cpu_fusion.cpp 97.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*******************************************************************************
* Copyright 2017-2018 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
24
#include "ngraph/autodiff/adjoints.hpp"
Louis Feng's avatar
Louis Feng committed
25
#include "ngraph/file_util.hpp"
26 27 28
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
29
#include "ngraph/op/batch_norm.hpp"
30
#include "ngraph/op/concat.hpp"
31
#include "ngraph/op/get_output_element.hpp"
32
#include "ngraph/op/max_pool.hpp"
33
#include "ngraph/op/negative.hpp"
34
#include "ngraph/op/parameter.hpp"
35
#include "ngraph/op/relu.hpp"
36
#include "ngraph/op/sum.hpp"
37
#include "ngraph/op/tanh.hpp"
38 39
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
Louis Feng's avatar
Louis Feng committed
40 41
#include "ngraph/pass/reshape_elimination.hpp"
#include "ngraph/pass/visualize_tree.hpp"
42 43
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp"
44
#include "ngraph/pattern/op/skip.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
45
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
46
#include "ngraph/runtime/cpu/op/batch_dot.hpp"
47
#include "ngraph/runtime/cpu/op/batch_norm_relu.hpp"
48
#include "ngraph/runtime/cpu/op/conv_bias.hpp"
49
#include "ngraph/runtime/cpu/op/conv_relu.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
50
#include "ngraph/runtime/cpu/op/convert_layout.hpp"
51
#include "ngraph/runtime/cpu/op/group_conv.hpp"
52
#include "ngraph/runtime/cpu/op/lstm.hpp"
53
#include "ngraph/runtime/cpu/op/matmul_bias.hpp"
54
#include "ngraph/runtime/cpu/op/rnn.hpp"
55
#include "ngraph/runtime/cpu/op/sigmoid.hpp"
56
#include "ngraph/runtime/cpu/op/sigmoid_mul.hpp"
57
#include "ngraph/runtime/cpu/pass/cpu_concat_inputs.hpp"
58
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
59
#include "ngraph/runtime/cpu/pass/cpu_mat_fusion.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
60
#include "ngraph/runtime/cpu/pass/cpu_post_layout_optimizations.hpp"
61
#include "ngraph/runtime/cpu/pass/cpu_rnn_fusion.hpp"
62
#include "ngraph/runtime/cpu/pass/cpu_workspace_insertion.hpp"
63 64
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
65
#include "nlohmann/json.hpp"
66
#include "util/all_close.hpp"
Pruthvi's avatar
Pruthvi committed
67 68
#include "util/autodiff/backprop_function.hpp"
#include "util/autodiff/numeric_compare.hpp"
69
#include "util/matcher.hpp"
70
#include "util/random.hpp"
71
#include "util/random.hpp"
72
#include "util/test_tools.hpp"
73

74 75
#include "ngraph/runtime/cpu/cpu_tensor_view.hpp"

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
using namespace ngraph;
using namespace std;

TEST(cpu_fusion, gemm_pattern)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;

    auto W = std::make_shared<pattern::op::Label>(A);
    auto x = std::make_shared<pattern::op::Label>(B);

    auto reshape_pred = [](std::shared_ptr<Node> n) {
        return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
    };

99 100
    auto skip_w = std::make_shared<pattern::op::Skip>(W, reshape_pred);
    auto skip_x = std::make_shared<pattern::op::Skip>(x, reshape_pred);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

    auto pdot = make_shared<op::Dot>(skip_w, skip_x);
    auto b = std::make_shared<pattern::op::Label>(C);
    auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0});
    auto padd = pdot + pbroadcast;

    TestMatcher n(nullptr);
    ASSERT_TRUE(n.match(padd, add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape());
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape());
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto re_add = re_dot + broadcast;
    ASSERT_TRUE(n.match(padd, re_add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

122 123 124 125 126 127 128 129 130 131 132 133
    auto cg = make_shared<op::MatmulBias>(
        W, x, C, W->get_shape(), x->get_shape(), false, false, AxisSet{0});
}

TEST(cpu_fusion, gemm_cpu_broadcast_row)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

134
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
135 136

    auto cg = make_shared<op::MatmulBias>(
137
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{0});
138 139 140

    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});

141
    auto backend = runtime::Backend::create("CPU");
142

143 144 145
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
146 147 148 149 150 151

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

152
    backend->call(f, {result}, {a, b});
153 154
    vector<float> expected{11, 30, 38, 111};
    EXPECT_EQ(read_vector<float>(result), expected);
155 156
}

157 158 159 160 161 162 163 164
TEST(cpu_fusion, gemm_cpu_broadcast_column)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

165
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
166 167

    auto cg = make_shared<op::MatmulBias>(
168
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{1});
169 170 171

    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});

172
    auto backend = runtime::Backend::create("CPU");
173

174 175 176
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
177 178 179 180 181 182

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

183
    backend->call(f, {result}, {a, b});
184 185
    vector<float> expected{11, 29, 39, 111};
    EXPECT_EQ(read_vector<float>(result), expected);
186 187 188
}

TEST(cpu_fusion, gemm_cpu_broadcast_matrix)
189 190 191 192 193 194 195 196 197 198 199 200 201
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1});
202 203
    auto cg = make_shared<op::MatmulBias>(
        A, B, one, A->get_shape(), B->get_shape(), true, true, AxisSet{0, 1});
204

205
    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});
206

207
    auto backend = runtime::Backend::create("CPU");
208

209 210 211
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
212 213 214 215 216 217

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

218
    backend->call(f, {result}, {a, b});
219 220 221 222
    vector<float> expected{10, 28, 37, 109};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
TEST(cpu_fusion, gemm_cpu_no_bias)
{
    auto shapeA = Shape{3, 2};
    auto shapeB = Shape{2, 3};
    auto shapeC = Shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto cg =
        make_shared<op::MatmulBias>(A, B, nullptr, A->get_shape(), B->get_shape(), true, true);

    auto f = make_shared<Function>(cg, op::ParameterVector{A, B});

239
    auto backend = runtime::Backend::create("CPU");
240

241 242 243
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::TensorView> result = backend->create_tensor(element::f32, shapeC);
244 245 246 247 248 249

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

250
    backend->call(f, {result}, {a, b});
251 252 253 254
    vector<float> expected{9, 27, 36, 108};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
TEST(cpu_fusion, cpu_fusion_pass_basic)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
270 271
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
272
    auto func = make_shared<Function>(graph, op::ParameterVector{A, B, C});
273
    pass_manager.run_passes(func);
274
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
275 276
}

277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
TEST(cpu_fusion, commutative_matmul_bias)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = broadcast + dot;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
292 293
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
294 295
    auto func = make_shared<Function>(graph, op::ParameterVector{A, B, C});
    pass_manager.run_passes(func);
296
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);
    auto b = make_shared<op::Parameter>(element::f32, shape_b);

    auto mmb = std::make_shared<op::MatmulBias>(
        W, x, nullptr, W->get_shape(), x->get_shape(), false, false);
    auto broadcast = std::make_shared<op::Broadcast>(b, mmb->get_shape(), AxisSet{0});
    auto add = mmb + broadcast;

    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
315 316
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
317 318
    auto func = make_shared<Function>(graph, op::ParameterVector{W, x, b});
    pass_manager.run_passes(func);
319
    auto gmm = graph->get_argument(0);
320
    ASSERT_TRUE(std::dynamic_pointer_cast<op::MatmulBias>(gmm));
321
    ASSERT_EQ(gmm->get_argument(2), b);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
}

