cpu_fusion.cpp 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
#include "ngraph/ops/batch_norm.hpp"
#include "ngraph/ops/sum.hpp"
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/any.hpp"
#include "ngraph/pattern/op/label.hpp"
//
#include "ngraph/file_util.hpp"
#include "ngraph/pass/reshape_elimination.hpp"
#include "ngraph/pass/visualize_tree.hpp"
#include "ngraph/runtime/cpu/ops/matmul_bias.hpp"
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
42
#include "nlohmann/json.hpp"
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
#include "util/all_close.hpp"
#include "util/matcher.hpp"
#include "util/test_tools.hpp"

using namespace ngraph;
using namespace std;

TEST(cpu_fusion, gemm_pattern)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;

    auto W = std::make_shared<pattern::op::Label>(A);
    auto x = std::make_shared<pattern::op::Label>(B);

    auto reshape_pred = [](std::shared_ptr<Node> n) {
        return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
    };

    auto skip_w = std::make_shared<pattern::op::Any>(W, reshape_pred);
    auto skip_x = std::make_shared<pattern::op::Any>(x, reshape_pred);

    auto pdot = make_shared<op::Dot>(skip_w, skip_x);
    auto b = std::make_shared<pattern::op::Label>(C);
    auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0});
    auto padd = pdot + pbroadcast;

    TestMatcher n(nullptr);
    ASSERT_TRUE(n.match(padd, add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape());
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape());
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto re_add = re_dot + broadcast;
    ASSERT_TRUE(n.match(padd, re_add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

    auto cg =
        make_shared<op::MatmulBias>(W, x, broadcast, W->get_shape(), x->get_shape(), false, false);
}

TEST(cpu_fusion, gemm_cpu)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1});
    auto cg =
        make_shared<op::MatmulBias>(A, B, broadcast, A->get_shape(), B->get_shape(), true, true);

114
    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151

    auto manager = runtime::Manager::get("CPU");
    auto external = manager->compile(f);
    auto backend = manager->allocate_backend();
    auto cf = backend->make_call_frame(external);

    shared_ptr<runtime::TensorView> a = backend->make_primary_tensor_view(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->make_primary_tensor_view(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result =
        backend->make_primary_tensor_view(element::f32, shapeC);

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

    cf->call({a, b}, {result});
    vector<float> expected{10, 28, 37, 109};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

TEST(cpu_fusion, cpu_fusion_pass_basic)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
152
    auto func = make_shared<Function>(graph, op::ParameterVector{A, B, C});
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
    pass_manager.run_passes(func);
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_input_op(0)), nullptr);
}

TEST(cpu_fusion, gemm_mlp)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(ccg, 3);
}

//TODO: Move this test to backend_test.in.cpp once we have the INTERPRETER
//      implementation for batchnorm
TEST(cpu_fusion, batchnorm_fprop_b1c2h2w2)
{
    auto input_shape = Shape{1, 2, 2, 2};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{2};
    auto mean = make_shared<op::Parameter>(element::f32, mean_shape);
    auto var_shape = Shape{2};
    auto var = make_shared<op::Parameter>(element::f32, var_shape);
    auto gamma_shape = Shape{2};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{2};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{1, 2, 2, 2};
    auto bn = make_shared<op::BatchNorm>(eps, gamma, beta, input, mean, var);

188
    auto f = make_shared<Function>(bn, op::ParameterVector{mean, var, input, gamma, beta});
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    auto manager = runtime::Manager::get("CPU");
    auto external = manager->compile(f);
    auto backend = manager->allocate_backend();
    auto cf = backend->make_call_frame(external);

    // Create some tensors for input/output
    auto _input = backend->make_primary_tensor_view(element::f32, Shape{1, 2, 2, 2});

    copy_data(_input,
              vector<float>{0.54881352f,
                            0.71518934f,
                            0.60276335f,
                            0.54488319f,
                            0.42365479f,
                            0.64589411f,
204 205
                            0.4375872f,
                            0.89177299f});
206
    auto _mean = backend->make_primary_tensor_view(element::f32, mean_shape);
207
    copy_data(_mean, vector<float>{0.60291237f, 0.59972727f});
208
    auto _var = backend->make_primary_tensor_view(element::f32, var_shape);
209
    copy_data(_var, vector<float>{0.00472505f, 0.03617825f});
210 211 212 213 214 215
    auto _gamma = backend->make_primary_tensor_view(element::f32, gamma_shape);
    copy_data(_gamma, vector<float>{1.0f, 1.0f});
    auto _beta = backend->make_primary_tensor_view(element::f32, beta_shape);
    copy_data(_beta, vector<float>{0.0f, 0.0f});
    auto result = backend->make_primary_tensor_view(element::f32, shape_r);

