cpu_fusion.cpp 190 KB
Newer Older
1
//*****************************************************************************
2
// Copyright 2017-2019 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
16 17 18 19 20 21 22 23

#include <algorithm>
#include <cstdio>
#include <iostream>
#include <list>
#include <memory>

#include "gtest/gtest.h"
24
#include "misc.hpp"
25
#include "ngraph/autodiff/adjoints.hpp"
Louis Feng's avatar
Louis Feng committed
26
#include "ngraph/file_util.hpp"
27 28 29
#include "ngraph/graph_util.hpp"
#include "ngraph/log.hpp"
#include "ngraph/ngraph.hpp"
30
#include "ngraph/op/batch_norm.hpp"
31
#include "ngraph/op/concat.hpp"
32
#include "ngraph/op/dequantize.hpp"
33
#include "ngraph/op/experimental/compiled_kernel.hpp"
gaurides's avatar
gaurides committed
34
#include "ngraph/op/experimental/generate_mask.hpp"
35
#include "ngraph/op/experimental/quantized_concat.hpp"
36
#include "ngraph/op/experimental/quantized_conv_bias.hpp"
37
#include "ngraph/op/fused/conv_fused.hpp"
38
#include "ngraph/op/fused/group_conv.hpp"
39
#include "ngraph/op/get_output_element.hpp"
40
#include "ngraph/op/max_pool.hpp"
41
#include "ngraph/op/negative.hpp"
42
#include "ngraph/op/parameter.hpp"
43
#include "ngraph/op/quantize.hpp"
44
#include "ngraph/op/quantized_convolution.hpp"
45
#include "ngraph/op/relu.hpp"
gaurides's avatar
gaurides committed
46
#include "ngraph/op/result.hpp"
Pruthvi's avatar
Pruthvi committed
47
#include "ngraph/op/reverse_sequence.hpp"
48
#include "ngraph/op/sigmoid.hpp"
49
#include "ngraph/op/sum.hpp"
50
#include "ngraph/op/tanh.hpp"
51
#include "ngraph/pass/algebraic_simplification.hpp"
52
#include "ngraph/pass/batch_fusion.hpp"
53
#include "ngraph/pass/core_fusion.hpp"
54 55
#include "ngraph/pass/graph_rewrite.hpp"
#include "ngraph/pass/manager.hpp"
Louis Feng's avatar
Louis Feng committed
56 57
#include "ngraph/pass/reshape_elimination.hpp"
#include "ngraph/pass/visualize_tree.hpp"
58 59
#include "ngraph/pattern/matcher.hpp"
#include "ngraph/pattern/op/label.hpp"
60
#include "ngraph/pattern/op/skip.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
61
#include "ngraph/runtime/cpu/cpu_layout_descriptor.hpp"
62
#include "ngraph/runtime/cpu/cpu_tensor_view.hpp"
63
#include "ngraph/runtime/cpu/op/batch_mat_mul_transpose.hpp"
64
#include "ngraph/runtime/cpu/op/batch_norm_relu.hpp"
65
#include "ngraph/runtime/cpu/op/bounded_relu.hpp"
gaurides's avatar
gaurides committed
66
#include "ngraph/runtime/cpu/op/conv_add.hpp"
67
#include "ngraph/runtime/cpu/op/conv_relu.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
68
#include "ngraph/runtime/cpu/op/convert_layout.hpp"
gaurides's avatar
gaurides committed
69
#include "ngraph/runtime/cpu/op/deconv.hpp"
gaurides's avatar
gaurides committed
70
#include "ngraph/runtime/cpu/op/dropout.hpp"
71
#include "ngraph/runtime/cpu/op/group_conv_bias.hpp"
72
#include "ngraph/runtime/cpu/op/leaky_relu.hpp"
73
#include "ngraph/runtime/cpu/op/lstm.hpp"
74
#include "ngraph/runtime/cpu/op/matmul_bias.hpp"
75
#include "ngraph/runtime/cpu/op/rnn.hpp"
Pruthvi's avatar
Pruthvi committed
76
#include "ngraph/runtime/cpu/op/rnn_utils.hpp"
77
#include "ngraph/runtime/cpu/op/sigmoid_mul.hpp"
78
#include "ngraph/runtime/cpu/op/update_slice.hpp"
79
#include "ngraph/runtime/cpu/pass/cpu_fusion.hpp"
80
#include "ngraph/runtime/cpu/pass/cpu_mat_fusion.hpp"
Nick Korovaiko's avatar
Nick Korovaiko committed
81
#include "ngraph/runtime/cpu/pass/cpu_post_layout_optimizations.hpp"
82
#include "ngraph/runtime/cpu/pass/cpu_rnn_fusion.hpp"
83
#include "ngraph/runtime/cpu/pass/cpu_workspace_insertion.hpp"
84 85 86
#include "ngraph/serializer.hpp"
#include "ngraph/util.hpp"
#include "util/all_close.hpp"
87
#include "util/all_close_f.hpp"
Pruthvi's avatar
Pruthvi committed
88 89
#include "util/autodiff/backprop_function.hpp"
#include "util/autodiff/numeric_compare.hpp"
90
#include "util/matcher.hpp"
91
#include "util/random.hpp"
92
#include "util/random.hpp"
93
#include "util/test_tools.hpp"
94

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
using namespace ngraph;
using namespace std;

TEST(cpu_fusion, gemm_pattern)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;

    auto W = std::make_shared<pattern::op::Label>(A);
    auto x = std::make_shared<pattern::op::Label>(B);

    auto reshape_pred = [](std::shared_ptr<Node> n) {
        return static_cast<bool>(std::dynamic_pointer_cast<op::Reshape>(n));
    };

118 119
    auto skip_w = std::make_shared<pattern::op::Skip>(W, reshape_pred);
    auto skip_x = std::make_shared<pattern::op::Skip>(x, reshape_pred);
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

    auto pdot = make_shared<op::Dot>(skip_w, skip_x);
    auto b = std::make_shared<pattern::op::Label>(C);
    auto pbroadcast = make_shared<op::Broadcast>(b, dot->get_shape(), AxisSet{0});
    auto padd = pdot + pbroadcast;

    TestMatcher n(nullptr);
    ASSERT_TRUE(n.match(padd, add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, W->get_shape());
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, x->get_shape());
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto re_add = re_dot + broadcast;
    ASSERT_TRUE(n.match(padd, re_add));
    ASSERT_EQ(n.get_pattern_map()[W], A);
    ASSERT_EQ(n.get_pattern_map()[x], B);
    ASSERT_EQ(n.get_pattern_map()[b], C);

141 142 143 144 145 146 147 148 149 150 151 152
    auto cg = make_shared<op::MatmulBias>(
        W, x, C, W->get_shape(), x->get_shape(), false, false, AxisSet{0});
}

TEST(cpu_fusion, gemm_cpu_broadcast_row)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

153
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
154 155

    auto cg = make_shared<op::MatmulBias>(
156
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{0});
157

158
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
159

160
    auto backend = runtime::Backend::create("CPU");
161

162 163 164
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
165 166 167 168 169 170

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

171
    auto handle = backend->compile(f);
172
    handle->call_with_validate({result}, {a, b});
173
    vector<float> expected{11, 30, 38, 111};
174
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
175 176
}

177 178 179 180 181 182 183 184
TEST(cpu_fusion, gemm_cpu_broadcast_column)
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

185
    auto bias = op::Constant::create<float>(element::f32, Shape{2}, std::vector<float>{2.0f, 3.0f});
186 187

    auto cg = make_shared<op::MatmulBias>(
188
        A, B, bias, A->get_shape(), B->get_shape(), true, true, AxisSet{1});
189

190
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
191

192
    auto backend = runtime::Backend::create("CPU");
193

194 195 196
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
197 198 199 200 201 202

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

203
    auto handle = backend->compile(f);
204
    handle->call_with_validate({result}, {a, b});
205
    vector<float> expected{11, 29, 39, 111};
206
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
207 208 209
}

TEST(cpu_fusion, gemm_cpu_broadcast_matrix)
210 211 212 213 214 215 216 217 218 219 220 221 222
{
    Shape shapeA{3, 2};
    Shape shapeB{2, 3};
    Shape shapeC{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto one = op::Constant::create<float>(element::f32, Shape{}, std::vector<float>{1.0f});

    auto broadcast = make_shared<op::Broadcast>(one, shapeC, AxisSet{0, 1});
223 224
    auto cg = make_shared<op::MatmulBias>(
        A, B, one, A->get_shape(), B->get_shape(), true, true, AxisSet{0, 1});
225

226
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
227

228
    auto backend = runtime::Backend::create("CPU");
229

230 231 232
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
233 234 235 236 237 238

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

239
    auto handle = backend->compile(f);
240
    handle->call_with_validate({result}, {a, b});
241
    vector<float> expected{10, 28, 37, 109};
242
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
243 244
}

245 246 247 248 249 250 251 252 253 254 255 256 257 258
TEST(cpu_fusion, gemm_cpu_no_bias)
{
    auto shapeA = Shape{3, 2};
    auto shapeB = Shape{2, 3};
    auto shapeC = Shape{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeB);

    auto reshape_w = make_shared<op::Reshape>(A, AxisVector{1, 0}, Shape{2, 3});
    auto reshape_x = make_shared<op::Reshape>(B, AxisVector{1, 0}, Shape{3, 2});

    auto cg =
        make_shared<op::MatmulBias>(A, B, nullptr, A->get_shape(), B->get_shape(), true, true);

259
    auto f = make_shared<Function>(cg, ParameterVector{A, B});
260

261
    auto backend = runtime::Backend::create("CPU");
262

263 264 265
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeB);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeC);
266 267 268 269 270 271

    vector<float> dataA{1.0f, 4.0f, 1.0f, 4.0f, 1.0f, 4.0f};
    vector<float> dataB{3.0f, 3.0f, 3.0f, 9.0f, 9.0f, 9.0f};
    copy_data(a, dataA);
    copy_data(b, dataB);

272
    auto handle = backend->compile(f);
273
    handle->call_with_validate({result}, {a, b});
274
    vector<float> expected{9, 27, 36, 108};
275
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
276 277
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
TEST(cpu_fusion, cpu_fusion_pass_basic)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = dot + broadcast;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
293
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
294
    auto func = make_shared<Function>(graph, ParameterVector{A, B, C});
295
    pass_manager.run_passes(func);
296
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
297 298
}