TEST(cpu_fusion, cpu_fusion_pass_matmul_no_bias)
{
    Shape shape_w{4, 2};
    Shape shape_x{1, 4};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);

    auto reshape_w = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{2, 4});
    auto reshape_x = std::make_shared<op::Reshape>(x, AxisVector{1, 0}, Shape{4, 1});
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto graph = make_shared<op::Abs>(re_dot);

    pass::Manager pass_manager;
337 338
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
339 340 341 342 343 344
    auto func = make_shared<Function>(graph, op::ParameterVector{W, x});
    pass_manager.run_passes(func);
    size_t mmb = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmb, 1);
}

345 346 347 348 349 350 351
TEST(cpu_fusion, gemm_mlp)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass::Manager pass_manager;
352 353
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
354
    pass_manager.run_passes(func);
355 356
    auto mmbs = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmbs, 3);
357 358 359 360 361 362 363
}

TEST(cpu_fusion, fuse_fprop_bn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_before_fusion.png");
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
364 365
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
366 367 368 369 370 371 372 373 374
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_after_fusion.png");
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_fprop_b2c3h2w2.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchNorm>(func);
    ASSERT_EQ(ccg, 1);
}
nikolay.korovaiko's avatar
nikolay.korovaiko committed
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
TEST(cpu_fusion, zero_padded_reshaped_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 2, 2, 1});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 1, 0, 0}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto reshape = make_shared<op::Reshape>(pad, AxisVector{0, 3, 1, 2}, Shape{1, 1, 3, 3});

    auto conv = make_shared<op::Convolution>(reshape,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

400 401
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

TEST(cpu_fusion, zero_padded_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::Convolution>(pad,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

428 429
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

TEST(cpu_fusion, non_zero_padded_conv)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::Convolution>(pad,
                                             F,
                                             Strides{1, 1},
                                             Strides{1, 1},
                                             CoordinateDiff{0, 0},
                                             CoordinateDiff{0, 0},
                                             Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

456 457
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
458 459 460

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);
}
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

TEST(cpu_fusion, zero_padded_conv_backprop_filters)
{
    auto X = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto F = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});

    auto pad_value = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{0.0f});

    auto pad =
        make_shared<op::Pad>(X, pad_value, Shape{0, 0, 0, 1}, Shape{0, 0, 1, 0}, Shape{0, 0, 0, 0});

    auto conv = make_shared<op::ConvolutionBackpropFilters>(pad,
                                                            Shape{1, 1, 2, 2},
                                                            F,
                                                            Strides{1, 1},
                                                            Strides{1, 1},
                                                            CoordinateDiff{0, 0},
                                                            CoordinateDiff{0, 0},
                                                            Strides{1, 1});

    auto func = make_shared<Function>(conv, op::ParameterVector{X, F});

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 1);

485 486
    auto backend = runtime::Backend::create("CPU");
    backend->compile(func);
487 488 489 490

    ASSERT_EQ(count_ops_of_type<op::Pad>(func), 0);
}

nikolay.korovaiko's avatar
nikolay.korovaiko committed
491 492 493 494
TEST(cpu_fusion, fuse_conv_bias)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
495 496
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::DIFFERENTIABLE_FUSIONS);
nikolay.korovaiko's avatar
nikolay.korovaiko committed
497 498 499 500 501 502 503 504
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "conv_bias.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionBias>(func);
    ASSERT_GT(cb, 0);
}
505

Louis Feng's avatar
Louis Feng committed
506
struct ConvolutionBiasTestData
Louis Feng's avatar
Louis Feng committed
507
{
Louis Feng's avatar
Louis Feng committed
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
    size_t n{0};
    size_t c{0};
    size_t filter{0};
    size_t kernel_size{0};
    size_t w{0};
    size_t h{0};
    shared_ptr<runtime::TensorView> data_val;
    shared_ptr<runtime::TensorView> weights_val;
    shared_ptr<runtime::TensorView> bias_val;
    shared_ptr<runtime::TensorView> result_val;
    shared_ptr<runtime::TensorView> delta_val;
    shared_ptr<runtime::TensorView> d_data_val;
    shared_ptr<runtime::TensorView> d_weights_val;
    shared_ptr<runtime::TensorView> d_bias_val;
    vector<float> expected_result_val;
    vector<float> expected_d_data_val;
    vector<float> expected_d_weights_val;
    vector<float> expected_d_bias_val;

    Shape data_shape;
    Shape weights_shape;
    Shape bias_shape;
    Shape result_shape;
    shared_ptr<op::Parameter> data;
    shared_ptr<op::Parameter> weights;
    shared_ptr<op::Parameter> bias;
    shared_ptr<op::Parameter> delta;

Louis Feng's avatar
Louis Feng committed
536 537
    void n1c1h3w3(shared_ptr<runtime::Backend> backend)
    {
Louis Feng's avatar
Louis Feng committed
538 539 540 541 542 543 544 545 546 547 548 549 550
        n = 1;
        c = 1;
        filter = 1;
        kernel_size = 3;
        w = 3;
        h = w;

        data_shape = Shape{n, c, h, w};
        data = make_shared<op::Parameter>(element::f32, data_shape);
        weights_shape = Shape{filter, c, kernel_size, kernel_size};
        weights = make_shared<op::Parameter>(element::f32, weights_shape);
        bias_shape = Shape{filter};
        bias = make_shared<op::Parameter>(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
551
        result_shape = Shape{n, filter, 1, 1};
Louis Feng's avatar
Louis Feng committed
552

553
        data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
554 555 556 557 558 559 560 561 562 563
        copy_data(data_val,
                  vector<float>{-0.67765152f,
                                0.10073948f,
                                0.57595438f,
                                -0.3469252f,
                                -0.22134334f,
                                -1.80471897f,
                                -0.80642909f,
                                1.22033095f,
                                2.23235631f});
564
        weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
565 566 567 568 569 570 571 572 573 574
        copy_data(weights_val,
                  vector<float>{0.20070229f,
                                -0.54968649f,
                                -0.19819015f,
                                -0.38577855f,
                                1.37109005f,
                                -0.23789984f,
                                0.14867957f,
                                -0.49851316f,
                                -0.84815776f});
575
        bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
576 577
        copy_data(bias_val, vector<float>{0.07811152f});

578
        result_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
579 580 581
        copy_data(result_val, vector<float>{0});

        delta = make_shared<op::Parameter>(element::f32, result_shape);
582
        delta_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
583 584
        copy_data(delta_val, vector<float>{-2.58936238f});

585
        d_data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
586
        copy_data(d_data_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
587

588
        d_weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
589
        copy_data(d_weights_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
590

591
        d_bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
592 593
        copy_data(d_bias_val, vector<float>{0});

Louis Feng's avatar
Louis Feng committed
594
        expected_result_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
        expected_d_data_val = vector<float>{-0.51969099f,
                                            1.42333758f,
                                            0.5131861f,
                                            0.99892044f,
                                            -3.5502491f,
                                            0.61600888f,
                                            -0.3849853f,
                                            1.29083121f,
                                            2.19618773f};
        expected_d_weights_val = vector<float>{1.7546854f,
                                               -0.26085103f,
                                               -1.49135458f,
                                               0.89831507f,
                                               0.57313812f,
                                               4.67307138f,
                                               2.08813715f,
                                               -3.15987897f,
                                               -5.7803793f};
Louis Feng's avatar
Louis Feng committed
613
        expected_d_bias_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
614
    }
Louis Feng's avatar
Louis Feng committed
615
};
Louis Feng's avatar
Louis Feng committed
616

