mnist_mlp.cpp 10.2 KB
Newer Older
1
//*****************************************************************************
2
// Copyright 2017-2019 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
16 17 18 19 20 21 22 23 24 25 26 27

#include <cstdio>
#include <functional>
#include <iostream>
#include <list>
#include <math.h>
#include <memory>
#include <random>
#include <set>
#include <stdexcept>
#include <string>

28
#include <ngraph/autodiff/adjoints.hpp>
29 30 31 32 33 34 35 36
#include <ngraph/graph_util.hpp>
#include <ngraph/ngraph.hpp>

#include "mnist_loader.hpp"
#include "tensor_utils.hpp"

using namespace ngraph;

37 38
size_t accuracy_count(const std::shared_ptr<runtime::Tensor>& t_softmax,
                      const std::shared_ptr<runtime::Tensor>& t_Y)
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
{
    const Shape& softmax_shape = t_softmax->get_shape();
    size_t batch_size = softmax_shape.at(0);
    size_t label_count = softmax_shape.at(1);
    const Shape& Y_shape = t_Y->get_shape();
    if (Y_shape.size() != 1 || Y_shape.at(0) != batch_size)
    {
        throw std::invalid_argument(
            "Y and softmax shapes are incompatible");
    }
    size_t softmax_pos = 0;
    size_t count = 0;
    for (size_t i = 0; i < batch_size; ++i)
    {
        float max_value = get_scalar<float>(t_softmax, softmax_pos++);
        size_t max_idx = 0;
        for (size_t j = 1; j < label_count; ++j)
        {
            float value = get_scalar<float>(t_softmax, softmax_pos++);
            if (value > max_value)
            {
                max_value = value;
                max_idx = j;
            }
        }
        float correct_idx = get_scalar<float>(t_Y, i);
        if (static_cast<size_t>(correct_idx) ==
            static_cast<size_t>(max_idx))
        {
            count++;
        }
    }
    return count;
}

float test_accuracy(MNistDataLoader& loader,
75
                    std::shared_ptr<runtime::Executable> exec,
76 77 78 79 80 81 82
                    const std::shared_ptr<runtime::Tensor>& t_X,
                    const std::shared_ptr<runtime::Tensor>& t_Y,
                    const std::shared_ptr<runtime::Tensor>& t_softmax,
                    const std::shared_ptr<runtime::Tensor>& t_W0,
                    const std::shared_ptr<runtime::Tensor>& t_b0,
                    const std::shared_ptr<runtime::Tensor>& t_W1,
                    const std::shared_ptr<runtime::Tensor>& t_b1)
83 84 85 86 87 88 89 90 91 92 93 94 95 96
{
    loader.reset();
    size_t batch_size = loader.get_batch_size();
    size_t acc_count = 0;
    size_t sample_count = 0;
    while (loader.get_epoch() < 1)
    {
        loader.load();
        t_X->write(loader.get_image_floats(),
                   0,
                   loader.get_image_batch_size() * sizeof(float));
        t_Y->write(loader.get_label_floats(),
                   0,
                   loader.get_label_batch_size() * sizeof(float));
97
        exec->call({t_softmax}, {t_X, t_W0, t_b0, t_W1, t_b1});
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        size_t acc = accuracy_count(t_softmax, t_Y);
        acc_count += acc;
        sample_count += batch_size;
    }
    return static_cast<float>(acc_count) /
           static_cast<float>(sample_count);
}

int main(int argc, const char* argv[])
{
    size_t epochs = 5;
    size_t batch_size = 128;
    size_t output_size = 10;

    size_t l0_size = 600;
    size_t l1_size = output_size;
    float log_min = static_cast<float>(exp(-50.0));
    MNistDataLoader test_loader{
        batch_size, MNistImageLoader::TEST, MNistLabelLoader::TEST};
    MNistDataLoader train_loader{
        batch_size, MNistImageLoader::TRAIN, MNistLabelLoader::TRAIN};
    train_loader.open();
    test_loader.open();
    size_t input_size =
        train_loader.get_columns() * train_loader.get_rows();

    // The data input
    auto X = std::make_shared<op::Parameter>(
        element::f32, Shape{batch_size, input_size});

    // Layer 0
    auto W0 = std::make_shared<op::Parameter>(element::f32,
                                              Shape{input_size, l0_size});
    auto b0 =
        std::make_shared<op::Parameter>(element::f32, Shape{l0_size});
    auto l0_dot = std::make_shared<op::Dot>(X, W0, 1);
    auto b0_broadcast = std::make_shared<op::Broadcast>(
        b0, Shape{batch_size, l0_size}, AxisSet{0});
    auto l0 = std::make_shared<op::Relu>(l0_dot + b0_broadcast);

    // Layer 1
    auto W1 = std::make_shared<op::Parameter>(element::f32,
                                              Shape{l0_size, l1_size});
    auto b1 =
        std::make_shared<op::Parameter>(element::f32, Shape{l1_size});
    auto l1_dot = std::make_shared<op::Dot>(l0, W1, 1);
    auto b1_broadcast = std::make_shared<op::Broadcast>(
        b1, Shape{batch_size, l1_size}, AxisSet{0});
146
    auto l1 = l1_dot + b1_broadcast;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

    // Softmax
    auto softmax = std::make_shared<op::Softmax>(l1, AxisSet{1});