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
TEST(cpu_fusion, commutative_matmul_bias)
{
    Shape shape{};
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto A = make_shared<op::Parameter>(element::f32, shape_w);
    auto B = make_shared<op::Parameter>(element::f32, shape_x);
    auto C = make_shared<op::Parameter>(element::f32, shape_b);

    auto dot = make_shared<op::Dot>(A, B);
    auto broadcast = make_shared<op::Broadcast>(C, dot->get_shape(), AxisSet{0});
    auto add = broadcast + dot;
    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
314
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
315
    auto func = make_shared<Function>(graph, ParameterVector{A, B, C});
316
    pass_manager.run_passes(func);
317
    ASSERT_NE(std::dynamic_pointer_cast<op::MatmulBias>(graph->get_argument(0)), nullptr);
318 319
}

320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
TEST(cpu_fusion, cpu_fusion_pass_matmul_bias)
{
    Shape shape_w{2, 4};
    Shape shape_x{4, 1};
    Shape shape_b{1};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);
    auto b = make_shared<op::Parameter>(element::f32, shape_b);

    auto mmb = std::make_shared<op::MatmulBias>(
        W, x, nullptr, W->get_shape(), x->get_shape(), false, false);
    auto broadcast = std::make_shared<op::Broadcast>(b, mmb->get_shape(), AxisSet{0});
    auto add = mmb + broadcast;

    auto graph = make_shared<op::Abs>(add);
    pass::Manager pass_manager;
336
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
337
    auto func = make_shared<Function>(graph, ParameterVector{W, x, b});
338
    pass_manager.run_passes(func);
339
    auto gmm = graph->get_argument(0);
340
    ASSERT_TRUE(std::dynamic_pointer_cast<op::MatmulBias>(gmm));
341
    ASSERT_EQ(gmm->get_argument(2), b);
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
}

TEST(cpu_fusion, cpu_fusion_pass_matmul_no_bias)
{
    Shape shape_w{4, 2};
    Shape shape_x{1, 4};
    auto W = make_shared<op::Parameter>(element::f32, shape_w);
    auto x = make_shared<op::Parameter>(element::f32, shape_x);

    auto reshape_w = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{2, 4});
    auto reshape_x = std::make_shared<op::Reshape>(x, AxisVector{1, 0}, Shape{4, 1});
    auto re_dot = make_shared<op::Dot>(reshape_w, reshape_x);
    auto graph = make_shared<op::Abs>(re_dot);

    pass::Manager pass_manager;
357
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
358
    auto func = make_shared<Function>(graph, ParameterVector{W, x});
359 360 361 362 363
    pass_manager.run_passes(func);
    size_t mmb = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmb, 1);
}

Louis Feng's avatar
Louis Feng committed
364
struct ConvolutionBiasTestData
Louis Feng's avatar
Louis Feng committed
365
{
Louis Feng's avatar
Louis Feng committed
366 367 368 369 370 371
    size_t n{0};
    size_t c{0};
    size_t filter{0};
    size_t kernel_size{0};
    size_t w{0};
    size_t h{0};
372 373 374 375 376 377 378 379
    shared_ptr<runtime::Tensor> data_val;
    shared_ptr<runtime::Tensor> weights_val;
    shared_ptr<runtime::Tensor> bias_val;
    shared_ptr<runtime::Tensor> result_val;
    shared_ptr<runtime::Tensor> delta_val;
    shared_ptr<runtime::Tensor> d_data_val;
    shared_ptr<runtime::Tensor> d_weights_val;
    shared_ptr<runtime::Tensor> d_bias_val;
Louis Feng's avatar
Louis Feng committed
380 381 382 383 384 385 386 387 388 389 390 391 392 393
    vector<float> expected_result_val;
    vector<float> expected_d_data_val;
    vector<float> expected_d_weights_val;
    vector<float> expected_d_bias_val;

    Shape data_shape;
    Shape weights_shape;
    Shape bias_shape;
    Shape result_shape;
    shared_ptr<op::Parameter> data;
    shared_ptr<op::Parameter> weights;
    shared_ptr<op::Parameter> bias;
    shared_ptr<op::Parameter> delta;

394
    void n1c1h3w3(runtime::Backend* backend)
Louis Feng's avatar
Louis Feng committed
395
    {
Louis Feng's avatar
Louis Feng committed
396 397 398 399 400 401 402 403 404 405 406 407 408
        n = 1;
        c = 1;
        filter = 1;
        kernel_size = 3;
        w = 3;
        h = w;

        data_shape = Shape{n, c, h, w};
        data = make_shared<op::Parameter>(element::f32, data_shape);
        weights_shape = Shape{filter, c, kernel_size, kernel_size};
        weights = make_shared<op::Parameter>(element::f32, weights_shape);
        bias_shape = Shape{filter};
        bias = make_shared<op::Parameter>(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
409
        result_shape = Shape{n, filter, 1, 1};
Louis Feng's avatar
Louis Feng committed
410

411
        data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
412 413 414 415 416 417 418 419 420 421
        copy_data(data_val,
                  vector<float>{-0.67765152f,
                                0.10073948f,
                                0.57595438f,
                                -0.3469252f,
                                -0.22134334f,
                                -1.80471897f,
                                -0.80642909f,
                                1.22033095f,
                                2.23235631f});
422
        weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
423 424 425 426 427 428 429 430 431 432
        copy_data(weights_val,
                  vector<float>{0.20070229f,
                                -0.54968649f,
                                -0.19819015f,
                                -0.38577855f,
                                1.37109005f,
                                -0.23789984f,
                                0.14867957f,
                                -0.49851316f,
                                -0.84815776f});
433
        bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
434 435
        copy_data(bias_val, vector<float>{0.07811152f});

436
        result_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
437 438 439
        copy_data(result_val, vector<float>{0});

        delta = make_shared<op::Parameter>(element::f32, result_shape);
440
        delta_val = backend->create_tensor(element::f32, result_shape);
Louis Feng's avatar
Louis Feng committed
441 442
        copy_data(delta_val, vector<float>{-2.58936238f});

443
        d_data_val = backend->create_tensor(element::f32, data_shape);
Louis Feng's avatar
Louis Feng committed
444
        copy_data(d_data_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
445

446
        d_weights_val = backend->create_tensor(element::f32, weights_shape);
Louis Feng's avatar
Louis Feng committed
447
        copy_data(d_weights_val, vector<float>{0, 0, 0, 0, 0, 0, 0, 0, 0});
Louis Feng's avatar
Louis Feng committed
448

449
        d_bias_val = backend->create_tensor(element::f32, bias_shape);
Louis Feng's avatar
Louis Feng committed
450 451
        copy_data(d_bias_val, vector<float>{0});

Louis Feng's avatar
Louis Feng committed
452
        expected_result_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
        expected_d_data_val = vector<float>{-0.51969099f,
                                            1.42333758f,
                                            0.5131861f,
                                            0.99892044f,
                                            -3.5502491f,
                                            0.61600888f,
                                            -0.3849853f,
                                            1.29083121f,
                                            2.19618773f};
        expected_d_weights_val = vector<float>{1.7546854f,
                                               -0.26085103f,
                                               -1.49135458f,
                                               0.89831507f,
                                               0.57313812f,
                                               4.67307138f,
                                               2.08813715f,
                                               -3.15987897f,
                                               -5.7803793f};
Louis Feng's avatar
Louis Feng committed
471
        expected_d_bias_val = vector<float>{-2.58936238f};
Louis Feng's avatar
Louis Feng committed
472
    }
Louis Feng's avatar
Louis Feng committed
473
};
Louis Feng's avatar
Louis Feng committed
474

Louis Feng's avatar
Louis Feng committed
475
TEST(cpu_fusion, conv_bias_fprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
476
{
477
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
478 479

    ConvolutionBiasTestData conv_test;
480
    conv_test.n1c1h3w3(backend.get());
Louis Feng's avatar
Louis Feng committed
481 482 483 484

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
485
    auto f = make_shared<Function>(
486
        convolution_bias, ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
487

488
    auto handle = backend->compile(f);
489 490
    handle->call_with_validate({conv_test.result_val},
                               {conv_test.data_val, conv_test.weights_val, conv_test.bias_val});
Louis Feng's avatar
Louis Feng committed
491
    auto result_vec = read_vector<float>(conv_test.result_val);
Louis Feng's avatar
Louis Feng committed
492

Louis Feng's avatar
Louis Feng committed
493 494
    EXPECT_TRUE(
        test::all_close(conv_test.expected_result_val, read_vector<float>(conv_test.result_val)));
Louis Feng's avatar
Louis Feng committed
495 496
}

Louis Feng's avatar
Louis Feng committed
497
TEST(cpu_fusion, conv_bias_bprop_n1c1h3w3)
Louis Feng's avatar
Louis Feng committed
498
{
499
    auto backend = runtime::Backend::create("CPU");
Louis Feng's avatar
Louis Feng committed
500

Louis Feng's avatar
Louis Feng committed
501
    ConvolutionBiasTestData conv_test;
502
    conv_test.n1c1h3w3(backend.get());
Louis Feng's avatar
Louis Feng committed
503 504 505 506

    auto convolution = make_shared<op::Convolution>(conv_test.data, conv_test.weights);
    auto convolution_bias = make_shared<op::ConvolutionBias>(convolution, conv_test.bias);

Louis Feng's avatar
Louis Feng committed
507
    auto f = make_shared<Function>(
508
        convolution_bias, ParameterVector{conv_test.data, conv_test.weights, conv_test.bias});
Louis Feng's avatar
Louis Feng committed
509

510 511 512 513 514
    ngraph::autodiff::Adjoints adjoints(NodeVector{convolution_bias}, NodeVector{conv_test.delta});

    auto d_data = adjoints.backprop_node(conv_test.data);
    auto d_weights = adjoints.backprop_node(conv_test.weights);
    auto d_bias = adjoints.backprop_node(conv_test.bias);
Louis Feng's avatar
Louis Feng committed
515

Louis Feng's avatar
Louis Feng committed
516 517
    auto df = make_shared<Function>(
        NodeVector{d_data, d_weights, d_bias},
518
        ParameterVector{conv_test.data, conv_test.weights, conv_test.bias, conv_test.delta});
519 520 521
    auto handle = backend->compile(df);
    handle->call_with_validate(

522 523
        {conv_test.d_data_val, conv_test.d_weights_val, conv_test.d_bias_val},
        {conv_test.data_val, conv_test.weights_val, conv_test.bias_val, conv_test.delta_val});
Louis Feng's avatar
Louis Feng committed
524