Louis Feng's avatar
Louis Feng committed
617
TEST(cpu_fusion, conv_bias_fprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
618
{
619
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
620 621

    ConvolutionBiasTestData conv_test;
Louis Feng's avatar
Louis Feng committed
622
    conv_test.n1c1h3w3(backend);
Louis Feng's avatar
Louis Feng committed
623 624 625 626

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
627 628
    auto f = make_shared<Function>(
        convolution_bias, op::ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
629

630 631
    backend->call(
        f, {conv_test.result_val}, {conv_test.data_val, conv_test.weights_val, conv_test.bias_val});
Louis Feng's avatar
Louis Feng committed
632
    auto result_vec = read_vector<float>(conv_test.result_val);
Louis Feng's avatar
Louis Feng committed
633

Louis Feng's avatar
Louis Feng committed
634 635
    EXPECT_TRUE(
        test::all_close(conv_test.expected_result_val, read_vector<float>(conv_test.result_val)));
Louis Feng's avatar
Louis Feng committed
636 637
}

Louis Feng's avatar
Louis Feng committed
638
TEST(cpu_fusion, conv_bias_bprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
639
{
640
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
641

Louis Feng's avatar
Louis Feng committed
642
    ConvolutionBiasTestData conv_test;
Louis Feng's avatar
Louis Feng committed
643
    conv_test.n1c1h3w3(backend);
Louis Feng's avatar
Louis Feng committed
644 645 646 647

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
648 649
    auto f = make_shared<Function>(
        convolution_bias, op::ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
650

651 652 653 654 655
    ngraph::autodiff::Adjoints adjoints(NodeVector{convolution_bias}, NodeVector{conv_test.delta});

    auto d_data = adjoints.backprop_node(conv_test.data);
    auto d_weights = adjoints.backprop_node(conv_test.weights);
    auto d_bias = adjoints.backprop_node(conv_test.bias);
Louis Feng's avatar
Louis Feng committed
656

Louis Feng's avatar
Louis Feng committed
657 658 659
    auto df = make_shared<Function>(
        NodeVector{d_data, d_weights, d_bias},
        op::ParameterVector{conv_test.data, conv_test.weights, conv_test.bias, conv_test.delta});
660 661 662 663
    backend->call(
        df,
        {conv_test.d_data_val, conv_test.d_weights_val, conv_test.d_bias_val},
        {conv_test.data_val, conv_test.weights_val, conv_test.bias_val, conv_test.delta_val});
Louis Feng's avatar
Louis Feng committed
664

Louis Feng's avatar
Louis Feng committed
665 666 667 668 669 670
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_data_val, read_vector<float>(conv_test.d_data_val)));
    EXPECT_TRUE(test::all_close(conv_test.expected_d_weights_val,
                                read_vector<float>(conv_test.d_weights_val)));
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_bias_val, read_vector<float>(conv_test.d_bias_val)));
Louis Feng's avatar
Louis Feng committed
671
}
Pruthvi's avatar
Pruthvi committed
672

673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
TEST(cpu_fusion, conv_bias_bprop)
{
    Shape shape{2, 2, 1, 1};
    auto data_batch = std::make_shared<op::Parameter>(element::f32, shape);
    auto filters = std::make_shared<op::Parameter>(element::f32, shape);
    auto delta = std::make_shared<op::Parameter>(element::f32, shape);
    auto bias = make_shared<op::Parameter>(element::f32, Shape{});
    auto pbroadcast = std::make_shared<op::Broadcast>(bias, shape, AxisSet{0, 1, 2, 3});
    auto conv = std::make_shared<op::Convolution>(data_batch, filters);
    auto conv_bias = std::make_shared<op::Add>(conv, pbroadcast);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.register_pass<pass::VisualizeTree>("conv_bias_bprop_fusion");
    auto f = make_shared<Function>(conv_bias, op::ParameterVector{data_batch, filters, bias});

    ngraph::autodiff::Adjoints adjoints(NodeVector{conv_bias}, NodeVector{delta});

    auto d_data = adjoints.backprop_node(data_batch);
    auto d_weights = adjoints.backprop_node(filters);
    auto d_bias = adjoints.backprop_node(bias);

    auto df = make_shared<Function>(NodeVector{d_data, d_weights, d_bias},
                                    op::ParameterVector{data_batch, filters, bias, delta});

    pass_manager.run_passes(df);
    size_t ccg = count_ops_of_type<op::ConvolutionBiasBackpropFiltersBias>(df);
    ASSERT_EQ(ccg, 1);
}

Pruthvi's avatar
Pruthvi committed
703 704 705
TEST(cpu_fusion, sigmoid_fprop_fusion)
{
    pass::Manager pass_manager;
706 707
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
Pruthvi's avatar
Pruthvi committed
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/Graph_fprop_sigmoid.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::Sigmoid>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, sigmoid_n1c1h2w2)
{
    auto input = make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto sigmoid_node = make_shared<op::Sigmoid>(input);
    auto func = make_shared<Function>(sigmoid_node, op::ParameterVector{input});

723
    auto backend = runtime::Backend::create("CPU");
Pruthvi's avatar
Pruthvi committed
724

725
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
726
    shared_ptr<runtime::TensorView> result =
727
        backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
728 729 730 731

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f};
    copy_data(a, dataA);

732
    backend->call(func, {result}, {a});
Pruthvi's avatar
Pruthvi committed
733 734 735 736 737 738 739 740 741 742
    vector<float> expected{0.73105858f, 0.98201379f, 0.73105858f, 0.98201379f};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}

TEST(cpu_fusion, sigmoid_n1c1h4)
{
    auto input = make_shared<op::Parameter>(element::f32, Shape{1, 1, 4});
    auto sigmoid_node = make_shared<op::Sigmoid>(input);
    auto func = make_shared<Function>(sigmoid_node, op::ParameterVector{input});

743
    auto backend = runtime::Backend::create("CPU");
Pruthvi's avatar
Pruthvi committed
744

745
    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
746
    shared_ptr<runtime::TensorView> result =
747
        backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
748 749 750 751

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f};
    copy_data(a, dataA);

752
    backend->call(func, {result}, {a});
Pruthvi's avatar
Pruthvi committed
753 754 755
    vector<float> expected{0.73105858f, 0.98201379f, 0.73105858f, 0.98201379f};
    ASSERT_TRUE(read_vector<float>(result) == expected);
}
Pruthvi's avatar
Pruthvi committed
756 757 758 759 760 761 762 763

TEST(cpu_fusion, sigmoid_bprop_fusion)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/Graph_fprop_sigmoid.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    auto df = autodiff::backprop_function(func);
764 765
    auto backend = runtime::Backend::create("CPU");
    backend->compile(df);
Pruthvi's avatar
Pruthvi committed
766 767 768 769 770 771 772 773 774 775
    size_t ccg = count_ops_of_type<op::SigmoidBackprop>(df);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, sigmoid_bprop_n1c1h4)
{
    auto input = make_shared<op::Parameter>(element::f32, Shape{1, 1, 4});
    auto delta = make_shared<op::Parameter>(element::f32, Shape{1, 1, 4});
    auto sigmoid_node = make_shared<op::SigmoidBackprop>(input, delta);
    auto func = make_shared<Function>(sigmoid_node, op::ParameterVector{input, delta});
776 777 778 779
    auto backend = runtime::Backend::create("CPU");

    shared_ptr<runtime::TensorView> a = backend->create_tensor(element::f32, input->get_shape());
    shared_ptr<runtime::TensorView> b = backend->create_tensor(element::f32, delta->get_shape());
Pruthvi's avatar
Pruthvi committed
780
    shared_ptr<runtime::TensorView> result =
781
        backend->create_tensor(element::f32, input->get_shape());
Pruthvi's avatar
Pruthvi committed
782 783 784 785 786 787

