reshape_elimination.cpp 20.5 KB
Newer Older
1
//*****************************************************************************
2
// Copyright 2017-2020 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
16 17 18 19 20 21 22 23 24 25 26 27

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
#include "ngraph/file_util.hpp"
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
28
#include "ngraph/op/sum.hpp"
29 30 31
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
#include "ngraph/pass/reshape_elimination.hpp"
32
#include "ngraph/pass/visualize_tree.hpp"
33 34
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp"
35
#include "ngraph/pattern/op/skip.hpp"
36 37
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
38 39
#include "ngraph/util.hpp"
#include "util/all_close.hpp"
40
#include "util/matcher.hpp"
41
#include "util/random.hpp"
42 43 44 45 46
#include "util/test_tools.hpp"

using namespace ngraph;
using namespace std;

47
#ifndef NGRAPH_JSON_DISABLE
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
TEST(reshape_elimination, remove_reshape)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::ReshapeElimination>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_fprop.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    size_t count_before = count_ops_of_type<op::Reshape>(func);
    pass_manager.run_passes(func);
    size_t count_after = count_ops_of_type<op::Reshape>(func);
    ASSERT_TRUE(count_after < count_before);
}

TEST(reshape_elimination, remove_tranpose)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::ReshapeElimination>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/tranpose.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    size_t count_before = count_ops_of_type<op::Reshape>(func);
    pass_manager.run_passes(func);
    size_t count_after = count_ops_of_type<op::Reshape>(func);
    ASSERT_TRUE(count_after < count_before);
}

TEST(reshape_elimination, bn_bprop_rewrite)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::ReshapeElimination>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_bprop.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    size_t count_before = count_ops_of_type<op::Reshape>(func);
    pass_manager.run_passes(func);
    size_t count_after = count_ops_of_type<op::Reshape>(func);
    ASSERT_TRUE(count_after < count_before);
}
89
#endif
90

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
TEST(reshape_elimination, transpose_reshape_pattern_fuse)
{
    auto generate_func = []() {
        auto input = make_shared<op::Parameter>(element::f32, Shape{8, 2, 4, 6});
        auto transpose = make_shared<op::Reshape>(input, AxisVector{0, 2, 1, 3}, Shape{8, 2, 4, 6});
        auto reshape =
            make_shared<op::Reshape>(transpose, AxisVector{0, 1, 2, 3}, Shape{8, 4, 2, 6});
        return make_shared<Function>(reshape, ParameterVector{input});
    };

    auto fuse_func = generate_func();
    auto nofuse_func = generate_func();

    pass::Manager pass_manager;
    pass_manager.register_pass<pass::ReshapeElimination>();
    pass_manager.run_passes(fuse_func);
    ASSERT_TRUE(count_ops_of_type<op::Reshape>(fuse_func) == 1);
    ASSERT_TRUE(count_ops_of_type<op::Reshape>(nofuse_func) == 2);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(Shape{8, 2, 4, 6}));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(fuse_func, args, "INTERPRETER");
    auto optimized_results = execute(nofuse_func, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));
}

TEST(reshape_elimination, transpose_reshape_pattern_nofuse)
{
    auto input = make_shared<op::Parameter>(element::f32, Shape{8, 2, 4, 6});
    auto transpose = make_shared<op::Reshape>(input, AxisVector{0, 2, 1, 3}, Shape{8, 2, 4, 6});
    auto reshape = make_shared<op::Reshape>(transpose, AxisVector{2, 1, 0, 3}, Shape{8, 4, 2, 6});
    auto f = make_shared<Function>(reshape, ParameterVector{input});

    pass::Manager pass_manager;
    pass_manager.register_pass<pass::ReshapeElimination>();
    pass_manager.run_passes(f);
    ASSERT_TRUE(count_ops_of_type<op::Reshape>(f) == 2);
}

