);

        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto summand_scale = op::Constant::create(element::f32, Shape{}, {2.0f});

        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias = std::make_shared<op::Quantize>(
            bias, input_scale * weights_scale, int32_zero, element::i32, AxisSet{}, round_mode);
        auto q_summand = std::make_shared<op::Quantize>(
            summand, summand_scale, int8_zero, element::i8, AxisSet{}, round_mode);

        // Left Graph
        auto requant_scale = (input_scale * weights_scale) / output_scale;
        auto conv = std::make_shared<op::QuantizedConvolutionBias>(q_input,
                                                                   q_weights,
                                                                   bias,
                                                                   Strides{1, 1},
                                                                   Strides{1, 1},
                                                                   CoordinateDiff{0, 0},
                                                                   CoordinateDiff{0, 0},
                                                                   Strides{1, 1},
                                                                   requant_scale);
        auto dq_l = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto r_l = std::make_shared<op::Reshape>(dq_l, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_l = std::make_shared<op::Broadcast>(r_l, Shape{1, 1, 2, 2}, AxisSet{0});

        // Right Graph
        auto dq_r = std::make_shared<op::Dequantize>(
            q_summand, summand_scale, int8_zero, element::f32, AxisSet{});
        auto r_r = std::make_shared<op::Reshape>(dq_r, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_r = std::make_shared<op::Broadcast>(r_r, Shape{1, 1, 2, 2}, AxisSet{0});
        auto add = b_l + b_r;
        auto relu = std::make_shared<op::Relu>(add);
        return make_shared<Function>(NodeVector{relu},
                                     ParameterVector{input, weights, bias, summand});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(4.0f, 4.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    // Disable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    // Enable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

TEST(cpu_quant_fusion, qconvba)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        Shape shape_summand{1, 1, 2, 2};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto summand = std::make_shared<op::Parameter>(element::f32, shape_summand);

        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto summand_scale = op::Constant::create(element::f32, Shape{}, {4.0f});

        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias = std::make_shared<op::Quantize>(
            bias, input_scale * weights_scale, int32_zero, element::i32, AxisSet{}, round_mode);
        auto q_summand = std::make_shared<op::Quantize>(
            summand, summand_scale, uint8_zero, element::u8, AxisSet{}, round_mode);

        // Left Graph
        auto requant_scale = (input_scale * weights_scale) / output_scale;
        auto conv = std::make_shared<op::QuantizedConvolutionBias>(q_input,
                                                                   q_weights,
                                                                   bias,
                                                                   Strides{1, 1},
                                                                   Strides{1, 1},
                                                                   CoordinateDiff{0, 0},
                                                                   CoordinateDiff{0, 0},
                                                                   Strides{1, 1},
                                                                   requant_scale);
        auto dq_l = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto r_l = std::make_shared<op::Reshape>(dq_l, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_l = std::make_shared<op::Broadcast>(r_l, Shape{1, 1, 2, 2}, AxisSet{0});

        // Right Graph
        auto dq_r = std::make_shared<op::Dequantize>(
            q_summand, summand_scale, uint8_zero, element::f32, AxisSet{});
        auto r_r = std::make_shared<op::Reshape>(dq_r, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_r = std::make_shared<op::Broadcast>(r_r, Shape{1, 1, 2, 2}, AxisSet{0});
        auto add = b_l + b_r;
        auto relu = std::make_shared<op::Relu>(add);
        return make_shared<Function>(NodeVector{relu},
                                     ParameterVector{input, weights, bias, summand});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    // Disable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    // Enable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}
Pruthvi's avatar
Pruthvi committed
3461

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
TEST(cpu_quant_fusion, qconvba_q)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        Shape shape_summand{1, 1, 2, 2};
        auto input_l = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights_l = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias_l = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto input_r = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights_r = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias_r = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});

        auto input_scale_l = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale_l = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale_l = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto input_scale_r = op::Constant::create(element::f32, Shape{}, {5.0f});
        auto weights_scale_r = op::Constant::create(element::f32, Shape{}, {5.0f});
        auto output_scale_r = op::Constant::create(element::f32, Shape{}, {20.0f});

        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input_l = std::make_shared<op::Quantize>(
            input_l, input_scale_l, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights_l = std::make_shared<op::Quantize>(
            weights_l, weights_scale_l, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias_l = std::make_shared<op::Quantize>(bias_l,
                                                       input_scale_l * weights_scale_l,
                                                       int32_zero,
                                                       element::i32,
                                                       AxisSet{},
                                                       round_mode);
        auto q_input_r = std::make_shared<op::Quantize>(
            input_r, input_scale_r, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights_r = std::make_shared<op::Quantize>(
            weights_r, weights_scale_r, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias_r = std::make_shared<op::Quantize>(bias_r,
                                                       input_scale_r * weights_scale_r,
                                                       int32_zero,
                                                       element::i32,
                                                       AxisSet{},
                                                       round_mode);