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{1.0f, 1.0f, 1.0f, 1.0f};

    copy_data(a, dataA);
    copy_data(b, dataB);
788
    backend->call(func, {result}, {a, b});
Pruthvi's avatar
Pruthvi committed
789 790 791 792

    vector<float> expected{0.196612f, 0.0176627f, 0.196612f, 0.0176627f};
    EXPECT_TRUE(test::all_close(expected, read_vector<float>(result)));
}
Pruthvi's avatar
Pruthvi committed
793

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
TEST(cpu_fusion, batchnorm_fprop_relu_b1c2h2w2)
{
    auto input_shape = Shape{1, 2, 2, 2};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{2};
    auto var_shape = Shape{2};
    auto gamma_shape = Shape{2};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{2};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{1, 2, 2, 2};
    auto bn = make_shared<op::BatchNorm>(eps, gamma, beta, input);

    auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);
    // Note, op::Splice is used to break Relu(BatchNorm) fusion
    // otherwise we will be comparing two BatchNormRelus
    // Unfortunately, we can't use INTERPRETER for
    // verifying the results as it doesn't implement
    // BatchNorm op.
    auto slice =
        std::make_shared<op::Slice>(output_rt, Coordinate{0, 0, 0, 0}, Coordinate{1, 2, 2, 2});
    auto output_relu = std::make_shared<op::Relu>(slice);
    auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
    auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

    auto bn_relu = make_shared<op::BatchNormRelu>(eps, gamma, beta, input);
    auto output_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 0);
    auto mean_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 1);
    auto variance_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 2);

    auto f = make_shared<Function>(
        NodeVector{output_relu, mean_rt, variance_rt, output_rt_bnr, mean_rt_bnr, variance_rt_bnr},
        op::ParameterVector{input, gamma, beta});
828
    auto backend = runtime::Backend::create("CPU");
829 830

    // Create some tensors for input/output
831
    auto input_t = backend->create_tensor(element::f32, Shape{1, 2, 2, 2});
832 833 834 835 836 837 838 839 840 841

    copy_data(input_t,
              vector<float>{0.54881352f,
                            0.71518934f,
                            0.60276335f,
                            0.54488319f,
                            0.42365479f,
                            0.64589411f,
                            0.4375872f,
                            0.89177299f});
842
    auto gamma_t = backend->create_tensor(element::f32, gamma_shape);
843
    copy_data(gamma_t, vector<float>{1.0f, 1.0f});
844
    auto beta_t = backend->create_tensor(element::f32, beta_shape);
845
    copy_data(beta_t, vector<float>{0.0f, 0.0f});
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
    auto bn_output = backend->create_tensor(element::f32, shape_r);
    auto result_mean = backend->create_tensor(element::f32, mean_shape);
    auto result_variance = backend->create_tensor(element::f32, var_shape);

    auto bn_output_bnr = backend->create_tensor(element::f32, shape_r);
    auto result_mean_bnr = backend->create_tensor(element::f32, mean_shape);
    auto result_variance_bnr = backend->create_tensor(element::f32, var_shape);

    backend->call(f,
                  {bn_output,
                   result_mean,
                   result_variance,
                   bn_output_bnr,
                   result_mean_bnr,
                   result_variance_bnr},
                  {input_t, gamma_t, beta_t});
862 863 864 865 866 867 868 869

    EXPECT_TRUE(test::all_close(read_vector<float>(bn_output), read_vector<float>(bn_output_bnr)));
    EXPECT_TRUE(
        test::all_close(read_vector<float>(result_mean), read_vector<float>(result_mean_bnr)));
    EXPECT_TRUE(test::all_close(read_vector<float>(result_variance),
                                read_vector<float>(result_variance_bnr)));
}

870 871 872 873 874 875 876 877 878 879 880
TEST(cpu_fusion, fuse_conv_relu)
{
    auto A = std::make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = std::make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto convolution = std::make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto relu = std::make_shared<op::Relu>(convolution);
    auto abs_node =
        std::make_shared<op::Abs>(std::make_shared<op::Abs>(std::make_shared<op::Abs>(relu)));
    auto func = make_shared<Function>(abs_node, op::ParameterVector{A, weights});

    pass::Manager pass_manager;
881 882
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
883 884 885 886 887
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionRelu>(func);
    ASSERT_GT(cb, 0);
}

888
TEST(cpu_fusion, conv_relu_n2c1h2w2_2)
889 890 891 892
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};

893 894 895 896 897 898 899 900
    auto make_int_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto relu = std::make_shared<op::Relu>(conv);
        auto f = make_shared<Function>(NodeVector{relu}, op::ParameterVector{A, weights});
        return f;
    };
901

902
    auto int_f = make_int_function();
903

904 905 906 907 908 909 910 911
    auto make_cpu_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto conv_relu = std::make_shared<op::ConvolutionRelu>(conv);
        auto f = make_shared<Function>(NodeVector{conv_relu}, op::ParameterVector{A, weights});
        return f;
    };
912

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
929

930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
TEST(cpu_fusion, conv_bias_relu_n2c1h2w2_2)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_int_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto relu = std::make_shared<op::Relu>(conv_bias);
        auto f = make_shared<Function>(NodeVector{relu}, op::ParameterVector{A, weights, bias});
        return f;
    };

    auto int_f = make_int_function();

    auto make_cpu_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto conv_bias_relu = std::make_shared<op::ConvolutionBiasRelu>(
            std::make_shared<op::ConvolutionBias>(conv, bias));
        auto f = make_shared<Function>(NodeVector{conv_bias_relu},
                                       op::ParameterVector{A, weights, bias});
        return f;
    };

    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
std::vector<shared_ptr<runtime::TensorView>>
    rnn_matrix_fusion_eval(const size_t time_steps,
                           const Shape& data_shape,
                           const Shape& weights_shape,
                           const Shape& bias_shape,
                           const vector<float>& data_val,
                           const vector<float>& weights_val,
                           const vector<float>& bias_val,
                           const bool enable_pass)
{
    auto data = make_shared<op::Parameter>(element::f32, data_shape);
    auto weights = make_shared<op::Parameter>(element::f32, weights_shape);
    auto bias = make_shared<op::Parameter>(element::f32, bias_shape);

    // results from each time step
    NodeVector results;
    for (size_t t = 0; t < time_steps; ++t)
    {
        auto data_slice = make_shared<op::Slice>(
            data, Coordinate{0, t, 0}, Coordinate{data_shape[0], t + 1, data_shape[2]});
        auto data_reshape = make_shared<op::Reshape>(
            data_slice, AxisVector{0, 1, 2}, Shape{data_shape[0], data_shape[2]});
        auto weights_reshape = make_shared<op::Reshape>(
            weights, AxisVector{1, 0}, Shape{weights_shape[1], weights_shape[0]});
        auto dot = make_shared<op::Dot>(data_reshape, weights_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add = make_shared<op::Add>(dot, bias_broadcast);
        results.push_back(add);
    }
    auto func = make_shared<Function>(results, op::ParameterVector{data, weights, bias});
    if (enable_pass)
    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1014 1015
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
            runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
1016 1017 1018 1019 1020 1021
        pass_manager.run_passes(func);
        // check all of our dot/add are converted to a single MatmulBias op.
        size_t count = count_ops_of_type<op::MatmulBias>(func);
        EXPECT_EQ(count, 1);
    }