Louis Feng's avatar
Louis Feng committed
525 526 527 528 529 530
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_data_val, read_vector<float>(conv_test.d_data_val)));
    EXPECT_TRUE(test::all_close(conv_test.expected_d_weights_val,
                                read_vector<float>(conv_test.d_weights_val)));
    EXPECT_TRUE(
        test::all_close(conv_test.expected_d_bias_val, read_vector<float>(conv_test.d_bias_val)));
Louis Feng's avatar
Louis Feng committed
531
}
Pruthvi's avatar
Pruthvi committed
532

533 534 535 536 537 538
TEST(cpu_fusion, conv_bias_bprop)
{
    Shape shape{2, 2, 1, 1};
    auto data_batch = std::make_shared<op::Parameter>(element::f32, shape);
    auto filters = std::make_shared<op::Parameter>(element::f32, shape);
    auto delta = std::make_shared<op::Parameter>(element::f32, shape);
539 540
    auto bias = make_shared<op::Parameter>(element::f32, Shape{shape[0]});
    auto pbroadcast = std::make_shared<op::Broadcast>(bias, shape, AxisSet{1, 2, 3});
541 542 543 544 545
    auto conv = std::make_shared<op::Convolution>(data_batch, filters);
    auto conv_bias = std::make_shared<op::Add>(conv, pbroadcast);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
546
    pass_manager.register_pass<pass::VisualizeTree>("conv_bias_bprop_fusion.png");
547
    auto f = make_shared<Function>(conv_bias, ParameterVector{data_batch, filters, bias});
548 549 550 551 552 553 554 555

    ngraph::autodiff::Adjoints adjoints(NodeVector{conv_bias}, NodeVector{delta});

    auto d_data = adjoints.backprop_node(data_batch);
    auto d_weights = adjoints.backprop_node(filters);
    auto d_bias = adjoints.backprop_node(bias);

    auto df = make_shared<Function>(NodeVector{d_data, d_weights, d_bias},
556
                                    ParameterVector{data_batch, filters, bias, delta});
557 558 559 560 561 562

    pass_manager.run_passes(df);
    size_t ccg = count_ops_of_type<op::ConvolutionBiasBackpropFiltersBias>(df);
    ASSERT_EQ(ccg, 1);
}

563
static void test_batchnorm_multiply_add_relu(Shape input_shape)
Amy Zhuang's avatar
Amy Zhuang committed
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
{
    auto make_bn_relu_function = [&]() {
        auto c_axis = input_shape[1];
        auto input = make_shared<op::Parameter>(element::f32, input_shape);
        auto mean_shape = Shape{c_axis};
        auto mean = std::make_shared<op::Parameter>(element::f32, mean_shape);
        auto var_shape = Shape{c_axis};
        auto var = std::make_shared<op::Parameter>(element::f32, var_shape);
        auto gamma_shape = Shape{c_axis};
        auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
        auto beta_shape = Shape{c_axis};
        auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
        double eps = 0.001;
        auto bn =
            std::make_shared<ngraph::op::BatchNormInference>(eps, gamma, beta, input, mean, var);

        std::vector<size_t> vec{0};
        for (auto i = 2; i < input_shape.size(); i++)
        {
            vec.push_back(i);
        }
        auto broadcast1_input = std::make_shared<op::Parameter>(element::f32, gamma_shape);
        auto broadcast1 =
            std::make_shared<ngraph::op::Broadcast>(broadcast1_input, input_shape, AxisSet(vec));
        auto multiply = std::make_shared<ngraph::op::Multiply>(bn, broadcast1);

        auto broadcast2_input = std::make_shared<op::Parameter>(element::f32, gamma_shape);
        auto broadcast2 =
            std::make_shared<ngraph::op::Broadcast>(broadcast2_input, input_shape, AxisSet(vec));

        auto add = std::make_shared<ngraph::op::Add>(multiply, broadcast2);
        auto relu = std::make_shared<ngraph::op::Relu>(add);
        auto f = make_shared<Function>(
            relu,
            ParameterVector{gamma, beta, input, mean, var, broadcast1_input, broadcast2_input});
        return f;
    };

    auto cpu_f = make_bn_relu_function();
    auto int_f = make_bn_relu_function();
604
    test::Uniform<float> rng(1.0f, 10.0f);
Amy Zhuang's avatar
Amy Zhuang committed
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }

    size_t bn_relu = count_ops_of_type<op::BatchNormInferenceRelu>(cpu_f);
    ASSERT_EQ(bn_relu, 1);
}

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
TEST(cpu_fusion, batchnorm_multiply_add_relu)
{
    test_batchnorm_multiply_add_relu(Shape{1, 3, 2, 2});
    test_batchnorm_multiply_add_relu(Shape{1, 2, 2, 2, 2});
    test_batchnorm_multiply_add_relu(Shape{2, 2, 2, 4, 4});
}

TEST(cpu_fusion, batchnorm_multiply_add_relu_no_fusion)
{
    auto input_shape = Shape{3, 3, 2, 2};
    auto make_bn_relu_function = [&]() {
        auto c_axis = input_shape[1];
        auto input = make_shared<op::Parameter>(element::f32, input_shape);
        auto mean_shape = Shape{c_axis};
        auto mean = std::make_shared<op::Parameter>(element::f32, mean_shape);
        auto var_shape = Shape{c_axis};
        auto var = std::make_shared<op::Parameter>(element::f32, var_shape);
        auto gamma_shape = Shape{c_axis};
        auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
        auto beta_shape = Shape{c_axis};
        auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
        double eps = 0.001;
        auto bn =
            std::make_shared<ngraph::op::BatchNormInference>(eps, gamma, beta, input, mean, var);

        std::vector<size_t> vec;
        for (auto i = 1; i < input_shape.size(); i++)
        {
            vec.push_back(i);
        }
        auto broadcast1_input = std::make_shared<op::Parameter>(element::f32, Shape{3});
        auto broadcast1 =
            std::make_shared<ngraph::op::Broadcast>(broadcast1_input, input_shape, AxisSet(vec));
        auto multiply = std::make_shared<ngraph::op::Multiply>(bn, broadcast1);

        auto broadcast2_input = std::make_shared<op::Parameter>(element::f32, Shape{3});
        auto broadcast2 =
            std::make_shared<ngraph::op::Broadcast>(broadcast2_input, input_shape, AxisSet(vec));

        auto add = std::make_shared<ngraph::op::Add>(multiply, broadcast2);
        auto relu = std::make_shared<ngraph::op::Relu>(add);
        auto f = make_shared<Function>(
            relu,
            ParameterVector{gamma, beta, input, mean, var, broadcast1_input, broadcast2_input});
        return f;
    };

    auto cpu_f = make_bn_relu_function();
    auto int_f = make_bn_relu_function();
    test::Uniform<float> rng(1.0f, 10.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }

    size_t bn_relu = count_ops_of_type<op::BatchNormInferenceRelu>(cpu_f);
    ASSERT_EQ(bn_relu, 0);
}

693 694 695 696 697 698 699 700 701 702 703 704
TEST(cpu_fusion, batchnorm_fprop_relu_b1c2h2w2)
{
    auto input_shape = Shape{1, 2, 2, 2};
    auto input = make_shared<op::Parameter>(element::f32, input_shape);
    auto mean_shape = Shape{2};
    auto var_shape = Shape{2};
    auto gamma_shape = Shape{2};
    auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
    auto beta_shape = Shape{2};
    auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
    double eps = 0.001;
    auto shape_r = Shape{1, 2, 2, 2};
705
    auto bn = make_shared<op::BatchNormTraining>(input, gamma, beta, eps);
706 707 708 709 710 711 712 713 714 715 716 717 718

    auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);
    // Note, op::Splice is used to break Relu(BatchNorm) fusion
    // otherwise we will be comparing two BatchNormRelus
    // Unfortunately, we can't use INTERPRETER for
    // verifying the results as it doesn't implement
    // BatchNorm op.
    auto slice =
        std::make_shared<op::Slice>(output_rt, Coordinate{0, 0, 0, 0}, Coordinate{1, 2, 2, 2});
    auto output_relu = std::make_shared<op::Relu>(slice);
    auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
    auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

719
    auto bn_relu = make_shared<op::BatchNormTrainingRelu>(eps, gamma, beta, input);
720 721 722 723 724 725
    auto output_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 0);
    auto mean_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 1);
    auto variance_rt_bnr = std::make_shared<op::GetOutputElement>(bn_relu, 2);

    auto f = make_shared<Function>(
        NodeVector{output_relu, mean_rt, variance_rt, output_rt_bnr, mean_rt_bnr, variance_rt_bnr},
726
        ParameterVector{input, gamma, beta});
727
    auto backend = runtime::Backend::create("CPU");
728 729

    // Create some tensors for input/output
730
    auto input_t = backend->create_tensor(element::f32, Shape{1, 2, 2, 2});
731 732 733 734 735 736 737 738 739 740

    copy_data(input_t,
              vector<float>{0.54881352f,
                            0.71518934f,
                            0.60276335f,
                            0.54488319f,
                            0.42365479f,
                            0.64589411f,
                            0.4375872f,
                            0.89177299f});
741
    auto gamma_t = backend->create_tensor(element::f32, gamma_shape);
742
    copy_data(gamma_t, vector<float>{1.0f, 1.0f});
743
    auto beta_t = backend->create_tensor(element::f32, beta_shape);
744
    copy_data(beta_t, vector<float>{0.0f, 0.0f});
745 746 747 748 749 750 751 752
    auto bn_output = backend->create_tensor(element::f32, shape_r);
    auto result_mean = backend->create_tensor(element::f32, mean_shape);
    auto result_variance = backend->create_tensor(element::f32, var_shape);

    auto bn_output_bnr = backend->create_tensor(element::f32, shape_r);
    auto result_mean_bnr = backend->create_tensor(element::f32, mean_shape);
    auto result_variance_bnr = backend->create_tensor(element::f32, var_shape);

753
    auto handle = backend->compile(f);
754 755 756 757 758 759 760
    handle->call_with_validate({bn_output,
                                result_mean,
                                result_variance,
                                bn_output_bnr,
                                result_mean_bnr,
                                result_variance_bnr},
                               {input_t, gamma_t, beta_t});
761 762 763 764 765 766 767 768