        // Left Graph
        auto requant_scale_l = (input_scale_l * weights_scale_l) / output_scale_l;
        auto conv_l = std::make_shared<op::QuantizedConvolutionBias>(q_input_l,
                                                                     q_weights_l,
                                                                     q_bias_l,
                                                                     Strides{1, 1},
                                                                     Strides{1, 1},
                                                                     CoordinateDiff{0, 0},
                                                                     CoordinateDiff{0, 0},
                                                                     Strides{1, 1},
                                                                     requant_scale_l);
        auto dq_l = std::make_shared<op::Dequantize>(
            conv_l, output_scale_l, int8_zero, element::f32, AxisSet{});
        auto r_l = std::make_shared<op::Reshape>(dq_l, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_l = std::make_shared<op::Broadcast>(r_l, Shape{1, 1, 2, 2}, AxisSet{0});

        // Right Graph
        auto requant_scale_r = (input_scale_r * weights_scale_r) / output_scale_r;
        auto conv_r = std::make_shared<op::QuantizedConvolutionBias>(q_input_r,
                                                                     q_weights_r,
                                                                     q_bias_r,
                                                                     Strides{1, 1},
                                                                     Strides{1, 1},
                                                                     CoordinateDiff{0, 0},
                                                                     CoordinateDiff{0, 0},
                                                                     Strides{1, 1},
                                                                     requant_scale_r);
        auto dq_r = std::make_shared<op::Dequantize>(
            conv_r, output_scale_r, int8_zero, element::f32, AxisSet{});
        auto r_r = std::make_shared<op::Reshape>(dq_r, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_r = std::make_shared<op::Broadcast>(r_r, Shape{1, 1, 2, 2}, AxisSet{0});
        auto add = b_l + b_r;
        auto relu = std::make_shared<op::Relu>(add);
        auto q = std::make_shared<op::Quantize>(
            relu, output_scale_r, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto dq = std::make_shared<op::Dequantize>(
            q, output_scale_r, uint8_zero, element::f32, AxisSet{});
        return make_shared<Function>(
            NodeVector{dq},
            ParameterVector{input_l, weights_l, bias_l, input_r, weights_r, bias_r});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    // Disable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    // Enable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));

    auto backend = runtime::Backend::create("CPU");
    auto fuse = make_function();
    backend->compile(fuse);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(fuse), 6);
}

3576
#ifndef NGRAPH_JSON_DISABLE
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
// Tests that rely on deserializing json files
TEST(cpu_fusion, fuse_conv_bias)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<ngraph::runtime::cpu::pass::CPUFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "conv_bias.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionBias>(func);
    ASSERT_GT(cb, 0);
}

TEST(cpu_fusion, gemm_mlp)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass::Manager pass_manager;
3599
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609
    pass_manager.run_passes(func);
    auto mmbs = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmbs, 3);
}

TEST(cpu_fusion, fuse_fprop_bn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_before_fusion.png");
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
3610
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_after_fusion.png");
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_fprop_b2c3h2w2.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchNormTraining>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, sigmoid_multiply_fusion)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::CoreFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/3_lstm_cell_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::SigmoidMultiply>(func);
    ASSERT_EQ(ccg, 18);
}

TEST(cpu_fusion, fuse_batch_mat_mul_transpose)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/batch_dot_3.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchMatMulTranspose>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, fuse_batch_mat_mul_transpose_forward)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();

    const std::string file_name("mxnet/batch_dot_3.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < int_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, fuse_batch_dot_backward)
{
    const std::string file_name("mxnet/batch_dot_3.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    pass_manager.run_passes(cpu_f);

    auto int_df = autodiff::backprop_function(int_f);
    auto cpu_df = autodiff::backprop_function(cpu_f);

    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_df->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_df, args, "INTERPRETER");
    auto cpu_results = execute(cpu_df, args, "CPU");

    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, fuse_rnn_across_layer_2layer_3timestep)
{
    const std::string file_name("mxnet/2layer_3timestep_ic100oc100.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");

    EXPECT_EQ(1, count_ops_of_type<op::Rnn>(cpu_f));
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

Pruthvi's avatar
Pruthvi committed
3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
TEST(cpu_fusion, fuse_bi_directional_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    pass_manager.register_pass<ngraph::pass::AlgebraicSimplification>();
    pass_manager.register_pass<runtime::cpu::pass::MultiLayerRNNFusion>();
    pass_manager.register_pass<runtime::cpu::pass::BiDirectionalRnn>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/lstm_bi_directional.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    // Bidirectional graph pass will folds the reverse seq
    auto rev_seq_ops = get_ops_of_type<op::Reverse>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rev_seq_ops.size(), 0);
    // fuse two bi-directional rnn layers in to one MKLDNN Op
    EXPECT_EQ(rnn_ops.size(), 1);
}