1022
    auto backend = runtime::Backend::create("CPU");
1023 1024

    shared_ptr<runtime::TensorView> data_tensor =
1025
        backend->create_tensor(element::f32, data->get_shape());
1026
    shared_ptr<runtime::TensorView> weights_tensor =
1027
        backend->create_tensor(element::f32, weights->get_shape());
1028
    shared_ptr<runtime::TensorView> bias_tensor =
1029
        backend->create_tensor(element::f32, bias->get_shape());
1030 1031 1032 1033

    std::vector<shared_ptr<runtime::TensorView>> result_tensors;
    for (auto r : results)
    {
1034
        result_tensors.push_back(backend->create_tensor(element::f32, r->get_shape()));
1035 1036 1037 1038 1039
    }

    copy_data(data_tensor, data_val);
    copy_data(weights_tensor, weights_val);
    copy_data(bias_tensor, bias_val);
1040
    backend->call(func, result_tensors, {data_tensor, weights_tensor, bias_tensor});
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
    return result_tensors;
}

TEST(cpu_fusion, rnn_matrix_fusion_eval_pass)
{
    const size_t time_steps = 4;
    Shape data_shape{3, time_steps, 5};
    Shape weights_shape{6, data_shape[2]};
    Shape bias_shape{6};

    test::Uniform<float> rng{0, 1, 0};
    vector<float> data_val(shape_size(data_shape));
    vector<float> weights_val(shape_size(weights_shape));
    vector<float> bias_val(shape_size(bias_shape));
    rng.initialize(data_val);
    rng.initialize(weights_val);
    rng.initialize(bias_val);

    std::vector<shared_ptr<runtime::TensorView>> result_expected = rnn_matrix_fusion_eval(
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, false);
    std::vector<shared_ptr<runtime::TensorView>> result_fused = rnn_matrix_fusion_eval(
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, true);
    for (size_t i = 0; i < result_expected.size(); ++i)
    {
        EXPECT_TRUE(test::all_close<float>(result_expected[i], result_fused[i]));
    }
}
1068 1069 1070 1071 1072

TEST(cpu_fusion, rnn_fusion_from_json_model)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1073 1074
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
        runtime::cpu::pass::CPUFusion::REGULAR_FUSIONS);
1075 1076 1077 1078 1079 1080 1081
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/rnn-10-step-fusion-test.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    const size_t NUM_STEPS = 10;
1082
    auto mmb_predicate = [](std::shared_ptr<Node> node) {
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        auto users = node->get_users();
        return users.size() == NUM_STEPS &&
               std::all_of(begin(users), end(users), [](std::shared_ptr<Node> n) {
                   return std::dynamic_pointer_cast<op::Slice>(n) != nullptr;
               });
    };

    auto mmbs = get_ops_of_type<op::MatmulBias>(func);
    ASSERT_TRUE(std::any_of(begin(mmbs), end(mmbs), mmb_predicate));
}
Nick Korovaiko's avatar
Nick Korovaiko committed
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139

TEST(cpu_fusion, weight_fusion)
{
    auto param = std::make_shared<op::Parameter>(element::f32, Shape{64});
    auto reshape_conv =
        std::make_shared<ngraph::op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto data_conv = std::make_shared<op::Parameter>(element::f32, Shape{16, 4, 7, 7});
    auto tvt = reshape_conv->get_outputs().at(0).get_tensor_view().get();
    auto lt_desc = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt, AxisVector{0, 1, 2, 3});
    auto cvt_lt_conv = std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv, lt_desc);
    auto conv = std::make_shared<ngraph::op::Convolution>(
        data_conv, cvt_lt_conv, Strides{1, 1}, Strides{1, 1});

    auto reshape_conv_bprop =
        std::make_shared<op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto dummy_arg_conv_bprop = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 7, 7});
    auto tvt_bprop = reshape_conv_bprop->get_outputs().at(0).get_tensor_view().get();
    auto lt_desc_bprop =
        std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt_bprop, AxisVector{0, 1, 2, 3});
    auto cvt_lt_conv_bprop =
        std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv_bprop, lt_desc_bprop);
    auto conv_bprop = std::make_shared<op::ConvolutionBackpropData>(Shape{1, 4, 7, 7},
                                                                    cvt_lt_conv_bprop,
                                                                    dummy_arg_conv_bprop,
                                                                    Strides{1, 1},
                                                                    Strides{1, 1},
                                                                    CoordinateDiff{0, 0},
                                                                    CoordinateDiff{0, 0},
                                                                    Strides{1, 1});

    auto conv_relu = std::make_shared<op::Relu>(conv);
    auto conv_bprop_abs = std::make_shared<op::Abs>(conv_bprop);

    auto f = make_shared<Function>(NodeVector{conv_relu, conv_bprop_abs},
                                   op::ParameterVector{param, data_conv, dummy_arg_conv_bprop});

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUPostLayoutOptimizations>();
    pass_manager.run_passes(f);

    auto new_conv_bprop_data = conv_bprop_abs->get_argument(0);
    auto new_convert_layout = new_conv_bprop_data->get_argument(0);

    ASSERT_EQ(std::dynamic_pointer_cast<runtime::cpu::op::ConvertLayout>(
                  new_convert_layout->get_argument(0)),
              cvt_lt_conv);
}
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163

TEST(cpu_fusion, max_pool_with_indices)
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto C = std::make_shared<op::Parameter>(element::f32, max_pool->get_shape());

    ngraph::autodiff::Adjoints adjoints(NodeVector{max_pool}, NodeVector{C});

    auto dinput = adjoints.backprop_node(input);

    auto df = std::make_shared<Function>(NodeVector{dinput}, op::ParameterVector{input, C});

    auto f = std::make_shared<Function>(NodeVector{max_pool}, op::ParameterVector{input});

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_before.pdf");
        pass_manager.run_passes(f);
    }

    {
1164
        NodeVector nv_cwi;
1165 1166
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before.pdf");
1167
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after.pdf");
        pass_manager.run_passes(df);
    }

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_after.pdf");
        pass_manager.run_passes(f);
    }

    auto maxpool_goe_output =
        std::dynamic_pointer_cast<op::GetOutputElement>(f->get_results().at(0)->get_argument(0));
    ASSERT_TRUE(maxpool_goe_output);
    ASSERT_EQ(maxpool_goe_output->get_n(), 0);
    auto maxpool_with_indices = df->get_results().at(0)->get_argument(0);
    auto maxpool_goe_indices =
        std::dynamic_pointer_cast<op::GetOutputElement>(maxpool_with_indices->get_argument(2));
    ASSERT_TRUE(maxpool_goe_indices);
    ASSERT_EQ(maxpool_goe_indices->get_n(), 1);
}