    EXPECT_TRUE(test::all_close(read_vector<float>(bn_output), read_vector<float>(bn_output_bnr)));
    EXPECT_TRUE(
        test::all_close(read_vector<float>(result_mean), read_vector<float>(result_mean_bnr)));
    EXPECT_TRUE(test::all_close(read_vector<float>(result_variance),
                                read_vector<float>(result_variance_bnr)));
}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
static void test_batchnorm_fprop_relu(Shape input_shape)
{
    auto make_bn_relu_function = [&]() {
        auto c_axis = input_shape[1];
        auto input = make_shared<op::Parameter>(element::f32, input_shape);
        auto mean_shape = Shape{c_axis};
        auto var_shape = Shape{c_axis};
        auto gamma_shape = Shape{c_axis};
        auto gamma = make_shared<op::Parameter>(element::f32, gamma_shape);
        auto beta_shape = Shape{c_axis};
        auto beta = make_shared<op::Parameter>(element::f32, beta_shape);
        double eps = 0.001;
        auto shape_r = input_shape;
        auto bn = make_shared<op::BatchNormTraining>(eps, gamma, beta, input);
        auto output_rt = std::make_shared<op::GetOutputElement>(bn, 0);

        auto output_relu = std::make_shared<op::Relu>(output_rt);
        auto mean_rt = std::make_shared<op::GetOutputElement>(bn, 1);
        auto variance_rt = std::make_shared<op::GetOutputElement>(bn, 2);

        auto f = make_shared<Function>(NodeVector{output_relu, mean_rt, variance_rt},
                                       ParameterVector{input, gamma, beta});
        return f;
    };
    auto cpu_f = make_bn_relu_function();
    auto int_f = make_bn_relu_function();
    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, batchnorm_fprop_relu)
{
    test_batchnorm_fprop_relu(Shape{1, 2, 2, 2});
    test_batchnorm_fprop_relu(Shape{1, 2, 2, 2, 2});
    test_batchnorm_fprop_relu(Shape{2, 2, 2, 4, 4});
}

819 820 821 822 823 824 825 826
TEST(cpu_fusion, fuse_conv_relu)
{
    auto A = std::make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = std::make_shared<op::Parameter>(element::f32, Shape{1, 1, 2, 2});
    auto convolution = std::make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto relu = std::make_shared<op::Relu>(convolution);
    auto abs_node =
        std::make_shared<op::Abs>(std::make_shared<op::Abs>(std::make_shared<op::Abs>(relu)));
827
    auto func = make_shared<Function>(abs_node, ParameterVector{A, weights});
828 829

    pass::Manager pass_manager;
830
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
831 832 833 834 835
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionRelu>(func);
    ASSERT_GT(cb, 0);
}

836
TEST(cpu_fusion, conv_relu_n2c1h2w2_2)
837 838 839 840
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};

841 842 843 844 845
    auto make_int_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto relu = std::make_shared<op::Relu>(conv);
846
        auto f = make_shared<Function>(NodeVector{relu}, ParameterVector{A, weights});
847 848
        return f;
    };
849

850
    auto int_f = make_int_function();
851

852 853 854 855 856
    auto make_cpu_function = [shape_a, shape_weights]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto conv_relu = std::make_shared<op::ConvolutionRelu>(conv);
857
        auto f = make_shared<Function>(NodeVector{conv_relu}, ParameterVector{A, weights});
858 859
        return f;
    };
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876
    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891
TEST(cpu_fusion, conv_bias_relu_n2c1h2w2_2)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_int_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto relu = std::make_shared<op::Relu>(conv_bias);
892
        auto f = make_shared<Function>(NodeVector{relu}, ParameterVector{A, weights, bias});
893 894 895 896 897 898 899 900 901 902
        return f;
    };

    auto int_f = make_int_function();

    auto make_cpu_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv = std::make_shared<op::Convolution>(A, weights, Strides{2, 2}, Strides{1, 1});
903
        auto conv_bias_relu = std::make_shared<op::ConvolutionBias>(conv, bias, true);
904 905
        auto f =
            make_shared<Function>(NodeVector{conv_bias_relu}, ParameterVector{A, weights, bias});
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
        return f;
    };

    auto cpu_f = make_cpu_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
TEST(cpu_fusion, conv_horizontal_fusion)
{
    Shape shape_a{2, 1, 6, 6};
    Shape shape_weights{1, 1, 2, 2};
    Shape shape_bias{1};

    auto make_function = [shape_a, shape_weights, shape_bias]() {
        auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
        auto weights1 = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv1 = std::make_shared<op::Convolution>(A, weights1, Strides{2, 2}, Strides{1, 1});
        auto bias1 = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias1 =
            conv1 + std::make_shared<op::Broadcast>(bias1, conv1->get_shape(), AxisSet{0, 2, 3});
        auto relu1 = std::make_shared<op::Relu>(conv_bias1);

        auto weights2 = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto conv2 = std::make_shared<op::Convolution>(A, weights2, Strides{2, 2}, Strides{1, 1});
        auto bias2 = std::make_shared<op::Parameter>(element::f32, shape_bias);
        auto conv_bias2 =
            conv2 + std::make_shared<op::Broadcast>(bias2, conv2->get_shape(), AxisSet{0, 2, 3});
        auto relu2 = std::make_shared<op::Relu>(conv_bias2);

        auto concat = std::make_shared<op::Concat>(NodeVector{relu1, relu2}, 1);
        auto f = make_shared<Function>(NodeVector{concat},
951
                                       ParameterVector{A, weights1, bias1, weights2, bias2});
952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
        return f;
    };
    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {2., 2., 2., 2.},
        {0.1f},
        {3., 3., 3., 3.},
        {0.2f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));

    size_t cpu_cb = count_ops_of_type<op::ConvolutionBias>(cpu_f);
    ASSERT_EQ(cpu_cb, 1);
}

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
// ConvolutionBiasAdd relies on an in-place fused MKLDNN kernel.
// Need to ensure that it is fused only when in-place buffer allocation is feasible
shared_ptr<Function> gen_conv_bias_add(bool param_input, bool result_output)
{
    auto A = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
    auto bias = make_shared<op::Parameter>(element::f32, Shape{1});
    auto conv = make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto bias_broadcast = make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
    auto convbias = conv + bias_broadcast;
    auto B = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto abs_B = make_shared<op::Abs>(B);
    auto add =
        param_input ? make_shared<op::Add>(convbias, B) : make_shared<op::Add>(convbias, abs_B);
    auto abs = make_shared<op::Abs>(add);

994 995
    return result_output ? make_shared<Function>(add, ParameterVector{A, weights, bias, B})
                         : make_shared<Function>(abs, ParameterVector{A, weights, bias, B});
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
}

TEST(cpu_fusion, fuse_conv_bias_add)
{
    auto func_fuse = gen_conv_bias_add(false, false);
    auto func_nofuse1 = gen_conv_bias_add(true, false);
    auto func_nofuse2 = gen_conv_bias_add(false, true);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func_fuse);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_fuse), 1);

    pass_manager.run_passes(func_nofuse1);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_nofuse1), 0);

    pass_manager.run_passes(func_nofuse2);
gaurides's avatar
gaurides committed
1013
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func_nofuse2), 1);
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
}

TEST(cpu_fusion, conv_bias_add)
{
    auto int_f = gen_conv_bias_add(false, false);
    auto cpu_f = gen_conv_bias_add(false, false);

    vector<vector<float>> args{{1.25f, 2.25f, 5.25f, 6.25f, -1.25f, -1.25f, 3.25f, -4.25f},
                               {-1.25f},
                               {2.25f},
                               {1.25f, 2.25f, -3.25f, 2.25f, 4.25f, 4.25f, 1.25f, 2.25f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

gaurides's avatar
gaurides committed
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
// ConvolutionAdd relies on an in-place fused MKLDNN kernel.
// Need to ensure that it is fused only when in-place buffer allocation is feasible
shared_ptr<Function> gen_conv_add(bool param_input, bool result_output)
{
    auto A = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto weights = make_shared<op::Parameter>(element::f32, Shape{1, 1, 1, 1});
    auto conv = make_shared<op::Convolution>(A, weights, Strides{1, 1}, Strides{1, 1});
    auto B = make_shared<op::Parameter>(element::f32, Shape{2, 1, 2, 2});
    auto abs_B = make_shared<op::Abs>(B);
    auto add = param_input ? make_shared<op::Add>(conv, B) : make_shared<op::Add>(conv, abs_B);
    auto abs = make_shared<op::Abs>(add);

1043 1044
    return result_output ? make_shared<Function>(add, ParameterVector{A, weights, B})
                         : make_shared<Function>(abs, ParameterVector{A, weights, B});
gaurides's avatar
gaurides committed
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
}

TEST(cpu_fusion, fuse_conv_add)
{
    auto func_fuse = gen_conv_add(false, false);
    auto func_nofuse1 = gen_conv_add(true, false);
    auto func_nofuse2 = gen_conv_add(false, true);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func_fuse);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_fuse), 1);

    pass_manager.run_passes(func_nofuse1);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_nofuse1), 0);

    pass_manager.run_passes(func_nofuse2);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionAdd>(func_nofuse2), 1);
}

TEST(cpu_fusion, conv_add)
{
    auto int_f = gen_conv_add(false, false);
    auto cpu_f = gen_conv_add(false, false);

    vector<vector<float>> args{{1.25f, 2.25f, 5.25f, 6.25f, -1.25f, -1.25f, 3.25f, -4.25f},
                               {-1.25f},
                               {1.25f, 2.25f, -3.25f, 2.25f, 4.25f, 4.25f, 1.25f, 2.25f}};

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));

    int_f = gen_conv_add(false, true);
    cpu_f = gen_conv_add(false, true);

    int_results = execute(int_f, args, "INTERPRETER");
    cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

gaurides's avatar
gaurides committed
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
shared_ptr<Function> gen_deconv(const bool add_goe)
{
    Shape conv_out_shape{100, 64, 1, 1};
    auto out_delta = std::make_shared<op::Parameter>(element::f32, conv_out_shape);

    Shape filters_shape{64, 512, 4, 4};
    Shape bias_shape{512};
    Shape data_batch_shape{100, 512, 4, 4};

    auto data_label = std::make_shared<pattern::op::Label>(element::f32, data_batch_shape);
    auto filters = std::make_shared<op::Parameter>(element::f32, filters_shape);

    auto conv = std::make_shared<op::ConvolutionBackpropData>(data_label->get_shape(),
                                                              filters,
                                                              out_delta,
                                                              Strides{1, 1},
                                                              Strides{1, 1},
                                                              CoordinateDiff{0, 0},
                                                              CoordinateDiff{0, 0},
                                                              Strides{1, 1});
    auto conv_label = std::make_shared<pattern::op::Label>(conv, nullptr, NodeVector{conv});

    auto mean = std::make_shared<op::Parameter>(element::f32, bias_shape);
    auto var = std::make_shared<op::Parameter>(element::f32, bias_shape);
    auto gamma = std::make_shared<op::Parameter>(element::f32, bias_shape);
    auto beta = std::make_shared<op::Parameter>(element::f32, bias_shape);
    double eps = 0.001;

    auto goe_bn = std::make_shared<op::GetOutputElement>(conv, 0);