135 136 137 138 139 140 141 142 143 144 145 146 147
TEST(reshape_elimination, dot_transpose_to_dot_w_transpose_args)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);

    auto dot = make_shared<op::Dot>(W, x);
    auto reshape_dot = std::make_shared<op::Reshape>(dot, AxisVector{1, 0}, Shape{1, 2});
    auto graph = make_shared<op::Abs>(reshape_dot);

    pass::Manager pass_manager;
    pass_manager.register_pass<pass::ReshapeElimination>();
148
    auto func = make_shared<Function>(graph, ParameterVector{W, x});
149
    pass_manager.run_passes(func);
150
    auto gdot = graph->get_argument(0);
151 152 153
    ASSERT_TRUE(as_type_ptr<op::Dot>(gdot));
    ASSERT_TRUE(as_type_ptr<op::Reshape>(gdot->get_argument(0)));
    ASSERT_TRUE(as_type_ptr<op::Reshape>(gdot->get_argument(1)));
154 155
    ASSERT_EQ(gdot->get_argument(0)->get_argument(0), x);
    ASSERT_EQ(gdot->get_argument(1)->get_argument(0), W);
156 157
    ASSERT_EQ(gdot->get_shape(), (Shape{1, 2}));
}
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

TEST(reshape_elimination, recurrent_reshapes)
{
    Shape shape_a{2, 2, 3, 3, 2, 4};
    auto generate_func = [shape_a]() {
        auto A = make_shared<op::Parameter>(element::f32, shape_a);
        Shape shape_r_1{3, 2, 2, 4, 6};
        Shape shape_r_2{6, 8, 3, 2};
        Shape shape_r_3{6, 8, 6};
        Shape shape_r_4{6, 2, 2, 2, 6};
        Shape shape_r_5{2, 3, 2, 2, 2, 3, 2};
        Shape shape_r_6{48, 6};

        auto r_1 = make_shared<op::Reshape>(A, AxisVector{2, 4, 0, 5, 3, 1}, shape_r_1);
        auto r_2 = make_shared<op::Reshape>(r_1, AxisVector{0, 1, 2, 3, 4}, shape_r_2);
        auto r_3 = make_shared<op::Reshape>(r_2, AxisVector{0, 1, 2, 3}, shape_r_3);
        auto r_4 = make_shared<op::Reshape>(r_3, AxisVector{0, 1, 2}, shape_r_4);
        auto r_5 = make_shared<op::Reshape>(r_4, AxisVector{0, 1, 2, 3, 4}, shape_r_5);
        auto r_6 = make_shared<op::Reshape>(r_5, AxisVector{0, 1, 2, 3, 4, 5, 6}, shape_r_6);

        auto f = make_shared<Function>(r_6, ParameterVector{A});
        return f;
    };

    auto baseline_f = generate_func();
    auto optimized_f = generate_func();
    auto baseline_input_shape = baseline_f->get_parameters().at(0)->get_shape();

    pass::Manager pass_manager;
187
    // pass_manager.register_pass<pass::VisualizeTree>("before_recurrent_reshapes.png");
188
    pass_manager.register_pass<pass::RecurrentReshapeElimination>();
189
    // pass_manager.register_pass<pass::VisualizeTree>("after_recurrent_reshapes.png");
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    pass_manager.run_passes(optimized_f);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(baseline_input_shape));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(baseline_f, args, "INTERPRETER");
    auto optimized_results = execute(optimized_f, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));

    size_t num_reshapes_optimized = count_ops_of_type<op::Reshape>(optimized_f);
    ASSERT_EQ(num_reshapes_optimized, 1);
}

TEST(reshape_elimination, recurrent_reshapes_elimination)
{
    Shape shape_a{2, 2, 3, 3, 2, 4};
    auto generate_func = [shape_a]() {
        auto A = make_shared<op::Parameter>(element::f32, shape_a);
        Shape shape_r_1{3, 2, 2, 4, 6};
        Shape shape_r_2{6, 8, 3, 2};
        Shape shape_r_3{6, 8, 6};
        Shape shape_r_4{6, 2, 2, 2, 6};
        Shape shape_r_5{2, 3, 2, 2, 2, 3, 2};
        Shape shape_r_6{48, 6};
        Shape shape_r_7{2, 2, 3, 3, 2, 4};

        auto r_1 = make_shared<op::Reshape>(A, AxisVector{0, 1, 2, 3, 4, 5}, shape_r_1);
        auto r_2 = make_shared<op::Reshape>(r_1, AxisVector{0, 1, 2, 3, 4}, shape_r_2);
        auto r_3 = make_shared<op::Reshape>(r_2, AxisVector{0, 1, 2, 3}, shape_r_3);
        auto r_4 = make_shared<op::Reshape>(r_3, AxisVector{0, 1, 2}, shape_r_4);
        auto r_5 = make_shared<op::Reshape>(r_4, AxisVector{0, 1, 2, 3, 4}, shape_r_5);
        auto r_6 = make_shared<op::Reshape>(r_5, AxisVector{0, 1, 2, 3, 4, 5, 6}, shape_r_6);
        auto r_7 = make_shared<op::Reshape>(r_6, AxisVector{0, 1}, shape_r_7);
        auto f = make_shared<Function>(r_7, ParameterVector{A});
        return f;
    };