TEST(cpu_fusion, backwards_maxpool_with_indices_n4_c1_hw4_2x2_max)
{
    Shape shape_a{1, 4, 4, 4};
    Shape maxpool_shape{1, 4, 3, 3};
    auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto window_movement_strides = Strides{1, 1};
    auto maxpool = std::make_shared<op::MaxPool>(A, window_shape, window_movement_strides);
    auto f = std::make_shared<Function>(maxpool, op::ParameterVector{A});

    auto backend = runtime::Backend::create("CPU");
    shared_ptr<runtime::TensorView> ep = backend->create_tensor(element::f32, maxpool_shape);
    vector<float> dataEp(shape_size(maxpool_shape), 4);

    shared_ptr<runtime::TensorView> input = backend->create_tensor(element::f32, shape_a);
    shared_ptr<runtime::TensorView> output = backend->create_tensor(element::f32, shape_a);

    vector<float> dataInput{11.f, 31.f, 40.f, 47.f, 13.f, 61.f, 48.f, 59.f, 17.f, 39.f, 64.f,
                            62.f, 45.f, 55.f, 36.f, 19.f, 65.f, 33.f, 49.f, 30.f, 56.f, 41.f,
                            53.f, 58.f, 22.f, 35.f, 52.f, 50.f, 63.f, 54.f, 12.f, 26.f, 44.f,
                            21.f, 69.f, 24.f, 46.f, 25.f, 51.f, 29.f, 72.f, 15.f, 73.f, 10.f,
                            16.f, 37.f, 70.f, 32.f, 28.f, 66.f, 57.f, 27.f, 60.f, 42.f, 43.f,
                            71.f, 18.f, 38.f, 67.f, 68.f, 14.f, 20.f, 34.f, 23.f};

    vector<float> expected{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 12.0f, 0.0f, 4.0f, 0.0f, 0.0f,  16.0f,
                           0.0f, 0.0f, 4.0f, 0.0f, 0.0f, 4.0f,  0.0f, 0.0f, 0.0f, 4.0f,  0.0f,
                           8.0f, 8.0f, 0.0f, 0.0f, 4.0f, 0.0f,  4.0f, 4.0f, 0.0f, 0.0f,  0.0f,
                           0.0f, 8.0f, 0.0f, 4.0f, 0.0f, 0.0f,  0.0f, 8.0f, 0.0f, 16.0f, 0.0f,
                           0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 8.0f,  0.0f, 0.0f, 4.0f, 0.0f,  0.0f,
                           8.0f, 0.0f, 4.0f, 8.0f, 4.0f, 0.0f,  0.0f, 0.0f, 0.0f};

    copy_data(ep, dataEp);
    copy_data(input, dataInput);

    auto C = std::make_shared<op::Parameter>(element::f32, maxpool_shape);
    auto df = autodiff::backprop_function(f);

    {
1227
        NodeVector nv_cwi;
1228 1229
        pass::Manager pass_manager;
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before2.pdf");
1230
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1231 1232 1233 1234 1235 1236 1237
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after2.pdf");
        pass_manager.run_passes(df);
    }

    backend->call(df, {output}, {input, ep});
    ASSERT_TRUE(read_vector<float>(output) == expected);
}
1238

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
static std::shared_ptr<ngraph::Function> make_forward_function()
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto neg = std::make_shared<op::Negative>(max_pool);
    auto absn = std::make_shared<op::Abs>(max_pool);
    return std::make_shared<Function>(NodeVector{max_pool, neg, absn}, op::ParameterVector{input});
}

static std::pair<std::shared_ptr<ngraph::Function>, std::vector<std::shared_ptr<ngraph::Node>>>
    make_backward_function(std::shared_ptr<ngraph::Function> f)
{
    // get parameters
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = f->get_parameters();

    ngraph::NodeVector adjoints;
    ngraph::NodeVector outputs;
    for (auto Y : f->get_results())
    {
        // Get the output
        // Create the Adjoint
        auto C = std::make_shared<ngraph::op::Parameter>(Y->get_element_type(), Y->get_shape());
        outputs.push_back(Y);
        adjoints.push_back(C);
    }

    ngraph::autodiff::Adjoints adjoint{outputs, adjoints};

    // Perform autodiff
    std::vector<std::shared_ptr<Node>> dYdXs(back_parameters.size());
    transform(back_parameters.begin(),
              back_parameters.end(),
              dYdXs.begin(),
              [&adjoint](const std::shared_ptr<Node>& X) { return adjoint.backprop_node(X); });

    // create the backward function
    std::vector<std::shared_ptr<ngraph::op::Parameter>> param_adjoints;
    for (auto n : adjoints)
        param_adjoints.push_back(std::dynamic_pointer_cast<ngraph::op::Parameter>(n));
    back_parameters.insert(back_parameters.begin(), param_adjoints.begin(), param_adjoints.end());

    return {std::make_shared<ngraph::Function>(dYdXs, back_parameters), adjoints};
}

void optimize_graph(std::shared_ptr<ngraph::Function>& f, std::shared_ptr<ngraph::Function> bf)
{
    // start by removing excess reshapes
    NodeVector nv_cwi;
    ngraph::pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
    pass_manager.register_pass<pass::VisualizeTree>("before.fprop_cache.pdf");

    pass_manager.run_passes(f);
    pass_manager.run_passes(bf);
    if (nv_cwi.size() > 0)
    {
        NodeVector new_outputs;
        for (auto r : f->get_results())
        {
            new_outputs.push_back(r->get_argument(0));
        }

        new_outputs.insert(new_outputs.end(), nv_cwi.begin(), nv_cwi.end());
        f = std::make_shared<ngraph::Function>(new_outputs, f->get_parameters());
    }

    ngraph::NodeVector dYdXs;
    for (size_t i = 0; i < bf->get_output_size(); ++i)
    {
        dYdXs.push_back(bf->get_output_op(i)->get_argument(0));
    }

    ngraph::NodeVector combined_outputs;
    for (auto r : f->get_results())
    {
        combined_outputs.push_back(r->get_argument(0));
    }

    combined_outputs.insert(combined_outputs.end(), dYdXs.begin(), dYdXs.end());

    std::vector<std::shared_ptr<ngraph::op::Parameter>> combined_parameters = f->get_parameters();
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = bf->get_parameters();

    combined_parameters.insert(
        combined_parameters.end(), back_parameters.begin(), back_parameters.end());
    auto combinedf = std::make_shared<ngraph::Function>(combined_outputs, combined_parameters);
    // rerun Reshape elimination to help simplify the graph again, run CPUFusion
    // this replaces nodes in both f and bf due to shared-ptr - ness
    ngraph::pass::Manager pass_manager_comb;
    pass_manager_comb.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager_comb.register_pass<ngraph::runtime::cpu::pass::CPUFusion>();
    pass_manager_comb.run_passes(combinedf);
}

TEST(cpu_fusion, maxpool_with_indices_in_mxnet)
{
    auto f = make_forward_function();
    auto bfa = make_backward_function(f);
    auto maybe_bf = bfa.first;
    auto adjoints = bfa.second;
    optimize_graph(f, maybe_bf);
    auto fprop_cache = ngraph::cache_fprop(f, maybe_bf, adjoints);

    auto mpwi_bprop = fprop_cache.bprop->get_results().at(0)->get_argument(0);
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(0)));
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(2)));
}

1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
TEST(cpu_fusion, batch_norm_folding)
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        double eps = 0.001;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto bn = std::make_shared<op::BatchNorm>(eps, gamma, beta, conv, mean, var);
        auto f = make_shared<Function>(NodeVector{bn},
                                       op::ParameterVector{input, weights, gamma, beta, mean, var});
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
        {0.12f, 0.31f},
        {0.01f, 0.11f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
1409