    // Adding a goe will stop fusion since the patterns wont expect to see this op
    auto bn = add_goe
                  ? std::make_shared<op::BatchNormInference>(goe_bn, gamma, beta, mean, var, eps)
                  : std::make_shared<op::BatchNormInference>(conv, gamma, beta, mean, var, eps);

    return make_shared<Function>(NodeVector{bn},
                                 ParameterVector{filters, out_delta, gamma, beta, mean, var});
}

TEST(cpu_fusion, fuse_deconv)
{
    bool use_deconv_fuse = (getenv("NGRAPH_DECONV_FUSE") != nullptr);
    if (!use_deconv_fuse)
    {
        set_environment("NGRAPH_DECONV_FUSE", "1", 1);
    }

    auto fuse_func = gen_deconv(false);
    auto nofuse_func = gen_deconv(true);

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(fuse_func);
        ASSERT_EQ(count_ops_of_type<op::DeconvolutionBias>(fuse_func), 1);
    }

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(nofuse_func);
        ASSERT_EQ(count_ops_of_type<op::DeconvolutionBias>(nofuse_func), 0);
        ASSERT_EQ(count_ops_of_type<op::Relu>(nofuse_func), 0);
    }

    // Test values
    {
        test::Uniform<float> rng(1.0f, 100.0f);
        vector<vector<float>> args;
        for (shared_ptr<op::Parameter> param : fuse_func->get_parameters())
        {
            auto name = param->get_name();
            vector<float> tensor_val(shape_size(param->get_shape()));
            rng.initialize(tensor_val);
            args.push_back(tensor_val);
        }
        auto nofuse_results = execute(nofuse_func, args, "CPU");
        auto fuse_results = execute(fuse_func, args, "CPU");

        EXPECT_TRUE(test::all_close(fuse_results.at(0), nofuse_results.at(0)));
    }

    if (!use_deconv_fuse)
    {
        unset_environment("NGRAPH_DECONV_FUSE");
    }
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
shared_ptr<Function> gen_groupconv_batchnorm(const bool add_goe,
                                             const bool with_relu,
                                             const Shape shape_in,
                                             const Shape shape_weights,
                                             const Shape shape_out,
                                             const size_t groups)
{
    auto input = make_shared<op::Parameter>(element::f32, shape_in);
    auto weights = make_shared<op::Parameter>(element::f32, shape_weights);

    unsigned long OC = shape_out.at(1);
    Shape shape_bn{OC};
    auto group_conv = make_shared<op::GroupConvolution>(input,
                                                        weights,
                                                        Strides{1, 1},
                                                        Strides{1, 1},
                                                        CoordinateDiff{0, 0},
                                                        CoordinateDiff{0, 0},
                                                        Strides{1, 1},
1193
                                                        groups);
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204

    double eps = 0.001;
    auto gamma = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto beta = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto mean = std::make_shared<op::Parameter>(element::f32, shape_bn);
    auto var = std::make_shared<op::Parameter>(element::f32, shape_bn);

    auto goe_bn = std::make_shared<op::GetOutputElement>(group_conv, 0);

    // Adding a goe will stop fusion since the patterns wont expect to see this op
    auto bn =
1205 1206
        add_goe ? std::make_shared<op::BatchNormInference>(goe_bn, gamma, beta, mean, var, eps)
                : std::make_shared<op::BatchNormInference>(group_conv, gamma, beta, mean, var, eps);
1207 1208 1209 1210
    if (with_relu)
    {
        auto prelu = std::make_shared<op::Relu>(bn);
        auto f = make_shared<Function>(NodeVector{prelu},
1211
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1212 1213 1214 1215 1216
        return f;
    }
    else
    {
        auto f = make_shared<Function>(NodeVector{bn},
1217
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        return f;
    }
}

void fuse_groupconv_batchnorm_helper(Shape shape_in,
                                     Shape shape_weights,
                                     Shape shape_r,
                                     size_t groups)
{
    auto func_fuse =
        gen_groupconv_batchnorm(false, false, shape_in, shape_weights, shape_r, groups);
    auto func_fuse2 =
        gen_groupconv_batchnorm(false, true, shape_in, shape_weights, shape_r, groups);

    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(func_fuse);
        ASSERT_EQ(count_ops_of_type<op::GroupConvolutionBias>(func_fuse), 1);
    }

    {
        // test groupconv + batchnorm + relu fusion
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(func_fuse2);
        ASSERT_EQ(count_ops_of_type<op::GroupConvolutionBias>(func_fuse2), 1);
        ASSERT_EQ(count_ops_of_type<op::Relu>(func_fuse2), 0);
    }
}

void groupconv_batchnorm_test_val_helper(
    const bool with_relu, Shape shape_in, Shape shape_weights, Shape shape_r, size_t groups)
{
    shared_ptr<Function> fuse_func =
        gen_groupconv_batchnorm(false, with_relu, shape_in, shape_weights, shape_r, groups);
    shared_ptr<Function> nofuse_func =
        gen_groupconv_batchnorm(true, with_relu, shape_in, shape_weights, shape_r, groups);

    test::Uniform<float> rng(1.0f, 100.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : fuse_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto fuse_results = execute(fuse_func, args, "CPU");
    auto nofuse_results = execute(nofuse_func, args, "CPU");

    EXPECT_TRUE(test::all_close(fuse_results.at(0), nofuse_results.at(0)));
}

TEST(cpu_fusion, fuse_groupconv_batchnorm1)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{8, 10, 3, 3};
    Shape shape_r{1, 8, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 2);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 2);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 2);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm2)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{5, 4, 3, 3};
    Shape shape_r{1, 5, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 5);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 5);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 5);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm3)
{
    Shape shape_in{1, 20, 5, 5};
    Shape shape_weights{20, 1, 3, 3};
    Shape shape_r{1, 20, 3, 3};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 20);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 20);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 20);
}

TEST(cpu_fusion, fuse_groupconv_batchnorm4)
{
    Shape shape_in{1, 20, 4, 4};
    Shape shape_weights{5, 20, 1, 1};
    Shape shape_r{1, 5, 4, 4};
    fuse_groupconv_batchnorm_helper(shape_in, shape_weights, shape_r, 1);
    groupconv_batchnorm_test_val_helper(false, shape_in, shape_weights, shape_r, 1);
    groupconv_batchnorm_test_val_helper(true, shape_in, shape_weights, shape_r, 1);
}

1312 1313 1314 1315 1316 1317 1318 1319
std::vector<shared_ptr<runtime::Tensor>> rnn_matrix_fusion_eval(const size_t time_steps,
                                                                const Shape& data_shape,
                                                                const Shape& weights_shape,
                                                                const Shape& bias_shape,
                                                                const vector<float>& data_val,
                                                                const vector<float>& weights_val,
                                                                const vector<float>& bias_val,
                                                                const bool enable_pass)
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
{
    auto data = make_shared<op::Parameter>(element::f32, data_shape);
    auto weights = make_shared<op::Parameter>(element::f32, weights_shape);
    auto bias = make_shared<op::Parameter>(element::f32, bias_shape);

    // results from each time step
    NodeVector results;
    for (size_t t = 0; t < time_steps; ++t)
    {
        auto data_slice = make_shared<op::Slice>(
            data, Coordinate{0, t, 0}, Coordinate{data_shape[0], t + 1, data_shape[2]});
        auto data_reshape = make_shared<op::Reshape>(
            data_slice, AxisVector{0, 1, 2}, Shape{data_shape[0], data_shape[2]});
        auto weights_reshape = make_shared<op::Reshape>(
            weights, AxisVector{1, 0}, Shape{weights_shape[1], weights_shape[0]});
        auto dot = make_shared<op::Dot>(data_reshape, weights_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add = make_shared<op::Add>(dot, bias_broadcast);
        results.push_back(add);
    }
1340
    auto func = make_shared<Function>(results, ParameterVector{data, weights, bias});
1341 1342 1343 1344
    if (enable_pass)
    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
1345 1346
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(
            pass::FusionType::REGULAR_FUSIONS);
1347 1348 1349 1350 1351 1352
        pass_manager.run_passes(func);
        // check all of our dot/add are converted to a single MatmulBias op.
        size_t count = count_ops_of_type<op::MatmulBias>(func);
        EXPECT_EQ(count, 1);
    }

1353
    auto backend = runtime::Backend::create("CPU");
1354

1355
    shared_ptr<runtime::Tensor> data_tensor =
1356
        backend->create_tensor(element::f32, data->get_shape());
1357
    shared_ptr<runtime::Tensor> weights_tensor =
1358
        backend->create_tensor(element::f32, weights->get_shape());
1359
    shared_ptr<runtime::Tensor> bias_tensor =
1360
        backend->create_tensor(element::f32, bias->get_shape());
1361

1362
    std::vector<shared_ptr<runtime::Tensor>> result_tensors;
1363 1364
    for (auto r : results)
    {
1365
        result_tensors.push_back(backend->create_tensor(element::f32, r->get_shape()));
1366 1367 1368 1369 1370
    }

    copy_data(data_tensor, data_val);
    copy_data(weights_tensor, weights_val);
    copy_data(bias_tensor, bias_val);
1371 1372
    auto handle = backend->compile(func);
    handle->call_with_validate(result_tensors, {data_tensor, weights_tensor, bias_tensor});
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    return result_tensors;
}

TEST(cpu_fusion, rnn_matrix_fusion_eval_pass)
{
    const size_t time_steps = 4;
    Shape data_shape{3, time_steps, 5};
    Shape weights_shape{6, data_shape[2]};
    Shape bias_shape{6};

    test::Uniform<float> rng{0, 1, 0};
    vector<float> data_val(shape_size(data_shape));
    vector<float> weights_val(shape_size(weights_shape));
    vector<float> bias_val(shape_size(bias_shape));
    rng.initialize(data_val);
    rng.initialize(weights_val);
    rng.initialize(bias_val);

1391
    std::vector<shared_ptr<runtime::Tensor>> result_expected = rnn_matrix_fusion_eval(
1392
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, false);
1393
    std::vector<shared_ptr<runtime::Tensor>> result_fused = rnn_matrix_fusion_eval(
1394 1395 1396 1397 1398 1399
        time_steps, data_shape, weights_shape, bias_shape, data_val, weights_val, bias_val, true);
    for (size_t i = 0; i < result_expected.size(); ++i)
    {
        EXPECT_TRUE(test::all_close<float>(result_expected[i], result_fused[i]));
    }
}
1400