216 217 218 219 220 221 222 223
    vector<float> expected_result{-0.71498716f,
                                  1.48388731f,
                                  -0.00196938f,
                                  -0.76693159f,
                                  -0.91316032f,
                                  0.23943391f,
                                  -0.84090298f,
                                  1.51462936f};
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
    cf->call({_mean, _var, _input, _gamma, _beta}, {result});
    EXPECT_TRUE(test::all_close(expected_result, read_vector<float>(result)));
}

TEST(cpu_fusion, batchnorm_fprop_b2c2h2w1)
{
    auto input_shape = Shape{2, 2, 2, 1};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{2};
    auto mean = make_shared<op::Parameter>(element::f32, mean_shape);
    auto var_shape = Shape{2};
    auto var = make_shared<op::Parameter>(element::f32, var_shape);
    auto gamma_shape = Shape{2};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{2};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{2, 2, 2, 1};
    auto bn = make_shared<op::BatchNorm>(eps, gamma, beta, input, mean, var);

244
    auto f = make_shared<Function>(bn, op::ParameterVector{mean, var, input, gamma, beta});
245 246 247 248 249 250 251 252 253 254 255 256 257
    auto manager = runtime::Manager::get("CPU");
    auto external = manager->compile(f);
    auto backend = manager->allocate_backend();
    auto cf = backend->make_call_frame(external);
    // Create some tensors for input/output
    auto _input = backend->make_primary_tensor_view(element::f32, Shape{2, 2, 2, 1});
    copy_data(_input,
              vector<float>{0.54881352f,
                            0.71518934f,
                            0.60276335f,
                            0.54488319f,
                            0.42365479f,
                            0.64589411f,
258 259
                            0.4375872f,
                            0.89177299f});
260
    auto _mean = backend->make_primary_tensor_view(element::f32, mean_shape);
261
    copy_data(_mean, vector<float>{0.60291237f, 0.59972727f});
262
    auto _var = backend->make_primary_tensor_view(element::f32, var_shape);
263
    copy_data(_var, vector<float>{0.00472505f, 0.03617825f});
264 265 266 267 268 269 270
    auto _gamma = backend->make_primary_tensor_view(element::f32, gamma_shape);
    copy_data(_gamma, vector<float>{1.0f, 1.0f});
    auto _beta = backend->make_primary_tensor_view(element::f32, beta_shape);
    copy_data(_beta, vector<float>{0.0f, 0.0f});
    auto result = backend->make_primary_tensor_view(element::f32, shape_r);

    vector<float> expected_result{
271
        -0.714987f, 1.48389f, 0.015746f, -0.284436f, -2.36912f, 0.56806f, -0.840903f, 1.51463f};
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
    cf->call({_mean, _var, _input, _gamma, _beta}, {result});
    EXPECT_TRUE(test::all_close(expected_result, read_vector<float>(result)));
}

TEST(cpu_fusion, fuse_fprop_bn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_before_fusion.png");
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_after_fusion.png");
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_fprop_b2c3h2w2.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchNorm>(func);
    ASSERT_EQ(ccg, 1);
}
291 292 293 294 295 296 297 298 299 300 301 302 303 304

class UnhandledOp : public ngraph::op::Abs
{
public:
    UnhandledOp(const std::shared_ptr<Node>& arg)
        : Abs(arg)
    {
    }
};

TEST(cpu_fusion, unhandled_op)
{
    auto A = make_shared<op::Parameter>(element::f32, Shape{});
    auto unhandled = make_shared<UnhandledOp>(A);
305
    auto f = make_shared<Function>(unhandled, op::ParameterVector{A});
306 307 308 309 310
    auto manager = runtime::Manager::get("CPU");
    auto backend = manager->allocate_backend();
    auto external = manager->compile(f);
    ASSERT_THROW(backend->make_call_frame(external), ngraph_error);
}
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

TEST(cpu_fusion, bn_bprop_n4c3h2w2)
{
    auto input_shape = Shape{4, 3, 2, 2};
    auto shape_mean = Shape{3};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{3};
    auto mean = make_shared<op::Parameter>(element::f32, mean_shape);
    auto var_shape = Shape{3};
    auto var = make_shared<op::Parameter>(element::f32, var_shape);
    auto gamma_shape = Shape{3};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{3};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{4, 3, 2, 2};
    auto bn = make_shared<op::BatchNorm>(eps, gamma, beta, input, mean, var);

    auto manager = runtime::Manager::get("CPU");
    auto backend = manager->allocate_backend();

