builder.cpp 5.93 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
16 17 18 19
#include "gtest/gtest.h"

#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
20
#include "util/test_tools.hpp"
21 22 23 24

using namespace ngraph;
using namespace std;

25 26
shared_ptr<runtime::TensorView>
    make_reduce_result(function<shared_ptr<Node>(const shared_ptr<Node>&, const AxisSet&)> func)
27
{
28
    Shape shape_a{3, 2};
29
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
30
    Shape shape_rt{2};
31
    auto f = make_shared<Function>(func(A, {0}), op::ParameterVector{A});
32
    auto backend = runtime::Backend::create("INTERPRETER");
33
    // Create some tensors for input/output
34
    auto a = backend->create_tensor(element::f32, shape_a);
35
    copy_data(a, vector<float>{1, 2, 3, 4, 5, 6});
36
    auto result = backend->create_tensor(element::f32, shape_rt);
37
    backend->call_with_validate(f, {result}, {a});
38 39 40 41

    return result;
}

42 43
shared_ptr<runtime::TensorView> make_reduce_result_true(
    function<shared_ptr<Node>(const shared_ptr<Node>&, const AxisSet&, bool)> func)
44
{
45
    Shape shape_a{3, 2};
46
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
47
    Shape shape_rt{2};
48
    auto f = make_shared<Function>(func(A, {0}, true), op::ParameterVector{A});
49
    auto backend = runtime::Backend::create("INTERPRETER");
50
    // Create some tensors for input/output
51
    auto a = backend->create_tensor(element::f32, shape_a);
52
    copy_data(a, vector<float>{1, 2, 3, 4, 5, 6});
53
    auto result = backend->create_tensor(element::f32, shape_rt);
54
    backend->call_with_validate(f, {result}, {a});
55 56 57 58

    return result;
}

59 60
shared_ptr<runtime::TensorView> make_reduce_result_false(
    function<shared_ptr<Node>(const shared_ptr<Node>&, const AxisSet&, bool)> func)
61
{
62
    Shape shape_a{3, 2};
63
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
64
    Shape shape_rt{2};
65
    auto f = make_shared<Function>(func(A, {0}, false), op::ParameterVector{A});
66
    auto backend = runtime::Backend::create("INTERPRETER");
67
    // Create some tensors for input/output
68
    auto a = backend->create_tensor(element::f32, shape_a);
69
    copy_data(a, vector<float>{1, 2, 3, 4, 5, 6});
70
    auto result = backend->create_tensor(element::f32, shape_rt);
71
    backend->call_with_validate(f, {result}, {a});
72 73 74 75

    return result;
}

76
TEST(builder, l2_norm)
77 78
{
    auto result = make_reduce_result(builder::l2_norm);
79 80
    ASSERT_TRUE(test::all_close((vector<float>{5.9160797831f, 7.48331477355f}),
                                read_vector<float>(result)));
81 82
}

83
TEST(builder, mean)
84 85
{
    auto result = make_reduce_result(builder::mean);
86
    ASSERT_TRUE(test::all_close((vector<float>{3, 4}), read_vector<float>(result)));
87 88
}

89
TEST(builder, std_dev)
90 91
{
    auto result = make_reduce_result_false(builder::std_dev);
92 93
    ASSERT_TRUE(test::all_close((vector<float>{1.63299316186f, 1.63299316186f}),
                                read_vector<float>(result)));
94
    result = make_reduce_result_true(builder::std_dev);
95
    ASSERT_TRUE(test::all_close((vector<float>{2, 2}), read_vector<float>(result)));
96 97
}

98
TEST(builder, variance)
99 100
{
    auto result = make_reduce_result_false(builder::variance);
101 102
    ASSERT_TRUE(test::all_close((vector<float>{2.66666666666f, 2.66666666666f}),
                                read_vector<float>(result)));
103
    result = make_reduce_result_true(builder::variance);
104
    ASSERT_TRUE(test::all_close((vector<float>{4, 4}), read_vector<float>(result)));
105
}
106 107 108 109 110

TEST(builder, numpy_transpose)
{
    // 2D Transpose
    Shape shape{2, 4};
111 112
    auto param = make_shared<op::Parameter>(element::f32, shape);
    auto transposed = dynamic_pointer_cast<op::Reshape>(builder::numpy_transpose(param));
113 114 115 116
    EXPECT_EQ(Shape({4, 2}), transposed->get_output_shape());

    // Multidimensional Transpose
    shape = Shape{2, 4, 8};
117 118
    param = make_shared<op::Parameter>(element::f32, shape);
    transposed = dynamic_pointer_cast<op::Reshape>(builder::numpy_transpose(param));
119 120 121 122
    EXPECT_EQ(Shape({8, 4, 2}), transposed->get_output_shape());

    // Dimshuffle
    shape = Shape{2, 4, 8};
123 124 125
    param = make_shared<op::Parameter>(element::f32, shape);
    transposed =
        dynamic_pointer_cast<op::Reshape>(builder::numpy_transpose(param, AxisVector{2, 0, 1}));
126 127 128 129
    EXPECT_EQ(Shape({8, 2, 4}), transposed->get_output_shape());

    // Bad Orders
    EXPECT_ANY_THROW(
130 131 132
        dynamic_pointer_cast<op::Reshape>(builder::numpy_transpose(param, AxisVector{2})));
    EXPECT_ANY_THROW(
        dynamic_pointer_cast<op::Reshape>(builder::numpy_transpose(param, AxisVector{2, 2, 1})));
133
}
134 135 136 137 138 139 140

TEST(builder, tensor_mask)
{
    Shape max_sequence_length{3};
    auto sequence_lengths = make_shared<op::Parameter>(element::u32, max_sequence_length);

    Shape mask_shape{3, 5};
141 142 143
    auto f =
        make_shared<Function>(builder::tensor_mask<op::Less>(sequence_lengths, 1, 0, mask_shape, 0),
                              op::ParameterVector{sequence_lengths});
144

145
    auto backend = runtime::Backend::create("INTERPRETER");
146

147
    auto sequence_lengths_data = backend->create_tensor(element::u32, max_sequence_length);
148
    copy_data(sequence_lengths_data, vector<uint32_t>{1, 3, 2});
149
    auto result = backend->create_tensor(element::boolean, mask_shape);
150

151
    backend->call_with_validate(f, {result}, {sequence_lengths_data});
152 153 154 155
    vector<char> expected{1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0};

    EXPECT_EQ(expected, read_vector<char>(result));
}