Nick Korovaiko's avatar
Nick Korovaiko committed
1401 1402 1403 1404 1405 1406
TEST(cpu_fusion, weight_fusion)
{
    auto param = std::make_shared<op::Parameter>(element::f32, Shape{64});
    auto reshape_conv =
        std::make_shared<ngraph::op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto data_conv = std::make_shared<op::Parameter>(element::f32, Shape{16, 4, 7, 7});
1407
    auto tvt = &reshape_conv->output(0).get_tensor();
1408
    auto lt_desc = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt);
Nick Korovaiko's avatar
Nick Korovaiko committed
1409 1410 1411 1412 1413 1414 1415
    auto cvt_lt_conv = std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv, lt_desc);
    auto conv = std::make_shared<ngraph::op::Convolution>(
        data_conv, cvt_lt_conv, Strides{1, 1}, Strides{1, 1});

    auto reshape_conv_bprop =
        std::make_shared<op::Reshape>(param, AxisVector{0}, Shape{16, 4, 1, 1});
    auto dummy_arg_conv_bprop = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 7, 7});
1416
    auto tvt_bprop = &reshape_conv_bprop->output(0).get_tensor();
1417
    auto lt_desc_bprop = std::make_shared<runtime::cpu::LayoutDescriptor>(*tvt_bprop);
Nick Korovaiko's avatar
Nick Korovaiko committed
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
    auto cvt_lt_conv_bprop =
        std::make_shared<runtime::cpu::op::ConvertLayout>(reshape_conv_bprop, lt_desc_bprop);
    auto conv_bprop = std::make_shared<op::ConvolutionBackpropData>(Shape{1, 4, 7, 7},
                                                                    cvt_lt_conv_bprop,
                                                                    dummy_arg_conv_bprop,
                                                                    Strides{1, 1},
                                                                    Strides{1, 1},
                                                                    CoordinateDiff{0, 0},
                                                                    CoordinateDiff{0, 0},
                                                                    Strides{1, 1});

    auto conv_relu = std::make_shared<op::Relu>(conv);
    auto conv_bprop_abs = std::make_shared<op::Abs>(conv_bprop);

    auto f = make_shared<Function>(NodeVector{conv_relu, conv_bprop_abs},
1433
                                   ParameterVector{param, data_conv, dummy_arg_conv_bprop});
Nick Korovaiko's avatar
Nick Korovaiko committed
1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUPostLayoutOptimizations>();
    pass_manager.run_passes(f);

    auto new_conv_bprop_data = conv_bprop_abs->get_argument(0);
    auto new_convert_layout = new_conv_bprop_data->get_argument(0);

    ASSERT_EQ(std::dynamic_pointer_cast<runtime::cpu::op::ConvertLayout>(
                  new_convert_layout->get_argument(0)),
              cvt_lt_conv);
}
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

TEST(cpu_fusion, max_pool_with_indices)
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto C = std::make_shared<op::Parameter>(element::f32, max_pool->get_shape());

    ngraph::autodiff::Adjoints adjoints(NodeVector{max_pool}, NodeVector{C});

    auto dinput = adjoints.backprop_node(input);

1459
    auto df = std::make_shared<Function>(NodeVector{dinput}, ParameterVector{input, C});
1460

1461
    auto f = std::make_shared<Function>(NodeVector{max_pool}, ParameterVector{input});
1462 1463 1464

    {
        pass::Manager pass_manager;
1465
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_before.png");
1466 1467 1468 1469
        pass_manager.run_passes(f);
    }

    {
1470
        NodeVector nv_cwi;
1471
        pass::Manager pass_manager;
1472
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before.png");
1473
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1474
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after.png");
1475 1476 1477 1478 1479
        pass_manager.run_passes(df);
    }

    {
        pass::Manager pass_manager;
1480
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_fprop_after.png");
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        pass_manager.run_passes(f);
    }

    auto maxpool_goe_output =
        std::dynamic_pointer_cast<op::GetOutputElement>(f->get_results().at(0)->get_argument(0));
    ASSERT_TRUE(maxpool_goe_output);
    ASSERT_EQ(maxpool_goe_output->get_n(), 0);
    auto maxpool_with_indices = df->get_results().at(0)->get_argument(0);
    auto maxpool_goe_indices =
        std::dynamic_pointer_cast<op::GetOutputElement>(maxpool_with_indices->get_argument(2));
    ASSERT_TRUE(maxpool_goe_indices);
    ASSERT_EQ(maxpool_goe_indices->get_n(), 1);
}

TEST(cpu_fusion, backwards_maxpool_with_indices_n4_c1_hw4_2x2_max)
{
    Shape shape_a{1, 4, 4, 4};
    Shape maxpool_shape{1, 4, 3, 3};
    auto A = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto window_movement_strides = Strides{1, 1};
    auto maxpool = std::make_shared<op::MaxPool>(A, window_shape, window_movement_strides);
1503
    auto f = std::make_shared<Function>(maxpool, ParameterVector{A});
1504 1505

    auto backend = runtime::Backend::create("CPU");
1506
    shared_ptr<runtime::Tensor> ep = backend->create_tensor(element::f32, maxpool_shape);
1507 1508
    vector<float> dataEp(shape_size(maxpool_shape), 4);

1509 1510
    shared_ptr<runtime::Tensor> input = backend->create_tensor(element::f32, shape_a);
    shared_ptr<runtime::Tensor> output = backend->create_tensor(element::f32, shape_a);
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532

    vector<float> dataInput{11.f, 31.f, 40.f, 47.f, 13.f, 61.f, 48.f, 59.f, 17.f, 39.f, 64.f,
                            62.f, 45.f, 55.f, 36.f, 19.f, 65.f, 33.f, 49.f, 30.f, 56.f, 41.f,
                            53.f, 58.f, 22.f, 35.f, 52.f, 50.f, 63.f, 54.f, 12.f, 26.f, 44.f,
                            21.f, 69.f, 24.f, 46.f, 25.f, 51.f, 29.f, 72.f, 15.f, 73.f, 10.f,
                            16.f, 37.f, 70.f, 32.f, 28.f, 66.f, 57.f, 27.f, 60.f, 42.f, 43.f,
                            71.f, 18.f, 38.f, 67.f, 68.f, 14.f, 20.f, 34.f, 23.f};

    vector<float> expected{0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 12.0f, 0.0f, 4.0f, 0.0f, 0.0f,  16.0f,
                           0.0f, 0.0f, 4.0f, 0.0f, 0.0f, 4.0f,  0.0f, 0.0f, 0.0f, 4.0f,  0.0f,
                           8.0f, 8.0f, 0.0f, 0.0f, 4.0f, 0.0f,  4.0f, 4.0f, 0.0f, 0.0f,  0.0f,
                           0.0f, 8.0f, 0.0f, 4.0f, 0.0f, 0.0f,  0.0f, 8.0f, 0.0f, 16.0f, 0.0f,
                           0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 8.0f,  0.0f, 0.0f, 4.0f, 0.0f,  0.0f,
                           8.0f, 0.0f, 4.0f, 8.0f, 4.0f, 0.0f,  0.0f, 0.0f, 0.0f};

    copy_data(ep, dataEp);
    copy_data(input, dataInput);

    auto C = std::make_shared<op::Parameter>(element::f32, maxpool_shape);
    auto df = autodiff::backprop_function(f);

    {
1533
        NodeVector nv_cwi;
1534
        pass::Manager pass_manager;
1535
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_before2.png");
1536
        pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1537
        pass_manager.register_pass<pass::VisualizeTree>("max_pool_bprop_after2.png");
1538 1539 1540
        pass_manager.run_passes(df);
    }

1541
    auto handle = backend->compile(df);
1542
    handle->call_with_validate({output}, {input, ep});
1543
    EXPECT_TRUE(test::all_close_f(read_vector<float>(output), expected, MIN_FLOAT_TOLERANCE_BITS));
1544
}
1545

1546 1547
#if defined(NGRAPH_HALIDE)

1548
TEST(cpu_fusion, compiled_kernel_one_input_one_output_halide)
1549 1550
{
    Shape shapeA{2, 2};
1551 1552 1553
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto relu_a = make_shared<op::Relu>(A);
    auto relu_relu_a = make_shared<op::Relu>(relu_a);
1554
    auto ck = make_shared<op::CompiledKernel>(
1555
        NodeVector{relu_a, relu_relu_a}, NodeVector{relu_relu_a}, NodeVector{A});
1556
    auto f = make_shared<Function>(NodeVector{ck}, ParameterVector{A});
1557 1558

    auto backend = runtime::Backend::create("CPU");
1559 1560
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeA);
1561

1562
    vector<float> dataA{-1, 4, -1, 4};
1563
    copy_data(a, dataA);
1564
    vector<float> expected{0, 4, 0, 4};
1565

1566
    auto handle = backend->compile(f);
1567
    handle->call_with_validate({result}, {a});
1568

1569
    EXPECT_TRUE(test::all_close(read_vector<float>(result), expected));
1570 1571
}

1572
TEST(cpu_fusion, compiled_kernel_two_input_two_output_halide)
1573 1574
{
    Shape shapeA{2, 2};
1575 1576 1577 1578 1579
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
    auto relu_a = make_shared<op::Relu>(A);
    auto add_ab = make_shared<op::Add>(relu_a, B);

1580
    auto ck = make_shared<op::CompiledKernel>(
1581 1582
        NodeVector{relu_a, add_ab}, NodeVector{relu_a, add_ab}, NodeVector{A, B});

1583 1584
    auto goe1 = make_shared<op::GetOutputElement>(ck, 0);
    auto goe2 = make_shared<op::GetOutputElement>(ck, 1);
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
    auto f = make_shared<Function>(NodeVector{goe1, goe2}, ParameterVector{A, B});

    auto backend = runtime::Backend::create("CPU");
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result_relu = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result_add = backend->create_tensor(element::f32, shapeA);

    vector<float> dataA{-1, 4, -1, 4};
    vector<float> dataB{0, 4, 0, 4};
    copy_data(a, dataA);
    copy_data(b, dataB);
    vector<float> expected_relu{0, 4, 0, 4};
    vector<float> expected_add{4, 4, 4, 4};

1600 1601
    auto handle = backend->compile(f);
    handle->call_with_validate({result_relu, result_add}, {a, b});
1602 1603 1604 1605