    auto _input = backend->make_primary_tensor_view(element::f32, input_shape);
    vector<float> dataInput{
        10.76331902f, 11.51178265f, 10.31018162f, 12.2993021f,  14.17626667f, 14.63498497f,
        13.63494492f, 13.84248161f, 11.34602547f, 13.22014618f, 10.46686649f, 10.39842987f,
        12.94806862f, 11.71670246f, 14.94438076f, 13.13236618f, 13.40889645f, 12.76128387f,
        11.34430027f, 11.86629677f, 11.11464024f, 10.93221283f, 11.95324039f, 10.96581173f,
        13.05455494f, 14.41404247f, 13.11169434f, 11.26559448f, 10.89965153f, 14.08202171f,
        11.12685776f, 12.58428574f, 12.59247875f, 13.00187492f, 12.66310215f, 10.06655025f,
        12.62048626f, 14.47942352f, 13.84950638f, 10.61425877f, 11.47936344f, 13.06011772f,
        13.63069057f, 12.31748772f, 13.84555244f, 10.95815468f, 12.78933334f, 12.75389099f};
    copy_data(_input, dataInput);
    auto _mean = backend->make_primary_tensor_view(element::f32, mean_shape);
    copy_data(_mean, vector<float>{12.56472874f, 12.80312157f, 11.81676865f});
    auto _var = backend->make_primary_tensor_view(element::f32, var_shape);
    copy_data(_var, vector<float>{1.94557643f, 1.32772446f, 1.28163588f});

    auto _gamma = backend->make_primary_tensor_view(element::f32, gamma_shape);
    copy_data(_gamma, vector<float>{2.0f, 2.0f, 2.0f});
    auto _beta = backend->make_primary_tensor_view(element::f32, beta_shape);
    copy_data(_beta, vector<float>{1.0f, 1.0f, 1.0f});
    auto result = backend->make_primary_tensor_view(element::f32, shape_r);

    shared_ptr<runtime::TensorView> _delta =
        backend->make_primary_tensor_view(element::f32, shape_r);
    vector<float> deltaData(shape_size(shape_r), 20.0f);
    copy_data(_delta, deltaData);

    auto f = make_shared<Function>(bn, op::ParameterVector{mean, var, input, gamma, beta});

    auto C = std::make_shared<op::Parameter>(element::f32, shape_r);
    auto dinput = bn->backprop_node(input, C);
    auto dgamma = bn->backprop_node(gamma, C);
    auto dbeta = bn->backprop_node(beta, C);

    auto df = make_shared<Function>(NodeVector{dinput, dgamma, dbeta},
                                    op::ParameterVector{mean, var, input, gamma, beta, C});

    //roundtrip serialization
    string js = serialize(df, 4);
    istringstream in(js);
    df = deserialize(in);

    auto external = manager->compile(df);
    auto cf = backend->make_call_frame(external);

    shared_ptr<runtime::TensorView> _dinput =
        backend->make_primary_tensor_view(element::f32, shape_r);
    shared_ptr<runtime::TensorView> _dgamma =
        backend->make_primary_tensor_view(element::f32, gamma_shape);
    shared_ptr<runtime::TensorView> _dbeta =
        backend->make_primary_tensor_view(element::f32, beta_shape);

    cf->call({_mean, _var, _input, _gamma, _beta, _delta}, {_dinput, _dgamma, _dbeta});

    vector<float> expected_input{
        8.17051607e-06f,  4.77576657e-06f,  1.02257760e-05f,  1.20387525e-06f,  -1.73868522e-06f,
        3.84632768e-06f,  -1.07932050e-05f, -2.57458956e-06f, -2.22166714e-06f, -8.38779043e-06f,
        -2.48082982e-06f, 5.89238360e-06f,  -2.52895109e-07f, -8.68433445e-06f, -5.82726737e-06f,
        8.84659658e-06f,  3.03944108e-05f,  4.05480879e-05f,  1.84123158e-05f,  2.30061178e-05f,
        1.34087590e-05f,  -9.26072571e-07f, -3.22908454e-05f, -2.07365116e-05f, -4.21330941e-05f,
        2.83083100e-05f,  -3.71039101e-05f, -4.84390640e-06f, -2.93012376e-05f, 5.68858087e-06f,
        1.83181458e-05f,  -1.07494506e-05f, -2.32429103e-06f, 6.92914809e-06f,  -6.66512321e-06f,
        -7.00302840e-06f, -3.46675184e-06f, -4.36748381e-06f, 6.73822226e-07f,  -4.20158993e-06f,
        3.83005061e-06f,  5.85143729e-06f,  4.17875243e-06f,  -8.64167783e-06f, 1.00170803e-05f,
        -4.23939666e-06f, 4.80201680e-06f,  4.62702078e-06f};

    ASSERT_TRUE(ngraph::test::all_close(read_vector<float>(_dinput), expected_input, 1e-3f, 1e-4f));
    vector<float> expected_dgamma{7.06315041e-05f, -2.35289335e-04f, -5.06639481e-05f};
    ASSERT_TRUE(
        ngraph::test::all_close(read_vector<float>(_dgamma), expected_dgamma, 1e-2f, 1e-3f));
    vector<float> expected_dbeta{320.f, 320.f, 320.f};
    ASSERT_TRUE(ngraph::test::all_close(read_vector<float>(_dbeta), expected_dbeta, 1e-4f, 1e-8f));
}