    auto baseline_f = generate_func();
    auto optimized_f = generate_func();
    auto baseline_input_shape = baseline_f->get_parameters().at(0)->get_shape();

    pass::Manager pass_manager;
236
    // pass_manager.register_pass<pass::VisualizeTree>("before_recurrent_reshapes_elimination.png");
237
    pass_manager.register_pass<pass::RecurrentReshapeElimination>();
238
    // pass_manager.register_pass<pass::VisualizeTree>("after_1_recurrent_reshapes_elimination.png");
239
    pass_manager.register_pass<pass::ReshapeElimination>();
240
    // pass_manager.register_pass<pass::VisualizeTree>("after_2_recurrent_reshapes_elimination.png");
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    pass_manager.run_passes(optimized_f);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(baseline_input_shape));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(baseline_f, args, "INTERPRETER");
    auto optimized_results = execute(optimized_f, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));

    size_t num_reshapes_optimized = count_ops_of_type<op::Reshape>(optimized_f);
    ASSERT_EQ(num_reshapes_optimized, 0);
}

TEST(reshape_elimination, recurrent_reshapes_fan_out)
{
    Shape shape_a{4, 6, 10, 2};
    auto generate_func = [shape_a]() {
        auto A = make_shared<op::Parameter>(element::f32, shape_a);
        Shape shape_r_1{6, 4, 5, 4};
        Shape shape_r_2{24, 20};
        auto reshape_1 = make_shared<op::Reshape>(A, AxisVector{0, 3, 2, 1}, shape_r_1);
        auto reshape_2 = make_shared<op::Reshape>(reshape_1, AxisVector{0, 1, 2, 3}, shape_r_2);
        auto reshape_3 = make_shared<op::Reshape>(reshape_2, AxisVector{0, 1}, shape_a);
        auto f_ = make_shared<Function>(NodeVector{reshape_2, reshape_3}, ParameterVector{A});
        return f_;
    };

    auto baseline_f = generate_func();
    auto optimized_f = generate_func();
    auto baseline_input_shape = baseline_f->get_parameters().at(0)->get_shape();

    pass::Manager pass_manager;
277
    // pass_manager.register_pass<pass::VisualizeTree>("before_recurrent_reshapes_fan_out.png");
278
    pass_manager.register_pass<pass::RecurrentReshapeElimination>();
279
    // pass_manager.register_pass<pass::VisualizeTree>("after_recurrent_reshapes_fan_out.png");
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    pass_manager.run_passes(optimized_f);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(baseline_input_shape));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(baseline_f, args, "INTERPRETER");
    auto optimized_results = execute(optimized_f, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));

    size_t num_reshapes_optimized = count_ops_of_type<op::Reshape>(optimized_f);
    ASSERT_EQ(num_reshapes_optimized, 2);
}

TEST(reshape_elimination, recurrent_reshapes_fan_out_at_end)
{
    Shape shape_a{12, 8, 1, 1};
    auto generate_func = [shape_a]() {
        auto A = make_shared<op::Parameter>(element::f32, shape_a);

        auto reshape_1 = make_shared<op::Reshape>(A, AxisVector{0, 3, 2, 1}, Shape{4, 3, 8, 1});
        auto reshape_2 = make_shared<op::Reshape>(reshape_1, AxisVector{0, 1, 2, 3}, shape_a);
        auto reshape_3 =
            make_shared<op::Reshape>(reshape_2, AxisVector{0, 1, 2, 3}, Shape{4, 3, 8, 1});
        auto abs_1 = make_shared<op::Abs>(reshape_3);
        auto f_ = make_shared<Function>(NodeVector{abs_1, reshape_3}, ParameterVector{A});
        return f_;
    };

    auto baseline_f = generate_func();
    auto optimized_f = generate_func();
    auto baseline_input_shape = baseline_f->get_parameters().at(0)->get_shape();

    pass::Manager pass_manager;
317
    // pass_manager.register_pass<pass::VisualizeTree>("before_recurrent_reshapes_fan_out_at_end.png");
318
    pass_manager.register_pass<pass::RecurrentReshapeElimination>();
319
    // pass_manager.register_pass<pass::VisualizeTree>("after_recurrent_reshapes_fan_out_at_end.png");
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
    pass_manager.run_passes(optimized_f);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(baseline_input_shape));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(baseline_f, args, "INTERPRETER");
    auto optimized_results = execute(optimized_f, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));

    size_t num_reshapes_optimized = count_ops_of_type<op::Reshape>(optimized_f);
    ASSERT_EQ(num_reshapes_optimized, 1);
}