    EXPECT_TRUE(test::all_close(read_vector<float>(result_relu), expected_relu));
}

1606
TEST(cpu_fusion, compiled_kernel_embedded_graph_halide)
1607 1608 1609 1610
{
    Shape shapeA{2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
1611 1612 1613
    auto neg_a = make_shared<op::Negative>(A);
    auto neg_b = make_shared<op::Negative>(B);
    auto add = neg_a + neg_b;
1614 1615 1616
    auto ck =
        make_shared<op::CompiledKernel>(NodeVector{add}, NodeVector{add}, NodeVector{neg_a, neg_b});
    auto f = make_shared<Function>(NodeVector{ck}, ParameterVector{A, B});
1617 1618

    auto backend = runtime::Backend::create("CPU");
1619 1620 1621
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeA);
1622

1623
    vector<float> dataA{1, 4, 1, 4};
1624
    copy_data(a, dataA);
1625
    vector<float> dataB{1, 2, 3, 4};
1626
    copy_data(b, dataB);
1627
    vector<float> expected{-2, -6, -4, -8};
1628
    auto handle = backend->compile(f);
1629
    handle->call_with_validate({result}, {a, b});
1630
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
1631 1632
}

1633
TEST(cpu_fusion, compiled_kernel_two_inputs_one_output_halide)
1634 1635
{
    Shape shapeA{2, 2};
1636 1637
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
1638
    auto add = A + B;
1639 1640
    auto ck = make_shared<op::CompiledKernel>(NodeVector{add}, NodeVector{add}, NodeVector{A, B});
    auto f = make_shared<Function>(NodeVector{ck}, ParameterVector{A, B});
1641 1642

    auto backend = runtime::Backend::create("CPU");
1643 1644 1645
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> result = backend->create_tensor(element::f32, shapeA);
1646

1647
    vector<float> dataA{1, 4, 1, 4};
1648
    copy_data(a, dataA);
1649
    vector<float> dataB{1, 2, 3, 4};
1650
    copy_data(b, dataB);
1651
    vector<float> expected{2, 6, 4, 8};
1652

1653
    auto handle = backend->compile(f);
1654
    handle->call_with_validate({result}, {a, b});
1655

1656
    EXPECT_TRUE(test::all_close_f(read_vector<float>(result), expected, MIN_FLOAT_TOLERANCE_BITS));
1657 1658
}

1659
TEST(cpu_fusion, compiled_kernel_multiple_outputs_halide)
1660 1661
{
    Shape shapeA{2, 2};
1662 1663 1664 1665
    auto A = make_shared<op::Parameter>(element::f32, shapeA);
    auto B = make_shared<op::Parameter>(element::f32, shapeA);
    auto C = make_shared<op::Parameter>(element::f32, shapeA);
    auto D = make_shared<op::Parameter>(element::f32, shapeA);
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

    auto neg_a = make_shared<op::Negative>(A);
    auto neg_b = make_shared<op::Negative>(B);
    auto add_ab = neg_a + neg_b;
    auto add_cd = C + B;
    auto add_cd_abs = make_shared<op::Abs>(add_cd);
    auto add_ab_abs = make_shared<op::Abs>(add_ab);
    auto add_aab = add_ab_abs + A;
    auto add_cdd = add_cd_abs + D;

1676
    auto ck = make_shared<op::CompiledKernel>(
1677 1678 1679
        NodeVector{neg_a, neg_b, add_ab, add_cd, add_cd_abs, add_ab_abs, add_aab, add_cdd},
        NodeVector{add_aab, add_cdd, neg_b},
        NodeVector{A, B, C, D});
1680 1681 1682
    auto add_aab_goe = std::make_shared<op::GetOutputElement>(ck, 0);
    auto add_cdd_goe = std::make_shared<op::GetOutputElement>(ck, 1);
    auto neg_b_goe = std::make_shared<op::GetOutputElement>(ck, 2);
1683 1684

    auto f = make_shared<Function>(NodeVector{add_aab_goe, add_cdd_goe, neg_b_goe},
1685
                                   ParameterVector{A, B, C, D});
1686 1687 1688

    auto backend = runtime::Backend::create("CPU");

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> c = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> d = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> r1 = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> r2 = backend->create_tensor(element::f32, shapeA);
    shared_ptr<runtime::Tensor> r3 = backend->create_tensor(element::f32, shapeA);

    vector<float> dataA{1, 4, 1, 4};
    vector<float> dataB{3, 3, 3, 9};
    vector<float> dataC{1, 2, 3, 4};
    vector<float> dataD{-2, 2, -1, 1};
1701 1702 1703 1704 1705
    copy_data(a, dataA);
    copy_data(b, dataB);
    copy_data(c, dataC);
    copy_data(d, dataD);

1706
    auto handle = backend->compile(f);
1707
    handle->call_with_validate({r1, r2, r3}, {a, b, c, d});
1708

1709 1710 1711
    vector<float> expected1{5, 11, 5, 17};
    vector<float> expected2{2, 7, 5, 14};
    vector<float> expected3{-3, -3, -3, -9};
1712 1713 1714
    EXPECT_TRUE(test::all_close_f(read_vector<float>(r1), expected1, MIN_FLOAT_TOLERANCE_BITS));
    EXPECT_TRUE(test::all_close_f(read_vector<float>(r2), expected2, MIN_FLOAT_TOLERANCE_BITS));
    EXPECT_TRUE(test::all_close_f(read_vector<float>(r3), expected3, MIN_FLOAT_TOLERANCE_BITS));
1715 1716
}

1717
TEST(cpu_fusion, compiled_kernel_copy_with_new_args)
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
{
    Shape shapeA{2, 2};
    auto A = make_shared<op::Parameter>(element::i32, shapeA);
    auto B = make_shared<op::Parameter>(element::i32, shapeA);
    auto C = make_shared<op::Parameter>(element::i32, shapeA);
    auto D = make_shared<op::Parameter>(element::i32, shapeA);

    auto neg_a = make_shared<op::Negative>(A);
    auto neg_b = make_shared<op::Negative>(B);
    auto add_ab = neg_a + neg_b;
    auto add_cd = C + B;
    auto add_cd_abs = make_shared<op::Abs>(add_cd);
    auto add_ab_abs = make_shared<op::Abs>(add_ab);
    auto add_aab = add_ab_abs + A;
    auto add_cdd = add_cd_abs + D;

1734
    auto ck = make_shared<op::CompiledKernel>(
1735 1736 1737
        NodeVector{neg_a, neg_b, add_ab, add_cd, add_cd_abs, add_ab_abs, add_aab, add_cdd},
        NodeVector{add_aab, add_cdd, neg_b},
        NodeVector{A, B, C, D});
1738 1739 1740
    auto add_aab_goe = std::make_shared<op::GetOutputElement>(ck, 0);
    auto add_cdd_goe = std::make_shared<op::GetOutputElement>(ck, 1);
    auto neg_b_goe = std::make_shared<op::GetOutputElement>(ck, 2);
1741 1742

    auto f = make_shared<Function>(NodeVector{add_aab_goe, add_cdd_goe, neg_b_goe},
1743
                                   ParameterVector{A, B, C, D});
1744 1745 1746 1747 1748

    auto copy_f = clone_function(*f);

    auto backend = runtime::Backend::create("CPU");

1749 1750 1751 1752 1753 1754 1755 1756 1757 1758
    shared_ptr<runtime::Tensor> a = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> b = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> c = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> d = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> r1 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> r2 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> r3 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> copy_r1 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> copy_r2 = backend->create_tensor(element::i32, shapeA);
    shared_ptr<runtime::Tensor> copy_r3 = backend->create_tensor(element::i32, shapeA);
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768

    vector<int> dataA{1, 4, 1, 4};
    vector<int> dataB{3, 3, 3, 9};
    vector<int> dataC{1, 2, 3, 4};
    vector<int> dataD{-2, 2, -1, 1};
    copy_data(a, dataA);
    copy_data(b, dataB);
    copy_data(c, dataC);
    copy_data(d, dataD);

1769
    auto handle = backend->compile(f);
1770 1771 1772
    handle->call_with_validate({r1, r2, r3}, {a, b, c, d});
    auto h1 = backend->compile(copy_f);
    h1->call_with_validate({copy_r1, copy_r2, copy_r3}, {a, b, c, d});
1773 1774 1775 1776 1777

    EXPECT_EQ(read_vector<int>(r1), read_vector<int>(copy_r1));
    EXPECT_EQ(read_vector<int>(r2), read_vector<int>(copy_r2));
    EXPECT_EQ(read_vector<int>(r3), read_vector<int>(copy_r3));
}
1778 1779 1780

#endif

1781 1782 1783 1784 1785 1786 1787 1788
static std::shared_ptr<ngraph::Function> make_forward_function()
{
    Shape shape_a{10, 3, 28, 28};
    auto input = std::make_shared<op::Parameter>(element::f32, shape_a);
    Shape window_shape{2, 2};
    auto max_pool = std::make_shared<op::MaxPool>(input, window_shape);
    auto neg = std::make_shared<op::Negative>(max_pool);
    auto absn = std::make_shared<op::Abs>(max_pool);
1789
    return std::make_shared<Function>(NodeVector{max_pool, neg, absn}, ParameterVector{input});
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
}

static std::pair<std::shared_ptr<ngraph::Function>, std::vector<std::shared_ptr<ngraph::Node>>>
    make_backward_function(std::shared_ptr<ngraph::Function> f)
{
    // get parameters
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = f->get_parameters();

    ngraph::NodeVector adjoints;
    ngraph::NodeVector outputs;
    for (auto Y : f->get_results())
    {
        // Get the output
        // Create the Adjoint
        auto C = std::make_shared<ngraph::op::Parameter>(Y->get_element_type(), Y->get_shape());
        outputs.push_back(Y);
        adjoints.push_back(C);
    }

    ngraph::autodiff::Adjoints adjoint{outputs, adjoints};

    // Perform autodiff
    std::vector<std::shared_ptr<Node>> dYdXs(back_parameters.size());
    transform(back_parameters.begin(),
              back_parameters.end(),
              dYdXs.begin(),
              [&adjoint](const std::shared_ptr<Node>& X) { return adjoint.backprop_node(X); });