TEST(cpu_fusion, bi_rnn_interpreter_vs_cpu)
{
    const std::string file_name("mxnet/lstm_bi_directional.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < int_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
3771 3772 3773 3774 3775

TEST(cpu_fusion, rnn_fusion_from_json_model)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
3776
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/rnn-10-step-fusion-test.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    const size_t NUM_STEPS = 10;
    auto mmb_predicate = [=](std::shared_ptr<Node> node) {
        auto users = node->get_users();
        return (users.size() == NUM_STEPS) &&
               std::all_of(begin(users), end(users), [](std::shared_ptr<Node> n) {
                   return std::dynamic_pointer_cast<op::Slice>(n) != nullptr;
               });
    };

    auto mmbs = get_ops_of_type<op::MatmulBias>(func);
    ASSERT_TRUE(std::any_of(begin(mmbs), end(mmbs), mmb_predicate));
}

TEST(cpu_fusion, fuse_lstm_cells)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    auto lstm_ops = get_ops_of_type<op::Lstm>(func);
    EXPECT_EQ(lstm_ops.size(), 6);
}

TEST(cpu_fusion, fuse_2_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
3827
#if MKLDNN_VERSION_MAJOR < 1
3828
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
3829
#endif
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850
    }
}

TEST(cpu_fusion, fuse_1_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/1rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), 1);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
3851
#if MKLDNN_VERSION_MAJOR < 1
3852
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
3853
#endif
3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900
    }
}

TEST(cpu_fusion, rnn_fusion_1lstm_cell)
{
    const std::string file_name("mxnet/1_lstm_cell_forward.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, rnn_fusion_1rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/1rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
TEST(cpu_fusion, lstm_cell)
{
    auto make_function = []() {
        const size_t batch_size = 3;
        const size_t input_size = 4;
        const size_t hidden_size = 4;
        const size_t gates_count = 4;

        const auto X = make_shared<op::Parameter>(element::f32, Shape{batch_size, input_size});
        const auto W =
            make_shared<op::Parameter>(element::f32, Shape{gates_count * hidden_size, input_size});
        const auto R =
            make_shared<op::Parameter>(element::f32, Shape{gates_count * hidden_size, hidden_size});
        const auto H_t = make_shared<op::Parameter>(element::f32, Shape{batch_size, hidden_size});
        const auto C_t = make_shared<op::Parameter>(element::f32, Shape{batch_size, hidden_size});

        const auto lstm_cell = make_shared<op::LSTMCell>(X, W, R, H_t, C_t, hidden_size);
        auto ht = make_shared<op::GetOutputElement>(lstm_cell, 0);
        auto ct = make_shared<op::GetOutputElement>(lstm_cell, 1);

        auto lstm_function =
            make_shared<Function>(NodeVector{ht, ct}, ParameterVector{X, W, R, H_t, C_t});
        return lstm_function;
    };
    auto lstm_function_cpu = make_function();
    auto lstm_function_inter = make_function();
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : lstm_function_cpu->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(lstm_function_inter, args, "INTERPRETER");
    auto cpu_results = execute(lstm_function_cpu, args, "CPU");
    size_t lstm_op_count = count_ops_of_type<op::LSTMCell>(lstm_function_cpu);

    EXPECT_EQ(lstm_op_count, 0);
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
TEST(cpu_fusion, rnn_fusion_2rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/2rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

3970
TEST(cpu_fusion, validate_fuse_gru_inputs)
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991
{
    const std::string file_name("mxnet/gru_debug.json");
    auto cpu_func = make_function_from_file(file_name);
    auto int_func = make_function_from_file(file_name);

    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
3992

3993
#if defined(AUTODIFF_BACKEND_CPU) && !defined(NGRAPH_JSON_DISABLE)
3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
NGRAPH_TEST(cpu_fusion, backwards_batchmatmultranspose_tensor2_tensor2)
{
    auto backend = runtime::Backend::create("CPU");

    const std::string file_name("mxnet/batch_dot_3.json");
    auto f = make_function_from_file(file_name);

    test::Uniform<float> rng(-1.0f, 1.0f);
    std::vector<std::shared_ptr<ngraph::runtime::Tensor>> args;
    for (shared_ptr<op::Parameter> param : f->get_parameters())
    {
        args.push_back(rng.initialize(backend->create_tensor<float>(param->get_shape())));
    }

    auto g = make_function_from_file(file_name);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    pass_manager.run_passes(g);
    EXPECT_TRUE(autodiff_numeric_compare<float>(backend.get(), f, g, args, .01f, .01f));
}
#endif

4016
#endif