1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
TEST(cpu_fusion, group_convolution_fusion)
{
    Shape shape_a{1, 32, 2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
    Shape shape_b{2, 16, 1, 1};
    auto B = make_shared<op::Parameter>(element::f32, shape_b);
    Shape shape_r{1, 2, 2, 2};

    auto a_slice0 = std::make_shared<op::Slice>(A, Coordinate{0, 0, 0, 0}, Coordinate{1, 16, 2, 2});
    auto a_slice1 =
        std::make_shared<op::Slice>(A, Coordinate{0, 16, 0, 0}, Coordinate{1, 32, 2, 2});

    auto b_slice0 = std::make_shared<op::Slice>(B, Coordinate{0, 0, 0, 0}, Coordinate{1, 16, 1, 1});
    auto b_slice1 = std::make_shared<op::Slice>(B, Coordinate{1, 0, 0, 0}, Coordinate{2, 16, 1, 1});

    auto conv_lower = make_shared<op::Convolution>(a_slice0,
                                                   b_slice0,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto conv_upper = make_shared<op::Convolution>(a_slice1,
                                                   b_slice1,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto concat = make_shared<op::Concat>(NodeVector{conv_lower, conv_upper}, 1);

    auto f = make_shared<Function>(NodeVector{concat}, op::ParameterVector{A, B});
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("before_group.pdf");
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    pass_manager.register_pass<pass::VisualizeTree>("after_group.pdf");
    pass_manager.run_passes(f);
    auto gc =
        std::dynamic_pointer_cast<op::GroupConvolution>(f->get_results().at(0)->get_argument(0));
    ASSERT_TRUE(gc);
}

TEST(cpu_fusion, group_convolution)
{
    auto backend = runtime::Backend::create("CPU");
    test::Uniform<float> rng(2.0f, 10.0f);

    const size_t GROUPS = 2;
    Shape shape_a{1, 32, 2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
    Shape shape_b{2, 16, 1, 1};
    auto B = make_shared<op::Parameter>(element::f32, shape_b);
    Shape shape_r{1, 2, 2, 2};
    auto group_conv = make_shared<op::GroupConvolution>(A,
                                                        B,
                                                        Strides{1, 1},
                                                        Strides{1, 1},
                                                        CoordinateDiff{0, 0},
                                                        CoordinateDiff{0, 0},
                                                        Strides{1, 1},
                                                        GROUPS,
                                                        shape_r);

    Shape shape_c{1, 16, 2, 2};
    auto C = make_shared<op::Parameter>(element::f32, shape_c);
    Shape shape_d{1, 16, 1, 1};
    auto D = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_lower = make_shared<op::Convolution>(C,
                                                   D,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto E = make_shared<op::Parameter>(element::f32, shape_c);
    auto F = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_upper = make_shared<op::Convolution>(E,
                                                   F,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto f = make_shared<Function>(NodeVector{group_conv, conv_lower, conv_upper},
                                   op::ParameterVector{A, B, C, D, E, F});

    auto a_ = rng.initialize(backend->create_tensor(element::f32, shape_a));
    auto b_ = rng.initialize(backend->create_tensor(element::f32, shape_b));

    vector<float> rv(shape_size(shape_r), 0);
    auto group_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_r, rv.data()));

    auto av = read_vector<float>(a_);
    auto bv = read_vector<float>(b_);
    auto c_ = backend->create_tensor(element::f32, shape_c, av.data()); //lower data
    auto d_ = backend->create_tensor(element::f32, shape_d, bv.data()); //upper data

    auto e_ =
        backend->create_tensor(element::f32, shape_c, av.data() + av.size() / 2); //lower weights
    auto f_ =
        backend->create_tensor(element::f32, shape_d, bv.data() + bv.size() / 2); //upper weights

    Shape shape_ur{1, 1, 2, 2};
    //allocate a contigious storage for both lower and upper halves.
    vector<float> erv(shape_size(shape_r), 0);
    auto lower_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data()));
    auto upper_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data() + erv.size() / 2));
    backend->call(f, {group_result, lower_result, upper_result}, {a_, b_, c_, d_, e_, f_});
    ASSERT_EQ(rv, erv);
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
TEST(cpu_fusion, rnn_fprop_1_lstm_cell)
{
    auto src_layer = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto src_iter = make_shared<op::Parameter>(element::f32, Shape{20, 100});
    auto weights_layer = make_shared<op::Parameter>(element::f32, Shape{400, 100});
    auto weights_iter = make_shared<op::Parameter>(element::f32, Shape{400, 100});
    auto biases = make_shared<op::Parameter>(element::f32, Shape{400});
    const int number_of_timesteps = 1;
    const int number_of_gates_per_cell = 4;
    const int src_seq_length = 1;
    const int src_layer_feature_size = 100;
    const int feature_size = 100;
    const int num_rnn_cell_states = 2;
    const int rnn_direction = 1;
    const int num_of_rnn_fused_layer = 1;
    auto rnn_node = make_shared<op::Rnn>(src_layer,
                                         src_iter,
                                         weights_layer,
                                         weights_iter,
                                         biases,
                                         number_of_timesteps,
                                         number_of_gates_per_cell,
                                         src_seq_length,
                                         src_layer_feature_size,
                                         feature_size,
                                         num_rnn_cell_states,
                                         rnn_direction,
                                         num_of_rnn_fused_layer);
    auto rnn_ht_output = make_shared<op::GetOutputElement>(rnn_node, 0);
    auto rnn_ct_output = make_shared<op::GetOutputElement>(rnn_node, 1);

    auto func = make_shared<Function>(
        NodeVector{rnn_ht_output, rnn_ct_output},
        op::ParameterVector{src_layer, src_iter, weights_layer, weights_iter, biases});
    auto backend = runtime::Backend::create("CPU");

    shared_ptr<runtime::TensorView> src_layer_t =
        backend->create_tensor(element::f32, src_layer->get_shape());
    shared_ptr<runtime::TensorView> src_iter_t =
        backend->create_tensor(element::f32, src_iter->get_shape());
    shared_ptr<runtime::TensorView> weights_layer_t =
        backend->create_tensor(element::f32, weights_layer->get_shape());
    shared_ptr<runtime::TensorView> weights_iter_t =
        backend->create_tensor(element::f32, weights_iter->get_shape());
    shared_ptr<runtime::TensorView> biases_t =
        backend->create_tensor(element::f32, biases->get_shape());
    shared_ptr<runtime::TensorView> result_ht = backend->create_tensor(element::f32, {10, 100});
    shared_ptr<runtime::TensorView> result_ct =
        backend->create_tensor(element::f32, Shape{20, 100});

    copy_data(src_layer_t, vector<float>(1000, 1));
    copy_data(src_iter_t, vector<float>(2000, 1));
    copy_data(weights_layer_t, vector<float>(400 * 100, 1));
    copy_data(weights_iter_t, vector<float>(400 * 100, 1));
    copy_data(biases_t, vector<float>(400, 1));

    backend->call(func,
                  {result_ht, result_ct},
                  {src_layer_t, src_iter_t, weights_layer_t, weights_iter_t, biases_t});
    vector<float> expected_ht(10 * 100, 0.964028f);
    vector<float> expected_ct;
    for (size_t i = 0; i < 20 * 100; i++)
    {
        if (i < 1000)
        {
            expected_ct.push_back(0.964028f);
        }
        else
        {
            expected_ct.push_back(2.0f);
        }
    }

    EXPECT_TRUE(test::all_close(expected_ht, read_vector<float>(result_ht)));
    EXPECT_TRUE(test::all_close(expected_ct, read_vector<float>(result_ct)));
}

TEST(cpu_fusion, fuse_lstm_cells)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::ConcatInputs>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    auto lstm_ops = get_ops_of_type<op::Lstm>(func);
    EXPECT_EQ(lstm_ops.size(), 6);
}