TEST(reshape_elimination, recurrent_reshapes_multiple_fusions)
{
    Shape shape_a{2, 2, 3, 3, 2, 4};
    auto generate_func = [shape_a]() {
        auto A = make_shared<op::Parameter>(element::f32, shape_a);
        Shape shape_r_1{3, 2, 2, 4, 6};
        Shape shape_r_2{6, 8, 3, 2};
        Shape shape_r_3{6, 8, 6};
        Shape shape_r_4{6, 2, 2, 2, 6};
        Shape shape_r_5{2, 3, 2, 2, 2, 3, 2};
        Shape shape_r_6{48, 6};

        auto r_1 = make_shared<op::Reshape>(A, AxisVector{2, 4, 0, 5, 3, 1}, shape_r_1);
        auto r_2 = make_shared<op::Reshape>(r_1, AxisVector{0, 1, 2, 3, 4}, shape_r_2);
        auto r_3 = make_shared<op::Reshape>(r_2, AxisVector{0, 1, 2, 3}, shape_r_3);
        auto r_4 = make_shared<op::Reshape>(r_3, AxisVector{1, 0, 2}, shape_r_4);
        auto r_5 = make_shared<op::Reshape>(r_4, AxisVector{0, 1, 2, 3, 4}, shape_r_5);
        auto r_6 = make_shared<op::Reshape>(r_5, AxisVector{0, 1, 2, 3, 4, 5, 6}, shape_r_6);

        auto f = make_shared<Function>(r_6, ParameterVector{A});
        return f;
    };

    auto baseline_f = generate_func();
    auto optimized_f = generate_func();
    auto baseline_input_shape = baseline_f->get_parameters().at(0)->get_shape();

    pass::Manager pass_manager;
    // pass_manager.register_pass<pass::VisualizeTree>(
366
    //     "before_recurrent_reshapes_multiple_fusions.png");
367 368
    pass_manager.register_pass<pass::RecurrentReshapeElimination>();
    // pass_manager.register_pass<pass::VisualizeTree>(
369
    //     "after_recurrent_reshapes_multiple_fusions.png");
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    pass_manager.run_passes(optimized_f);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(baseline_input_shape));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(baseline_f, args, "INTERPRETER");
    auto optimized_results = execute(optimized_f, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));

    size_t num_reshapes_optimized = count_ops_of_type<op::Reshape>(optimized_f);
    ASSERT_EQ(num_reshapes_optimized, 2);
}

TEST(reshape_elimination, nonrecurrent_reshapes)
{
    Shape shape_a{8, 6, 1, 1};
    Shape shape_r{2, 24};
    auto generate_func = [shape_a, shape_r]() {
        auto A = make_shared<op::Parameter>(element::f32, shape_a);

        auto reshape_1 = make_shared<op::Reshape>(A, AxisVector{3, 0, 2, 1}, shape_r);
        auto abs_1 = make_shared<op::Abs>(reshape_1);
        auto reshape_2 = make_shared<op::Reshape>(abs_1, AxisVector{0, 1}, shape_a);
        auto abs_2 = make_shared<op::Abs>(reshape_2);
        auto reshape_3 = make_shared<op::Reshape>(abs_2, AxisVector{0, 1, 2, 3}, shape_a);
        auto f_ = make_shared<Function>(NodeVector{reshape_3}, ParameterVector{A});
        return f_;
    };

    auto baseline_f = generate_func();
    auto optimized_f = generate_func();
    auto baseline_input_shape = baseline_f->get_parameters().at(0)->get_shape();

    pass::Manager pass_manager;
408
    // pass_manager.register_pass<pass::VisualizeTree>("before_nonrecurrent_reshapes.png");
409
    pass_manager.register_pass<pass::RecurrentReshapeElimination>();
410
    // pass_manager.register_pass<pass::VisualizeTree>("after_nonrecurrent_reshapes.png");
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    pass_manager.run_passes(optimized_f);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(baseline_input_shape));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(baseline_f, args, "INTERPRETER");
    auto optimized_results = execute(optimized_f, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));

    size_t num_reshapes_optimized = count_ops_of_type<op::Reshape>(optimized_f);
    ASSERT_EQ(num_reshapes_optimized, 3);
}

