dynamic.in.cpp 6.01 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
//*****************************************************************************
// Copyright 2017-2019 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close_f.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"

using namespace std;
using namespace ngraph;

static string s_manifest = "${MANIFEST}";

NGRAPH_TEST(dynamic_${BACKEND_NAME}, create)
{
    auto backend = runtime::Backend::create("${BACKEND_NAME}", true);
    ASSERT_NE(backend, nullptr);
    ASSERT_TRUE(backend->supports_dynamic_tensors());
}

NGRAPH_TEST(dynamic_${BACKEND_NAME}, create_no_dynamic)
{
    auto backend = runtime::Backend::create("${BACKEND_NAME}");
    ASSERT_NE(backend, nullptr);
    ASSERT_FALSE(backend->supports_dynamic_tensors());
}

NGRAPH_TEST(dynamic_${BACKEND_NAME}, create_dynamic_tensor)
{
    auto backend = runtime::Backend::create("${BACKEND_NAME}", true);
    auto t = backend->create_dynamic_tensor(element::f32, PartialShape{2, Dimension::dynamic(), 3});
    ASSERT_TRUE(t->get_partial_shape().same_scheme(PartialShape{2, Dimension::dynamic(), 3}));
}

NGRAPH_TEST(dynamic_${BACKEND_NAME}, abc)
{
    //
    // Create a graph for f(a,b,c) = (a+b)*c, where a, b, c all have shape {2,?,3}.
    //
    auto a = make_shared<op::Parameter>(element::f32, PartialShape{2, Dimension::dynamic(), 3});
    auto b = make_shared<op::Parameter>(element::f32, PartialShape{2, Dimension::dynamic(), 3});
    auto c = make_shared<op::Parameter>(element::f32, PartialShape{2, Dimension::dynamic(), 3});

    auto a_plus_b_times_c = (a + b) * c;

    auto f = make_shared<Function>(NodeVector{a_plus_b_times_c}, ParameterVector{a, b, c});

    //
    // Get a backend with dynamic support, and compile f.
    //
    auto backend = runtime::Backend::create("${BACKEND_NAME}", true);

    auto ex = backend->compile(f);

    //
    // Create a dynamic output tensor with shape {2,?,3}.
    //
    auto t_r =
        backend->create_dynamic_tensor(element::f32, PartialShape{2, Dimension::dynamic(), 3});

    //
    // For each of n=[0,...,5), run the compiled executable against a test vector of shape
    // {2,n,3}, and check the results.
    //
    for (size_t middle_dim = 0; middle_dim < 5; middle_dim++)
    {
        // Fill in some test input values, which we'll use for a, b, and c.
        vector<float> inputs(2 * middle_dim * 3);
        for (size_t i = 0; i < 2 * middle_dim * 3; i++)
        {
            inputs[i] = i;
        }

        // Create static tensors for the inputs and copy data.
        auto t_a = backend->create_tensor(element::f32, Shape{2, middle_dim, 3});
        auto t_b = backend->create_tensor(element::f32, Shape{2, middle_dim, 3});
        auto t_c = backend->create_tensor(element::f32, Shape{2, middle_dim, 3});

        copy_data(t_a, inputs);
        copy_data(t_b, inputs);
        copy_data(t_c, inputs);

        // Call ex, writing result into t_r (note we're using the same t_r from outside the loop.)
        ex->call_with_validate({t_r}, {t_a, t_b, t_c});

        // After call, t_r should have a shape of {2,n,3}.
        ASSERT_EQ(t_r->get_shape(), (Shape{2, middle_dim, 3}));

        // Read out the results, and compare them against expected values.
        auto results = read_vector<float>(t_r);

        vector<float> expected_values(2 * middle_dim * 3);
        for (size_t i = 0; i < 2 * middle_dim * 3; i++)
        {
            expected_values[i] = (i + i) * i;
        }

        EXPECT_TRUE(test::all_close_f(results, expected_values));
    }
}
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

NGRAPH_TEST(dynamic_${BACKEND_NAME}, transpose)
{
    //
    // Create a graph for f(x,perm) = Transpose(x,Convert<i64>(perm)). We'll do the permutation in
    // i32 and cast it to i64, just for fun (and to mirror the TensorFlow test I am porting here).
    //
    auto x = make_shared<op::Parameter>(element::f32, PartialShape::dynamic());
    auto perm = make_shared<op::Parameter>(element::i32, PartialShape{Dimension::dynamic()});
    auto perm_i64 = make_shared<op::Convert>(perm, element::i64);

    auto x_transpose = make_shared<op::Transpose>(x, perm_i64);

    auto f = make_shared<Function>(NodeVector{x_transpose}, ParameterVector{x, perm});

    auto backend = runtime::Backend::create("${BACKEND_NAME}", true);

    auto ex = backend->compile(f);

    auto t_r = backend->create_dynamic_tensor(element::f32, PartialShape::dynamic());

    std::vector<Shape> x_shapes{Shape{2, 3}, Shape{2, 3}, Shape{2, 2, 3}};
    std::vector<std::vector<int32_t>> perms{{0, 1}, {1, 0}, {2, 1, 0}};
    std::vector<std::vector<float>> inputs{
        {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}};
    std::vector<Shape> expected_result_shapes{Shape{2, 3}, Shape{3, 2}, {3, 2, 2}};
    // Generated with numpy, so don't worry. :)
    std::vector<std::vector<float>> expected_results{
        {1, 2, 3, 4, 5, 6}, {1, 4, 2, 5, 3, 6}, {1, 7, 4, 10, 2, 8, 5, 11, 3, 9, 6, 12}};

    for (size_t i = 0; i < x_shapes.size(); i++)
    {
        auto t_x = backend->create_tensor(element::f32, x_shapes[i]);
        auto t_perm = backend->create_tensor(element::i32, Shape{perms[i].size()});

        copy_data(t_x, inputs[i]);
        copy_data(t_perm, perms[i]);

        ex->call_with_validate({t_r}, {t_x, t_perm});

        ASSERT_EQ(t_r->get_shape(), expected_result_shapes[i]);

        auto results = read_vector<float>(t_r);

        ASSERT_TRUE(test::all_close_f(results, expected_results[i], MIN_FLOAT_TOLERANCE_BITS));
    }
}