TEST(cpu_fusion, fuse_2_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

TEST(cpu_fusion, fuse_1_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/1rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), 1);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

static std::shared_ptr<Function> make_function(const std::string& file_name)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, file_name);
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    return func;
}

TEST(cpu_fusion, rnn_fusion_inter_vs_cpu_1lstm_cell)
{
    const std::string file_name("mxnet/1_lstm_cell_forward.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, rnn_fusion_inter_vs_cpu_1rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/1rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, rnn_fusion_inter_vs_cpu_2rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/2rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160

TEST(cpu_fusion, sigmoid_multiply_fusion)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/3_lstm_cell_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::SigmoidMultiply>(func);
    ASSERT_EQ(ccg, 18);
}

void sigmoid_multiply_fusion_forward_compute(shared_ptr<runtime::Backend>& backend,
                                             const op::ParameterVector& input_params,
                                             const vector<vector<float>>& input_data,
                                             const vector<Shape>& input_shapes,
                                             const Shape& result_shape,
                                             shared_ptr<Node> input_0_node,
                                             shared_ptr<Node> input_1_node,
                                             const vector<float>& expected)
{
    shared_ptr<runtime::TensorView> result_tensor =
        backend->create_tensor(element::f32, result_shape);

    vector<shared_ptr<runtime::TensorView>> input_tensors;
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto mul_node = input_0_node * input_1_node;
    auto func = make_shared<Function>(mul_node, input_params);
    backend->call(func, {result_tensor}, input_tensors);
    EXPECT_TRUE(test::all_close(read_vector<float>(result_tensor), expected));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_forward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.3f, 3.5f, 4.7f};
    vector<float> const_data{1.2f};
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected{1.60833f, 3.78743f, 6.19173f, 8.54352f};
        op::ParameterVector input_params{input_0_param, input_1_param, input_2_param};
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
        sigmoid_multiply_fusion_forward_compute(backend,
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_0_param);
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
        sigmoid_multiply_fusion_forward_compute(backend,
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
        sigmoid_multiply_fusion_forward_compute(backend,
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.561837f, 0.800536f, 0.924652f, 0.973163f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_forward_compute(backend,
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.60945f, 0.863266f, 0.950838f, 0.981851f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_forward_compute(backend,
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.585304f, 0.876182f, 0.965887f, 0.990322f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_forward_compute(backend,
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.634907f, 0.94484f, 0.993242f, 0.999164f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_forward_compute(backend,
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
}

void sigmoid_multiply_fusion_backward_compute(shared_ptr<runtime::Backend>& backend,
                                              const op::ParameterVector& input_params,
                                              const vector<vector<float>>& input_data,
                                              const vector<Shape>& input_shapes,
                                              const vector<float> delta_data,
                                              const Shape& delta_shape,
                                              const Shape& d_input_0_shape,
                                              const Shape& d_input_1_shape,
                                              shared_ptr<Node> input_0_node,
                                              shared_ptr<Node> input_1_node,
                                              shared_ptr<Node> input_0_adjoint,
                                              shared_ptr<Node> input_1_adjoint,
                                              const vector<float>& expected_0,
                                              const vector<float>& expected_1)
{
    vector<shared_ptr<runtime::TensorView>> input_tensors;
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto delta_param = make_shared<op::Parameter>(element::f32, delta_shape);
    shared_ptr<runtime::TensorView> delta_tensor =
        backend->create_tensor(element::f32, delta_shape);
    copy_data(delta_tensor, delta_data);

    op::ParameterVector back_params(input_params);
    back_params.push_back(delta_param);
    input_tensors.push_back(delta_tensor);

    shared_ptr<runtime::TensorView> d_input_0_tensor =
        backend->create_tensor(element::f32, d_input_0_shape);
    shared_ptr<runtime::TensorView> d_input_1_tensor =
        backend->create_tensor(element::f32, d_input_1_shape);

    using FunctionType = op::SigmoidMultiply::FunctionType;
    auto input_0_type = op::SigmoidMultiply::identify_node_type(input_0_node);
    auto input_1_type = op::SigmoidMultiply::identify_node_type(input_1_node);
    // for Identity functions, we use the node itself, otherwise use its input
    // where we will apply the function of input node
    auto input_0_alt =
        (input_0_type == FunctionType::Identity) ? input_0_node : input_0_node->get_argument(0);
    auto input_1_alt =
        (input_1_type == FunctionType::Identity) ? input_1_node : input_1_node->get_argument(0);
    auto sigmoid_mul =
        make_shared<op::SigmoidMultiply>(input_0_alt, input_1_alt, input_0_type, input_1_type);

    ngraph::autodiff::Adjoints adjoints(NodeVector{sigmoid_mul}, NodeVector{delta_param});
    auto d_input_0 = adjoints.backprop_node(input_0_adjoint);
    auto d_input_1 = adjoints.backprop_node(input_1_adjoint);
    auto df = make_shared<Function>(NodeVector{d_input_0, d_input_1}, back_params);
    backend->call(df, {d_input_0_tensor, d_input_1_tensor}, input_tensors);
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_0_tensor), expected_0));
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_1_tensor), expected_1));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_backward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.2f, 3.2f, 4.2f};
    vector<float> const_data{1.2f};
    vector<float> delta_data(shape_size(data_shape), 20.0f);

    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected_0{8.65093f, 8.81946f, 5.60191f, 2.89668f};
        vector<float> expected_1{14.6212f, 17.6159f, 19.0515f, 19.6403f};
        op::ParameterVector input_params{input_0_param, input_1_param, input_2_param};
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
        sigmoid_multiply_fusion_backward_compute(backend,
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Tanh>(input_0_param);
        vector<float> expected_0{15.2319f, 19.2806f, 19.9011f, 19.9866f};
        vector<float> expected_1{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
        sigmoid_multiply_fusion_backward_compute(backend,
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 sigmoid_0,
                                                 input_0_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected_0{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
        vector<float> expected_1{15.2319f, 19.2806f, 19.9011f, 19.9866f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
        sigmoid_multiply_fusion_backward_compute(backend,
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{3.02202f, 1.89041f, 0.868146f, 0.348035f};
        vector<float> expected_1{2.60102f, 1.58192f, 0.716941f, 0.285879f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_backward_compute(backend,
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{3.27813f, 2.04894f, 0.900536f, 0.353095f};
        vector<float> expected_1{4.45975f, 0.84425f, 0.126201f, 0.0176579f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_backward_compute(backend,
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{6.45521f, 1.27207f, 0.189593f, 0.0264228f};
        vector<float> expected_1{2.70967f, 1.7314f, 0.748913f, 0.29092f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_backward_compute(backend,
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{7.00227f, 1.37874f, 0.196666f, 0.026807f};
        vector<float> expected_1{4.64603f, 0.924027f, 0.131829f, 0.0179692f};
        op::ParameterVector input_params{input_0_param, input_1_param};
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
        sigmoid_multiply_fusion_backward_compute(backend,
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
}
2161 2162 2163 2164

TEST(cpu_fusion, fuse_batch_dot)
{
    pass::Manager pass_manager;
2165
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/batch_dot_3.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchDot>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, fuse_batch_dot_forward)
{
    pass::Manager pass_manager;
2178
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

    const std::string file_name("mxnet/batch_dot_3.json");
    auto cpu_f = make_function(file_name);
    auto int_f = make_function(file_name);
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < int_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}