TEST(reshape_elimination, recurrent_reshapes_multiple_branches)
{
    Shape shape_a{2, 2, 3, 3, 2, 4};
    auto generate_func = [shape_a]() {
        auto A = make_shared<op::Parameter>(element::f32, shape_a);
        Shape shape_r_1{3, 2, 2, 4, 6};
        Shape shape_r_2{6, 8, 3, 2};
        Shape shape_r_3{6, 8, 6};
        Shape shape_r_4{6, 2, 2, 2, 6};
        Shape shape_r_5{2, 3, 2, 2, 2, 3, 2};
        Shape shape_r_6{48, 6};

        auto r_1 = make_shared<op::Reshape>(A, AxisVector{2, 4, 0, 5, 3, 1}, shape_r_1);
        auto r_2 = make_shared<op::Reshape>(r_1, AxisVector{0, 1, 2, 3, 4}, shape_r_2);
        auto r_3 = make_shared<op::Reshape>(r_2, AxisVector{0, 1, 2, 3}, shape_r_3);
        auto r_4 = make_shared<op::Reshape>(r_3, AxisVector{0, 1, 2}, shape_r_4);
        auto r_5 = make_shared<op::Reshape>(r_4, AxisVector{0, 1, 2, 3, 4}, shape_r_5);
        auto r_6 = make_shared<op::Reshape>(r_5, AxisVector{0, 1, 2, 3, 4, 5, 6}, shape_r_6);

        auto r_7 = make_shared<op::Reshape>(A, AxisVector{2, 4, 0, 5, 3, 1}, shape_r_2);
        auto r_8 = make_shared<op::Reshape>(r_7, AxisVector{0, 1, 2, 3}, shape_r_3);

        auto f = make_shared<Function>(NodeVector{r_6, r_8}, ParameterVector{A});
        return f;
    };

    auto baseline_f = generate_func();
    auto optimized_f = generate_func();
    auto baseline_input_shape = baseline_f->get_parameters().at(0)->get_shape();

    pass::Manager pass_manager;
    // pass_manager.register_pass<pass::VisualizeTree>(
460
    //     "before_recurrent_reshapes_multiple_branches.png");
461 462
    pass_manager.register_pass<pass::RecurrentReshapeElimination>();
    // pass_manager.register_pass<pass::VisualizeTree>(
463
    //     "after_recurrent_reshapes_multiple_branches.png");
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    pass_manager.run_passes(optimized_f);

    test::Uniform<float> rng(0.0f, 100.0f);
    vector<vector<float>> args;
    vector<float> tensor_val(shape_size(baseline_input_shape));
    rng.initialize(tensor_val);
    args.push_back(tensor_val);

    auto baseline_results = execute(baseline_f, args, "INTERPRETER");
    auto optimized_results = execute(optimized_f, args, "INTERPRETER");

    EXPECT_TRUE(test::all_close(baseline_results.at(0), optimized_results.at(0)));

    size_t num_reshapes_optimized = count_ops_of_type<op::Reshape>(optimized_f);
    ASSERT_EQ(num_reshapes_optimized, 2);
}
480 481 482 483 484

TEST(reshape_elimination, pass_property)
{
    {
        auto pass = std::make_shared<ngraph::pass::ReshapeElimination>();
485 486
        ASSERT_FALSE(pass->get_property(pass::PassProperty::REQUIRE_STATIC_SHAPE));
        ASSERT_FALSE(pass->get_property(pass::PassProperty::CHANGE_DYNAMIC_STATE));
487 488 489
    }
    {
        auto pass = std::make_shared<ngraph::pass::RecurrentReshapeElimination>();
490 491
        ASSERT_FALSE(pass->get_property(pass::PassProperty::REQUIRE_STATIC_SHAPE));
        ASSERT_FALSE(pass->get_property(pass::PassProperty::CHANGE_DYNAMIC_STATE));
492 493
    }
}