    // Loss computation
    auto Y =
        std::make_shared<op::Parameter>(element::f32, Shape{batch_size});
    auto labels =
        std::make_shared<op::OneHot>(Y, Shape{batch_size, output_size}, 1);
    auto softmax_clip_value = std::make_shared<op::Constant>(
        element::f32, Shape{}, std::vector<float>{log_min});
    auto softmax_clip_broadcast = std::make_shared<op::Broadcast>(
        softmax_clip_value, Shape{batch_size, output_size}, AxisSet{0, 1});
    auto softmax_clip =
        std::make_shared<op::Maximum>(softmax, softmax_clip_broadcast);
    auto softmax_log = std::make_shared<op::Log>(softmax_clip);
    auto prod = std::make_shared<op::Multiply>(softmax_log, labels);
    auto N = std::make_shared<op::Parameter>(element::f32, Shape{});
    auto loss = std::make_shared<op::Divide>(
        std::make_shared<op::Sum>(prod, AxisSet{0, 1}), N);

    // Backprop
    // Each of W0, b0, W1, and b1
    auto learning_rate =
        std::make_shared<op::Parameter>(element::f32, Shape{});
    auto delta = -learning_rate * loss;

    // Updates
175 176
    ngraph::autodiff::Adjoints adjoints(OutputVector{loss},
                                        OutputVector{delta});
177 178 179 180
    auto W0_next = W0 + adjoints.backprop_node(W0);
    auto b0_next = b0 + adjoints.backprop_node(b0);
    auto W1_next = W1 + adjoints.backprop_node(W1);
    auto b1_next = b1 + adjoints.backprop_node(b1);
181 182

    // Get the backend
183
    auto backend = runtime::Backend::create("CPU");
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

    // Allocate and randomly initialize variables
    auto t_W0 = make_output_tensor(backend, W0, 0);
    auto t_b0 = make_output_tensor(backend, b0, 0);
    auto t_W1 = make_output_tensor(backend, W1, 0);
    auto t_b1 = make_output_tensor(backend, b1, 0);

    std::function<float()> rand(
        std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f),
                  std::default_random_engine(0)));
    randomize(rand, t_W0);
    randomize(rand, t_b0);
    randomize(rand, t_W1);
    randomize(rand, t_b1);

    // Allocate inputs
    auto t_X = make_output_tensor(backend, X, 0);
    auto t_Y = make_output_tensor(backend, Y, 0);

    auto t_learning_rate = make_output_tensor(backend, learning_rate, 0);
    auto t_N = make_output_tensor(backend, N, 0);
    set_scalar(t_N, static_cast<float>(batch_size), 0);

    // Allocate updated variables
    auto t_W0_next = make_output_tensor(backend, W0_next, 0);
    auto t_b0_next = make_output_tensor(backend, b0_next, 0);
    auto t_W1_next = make_output_tensor(backend, W1_next, 0);
    auto t_b1_next = make_output_tensor(backend, b1_next, 0);

    auto t_loss = make_output_tensor(backend, loss, 0);
    auto t_softmax = make_output_tensor(backend, softmax, 0);

    // Train
217 218
    // X, Y, learning_rate, W0, b0, W1, b1
    //    -> loss, softmax, W0_next, b0_next, W1_next, b1_next
219 220
    NodeMap train_node_map;
    auto train_function = clone_function(
221
        Function(
222 223
            OutputVector{
                loss, softmax, W0_next, b0_next, W1_next, b1_next},
224
            ParameterVector{X, Y, N, learning_rate, W0, b0, W1, b1}),
225
        train_node_map);
226
    auto train_exec = backend->compile(train_function);
227 228 229 230

    // Plain inference
    // X, W0, b0, W1, b1 -> softmax
    NodeMap inference_node_map;
231 232 233 234
    auto inference_function =
        clone_function(Function(OutputVector{softmax},
                                ParameterVector{X, W0, b0, W1, b1}),
                       inference_node_map);
235
    auto inference_exe = backend->compile(inference_function);
236 237 238 239 240 241 242 243 244 245 246 247 248

    set_scalar(t_learning_rate, .03f);

    size_t last_epoch = 0;
    while (train_loader.get_epoch() < epochs)
    {
        train_loader.load();
        t_X->write(train_loader.get_image_floats(),
                   0,
                   train_loader.get_image_batch_size() * sizeof(float));
        t_Y->write(train_loader.get_label_floats(),
                   0,
                   train_loader.get_label_batch_size() * sizeof(float));
249
        train_exec->call(
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
            {t_loss,
             t_softmax,
             t_W0_next,
             t_b0_next,
             t_W1_next,
             t_b1_next},
            {t_X, t_Y, t_N, t_learning_rate, t_W0, t_b0, t_W1, t_b1});

        t_W0.swap(t_W0_next);
        t_b0.swap(t_b0_next);
        t_W1.swap(t_W1_next);
        t_b1.swap(t_b1_next);

        if (train_loader.get_epoch() != last_epoch)
        {
            last_epoch = train_loader.get_epoch();
266 267 268 269 270 271 272 273 274
            std::cout << "Test accuracy: " << test_accuracy(test_loader,
                                                            exec,
                                                            t_X,
                                                            t_Y,
                                                            t_softmax,
                                                            t_W0,
                                                            t_b0,
                                                            t_W1,
                                                            t_b1)
275 276 277 278 279 280
                      << std::endl;
        }
    }

    return 0;
}