    // create the backward function
    std::vector<std::shared_ptr<ngraph::op::Parameter>> param_adjoints;
    for (auto n : adjoints)
        param_adjoints.push_back(std::dynamic_pointer_cast<ngraph::op::Parameter>(n));
    back_parameters.insert(back_parameters.begin(), param_adjoints.begin(), param_adjoints.end());

    return {std::make_shared<ngraph::Function>(dYdXs, back_parameters), adjoints};
}

void optimize_graph(std::shared_ptr<ngraph::Function>& f, std::shared_ptr<ngraph::Function> bf)
{
    // start by removing excess reshapes
    NodeVector nv_cwi;
    ngraph::pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<runtime::cpu::pass::CPUWorkspaceInsertion>(nv_cwi);
1835
    pass_manager.register_pass<pass::VisualizeTree>("before.fprop_cache.png");
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885

    pass_manager.run_passes(f);
    pass_manager.run_passes(bf);
    if (nv_cwi.size() > 0)
    {
        NodeVector new_outputs;
        for (auto r : f->get_results())
        {
            new_outputs.push_back(r->get_argument(0));
        }

        new_outputs.insert(new_outputs.end(), nv_cwi.begin(), nv_cwi.end());
        f = std::make_shared<ngraph::Function>(new_outputs, f->get_parameters());
    }

    ngraph::NodeVector dYdXs;
    for (size_t i = 0; i < bf->get_output_size(); ++i)
    {
        dYdXs.push_back(bf->get_output_op(i)->get_argument(0));
    }

    ngraph::NodeVector combined_outputs;
    for (auto r : f->get_results())
    {
        combined_outputs.push_back(r->get_argument(0));
    }

    combined_outputs.insert(combined_outputs.end(), dYdXs.begin(), dYdXs.end());

    std::vector<std::shared_ptr<ngraph::op::Parameter>> combined_parameters = f->get_parameters();
    std::vector<std::shared_ptr<ngraph::op::Parameter>> back_parameters = bf->get_parameters();

    combined_parameters.insert(
        combined_parameters.end(), back_parameters.begin(), back_parameters.end());
    auto combinedf = std::make_shared<ngraph::Function>(combined_outputs, combined_parameters);
    // rerun Reshape elimination to help simplify the graph again, run CPUFusion
    // this replaces nodes in both f and bf due to shared-ptr - ness
    ngraph::pass::Manager pass_manager_comb;
    pass_manager_comb.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager_comb.register_pass<ngraph::runtime::cpu::pass::CPUFusion>();
    pass_manager_comb.run_passes(combinedf);
}

TEST(cpu_fusion, maxpool_with_indices_in_mxnet)
{
    auto f = make_forward_function();
    auto bfa = make_backward_function(f);
    auto maybe_bf = bfa.first;
    auto adjoints = bfa.second;
    optimize_graph(f, maybe_bf);
1886
    auto fprop_cache = ngraph::cache_fprop(f, maybe_bf);
1887 1888 1889 1890 1891 1892

    auto mpwi_bprop = fprop_cache.bprop->get_results().at(0)->get_argument(0);
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(0)));
    ASSERT_TRUE(std::dynamic_pointer_cast<op::Parameter>(mpwi_bprop->get_argument(2)));
}

1893
TEST(cpu_fusion, conv_batch_norm_folding)
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        double eps = 0.001;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
1908
        auto bn = std::make_shared<op::BatchNormInference>(conv, gamma, beta, mean, var, eps);
1909
        auto f = make_shared<Function>(NodeVector{bn},
1910
                                       ParameterVector{input, weights, gamma, beta, mean, var});
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
        {0.12f, 0.31f},
        {0.01f, 0.11f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}
1951

1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
TEST(cpu_fusion, convbias_batch_norm_folding)
{
    Shape shape_input{2, 8, 5, 5};
    Shape shape_weights{2, 8, 2, 2};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{2});
        double eps = 1.01;
        auto gamma = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto beta = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto mean = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto var = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
1970
        auto bn = std::make_shared<op::BatchNormInference>(convbias, gamma, beta, mean, var, eps);
1971
        auto f = make_shared<Function>(
1972
            NodeVector{bn}, ParameterVector{input, weights, bias, gamma, beta, mean, var});
1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(1.0f, 100.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

TEST(cpu_fusion, conv_affine_folding)
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
{
    Shape shape_input{1, 8, 3, 3};
    Shape shape_weights{2, 8, 1, 1};
    Shape shape_norm{2};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                conv, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{0, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{0, 2, 3}));
2010
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, a, b});
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        return f;
    };

    auto int_f = make_function();
    auto cpu_f = make_function();

    vector<vector<float>> args{
        {1.25f,  2.25f, 5.25f, 6.25f,  -1.25f, -1.25f, 3.25f, -4.25f, 7.25f,  8.25f,  -1.25f,
         -1.25f, 1.25f, 2.25f, -3.25f, 2.25f,  4.25f,  4.25f, 1.25f,  2.25f,  -4.25f, 2.25f,
         4.25f,  4.25f, 0.f,   0.f,    -1.f,   0.f,    2.f,   2.f,    0.f,    0.f,    0.f,
         0.f,    2.f,   2.f,   1.25f,  2.25f,  5.25f,  6.25f, 1.25f,  1.25f,  3.25f,  4.25f,
         -7.25f, 8.25f, 1.25f, -1.25f, -1.25f, 2.25f,  3.25f, 2.25f,  -4.25f, -4.25f, -1.25f,
         -2.25f, 4.25f, 2.25f, 4.25f,  4.25f,  0.f,    0.f,   1.f,    0.f,    -2.f,   2.f,
         0.f,    0.f,   0.f,   0.f,    -2.f,   -2.f},
        {1.25f,
         2.25f,
         5.25f,
         6.25f,
         -1.25f,
         -1.25f,
         3.25f,
         -4.25f,
         7.25f,
         8.25f,
         -1.25f,
         0.f,
         0.f,
         0.f,
         0.f,
         -2.f},
        {-0.9384f, 0.01875f},
        {11.0f, 1.3f},
    };

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

2050
TEST(cpu_fusion, convbias_affine_folding1)
2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
{
    Shape shape_input{1, 6, 3, 3};
    Shape shape_weights{3, 6, 1, 1};
    Shape shape_norm{3};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{3});

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                convbias, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{0, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{0, 2, 3}));
        auto f =
2071
            make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, bias, a, b});
2072 2073 2074
        return f;
    };

2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    auto func = make_function();
    pass_manager.run_passes(func);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func), 1);

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(20.0f, 300.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

TEST(cpu_fusion, convbias_affine_folding2)
{
    Shape shape_input{1, 6, 3, 3};
    Shape shape_weights{3, 6, 1, 1};
    Shape shape_norm{1};

    auto make_function = [shape_input, shape_weights, shape_norm]() {
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{3});

        auto a = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto b = std::make_shared<op::Parameter>(element::f32, shape_norm);
        auto conv = std::make_shared<op::Convolution>(input, weights, Strides{1, 1}, Strides{1, 1});
        auto convbias =
            conv + std::make_shared<op::Broadcast>(bias, conv->get_shape(), AxisSet{0, 2, 3});
        auto out = std::make_shared<op::Add>(
            std::make_shared<op::Multiply>(
                convbias, std::make_shared<op::Broadcast>(a, conv->get_shape(), AxisSet{1, 2, 3})),
            std::make_shared<op::Broadcast>(b, conv->get_shape(), AxisSet{1, 2, 3}));
        auto f =
            make_shared<Function>(NodeVector{out}, ParameterVector{input, weights, bias, a, b});
        return f;
    };

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    auto func = make_function();
    pass_manager.run_passes(func);
    ASSERT_EQ(count_ops_of_type<op::ConvolutionBiasAdd>(func), 1);

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(20.0f, 300.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0)));
}

2146
TEST(batch_fusion, group_convolution)
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
{
    auto backend = runtime::Backend::create("CPU");
    test::Uniform<float> rng(2.0f, 10.0f);

    const size_t GROUPS = 2;
    Shape shape_a{1, 32, 2, 2};
    auto A = make_shared<op::Parameter>(element::f32, shape_a);
    Shape shape_b{2, 16, 1, 1};
    auto B = make_shared<op::Parameter>(element::f32, shape_b);
    Shape shape_r{1, 2, 2, 2};
    auto group_conv = make_shared<op::GroupConvolution>(A,
                                                        B,
                                                        Strides{1, 1},
                                                        Strides{1, 1},
                                                        CoordinateDiff{0, 0},
                                                        CoordinateDiff{0, 0},
                                                        Strides{1, 1},
2164
                                                        GROUPS);
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188

    Shape shape_c{1, 16, 2, 2};
    auto C = make_shared<op::Parameter>(element::f32, shape_c);
    Shape shape_d{1, 16, 1, 1};
    auto D = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_lower = make_shared<op::Convolution>(C,
                                                   D,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto E = make_shared<op::Parameter>(element::f32, shape_c);
    auto F = make_shared<op::Parameter>(element::f32, shape_d);
    auto conv_upper = make_shared<op::Convolution>(E,
                                                   F,
                                                   Strides{1, 1},
                                                   Strides{1, 1},
                                                   CoordinateDiff{0, 0},
                                                   CoordinateDiff{0, 0},
                                                   Strides{1, 1});

    auto f = make_shared<Function>(NodeVector{group_conv, conv_lower, conv_upper},
2189
                                   ParameterVector{A, B, C, D, E, F});
2190 2191 2192 2193 2194 2195 2196 2197 2198 2199

    auto a_ = rng.initialize(backend->create_tensor(element::f32, shape_a));
    auto b_ = rng.initialize(backend->create_tensor(element::f32, shape_b));

    vector<float> rv(shape_size(shape_r), 0);
    auto group_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_r, rv.data()));

    auto av = read_vector<float>(a_);
    auto bv = read_vector<float>(b_);
2200 2201
    auto c_ = backend->create_tensor(element::f32, shape_c, av.data()); // lower data
    auto d_ = backend->create_tensor(element::f32, shape_d, bv.data()); // upper data
2202 2203

    auto e_ =
2204
        backend->create_tensor(element::f32, shape_c, av.data() + av.size() / 2); // lower weights
2205
    auto f_ =
2206
        backend->create_tensor(element::f32, shape_d, bv.data() + bv.size() / 2); // upper weights
2207 2208

    Shape shape_ur{1, 1, 2, 2};
2209
    // allocate a contigious storage for both lower and upper halves.
2210 2211 2212 2213 2214
    vector<float> erv(shape_size(shape_r), 0);
    auto lower_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data()));
    auto upper_result = std::dynamic_pointer_cast<ngraph::runtime::cpu::CPUTensorView>(
        backend->create_tensor(element::f32, shape_ur, erv.data() + erv.size() / 2));
2215 2216 2217
    auto handle = backend->compile(f);
    handle->call_with_validate({group_result, lower_result, upper_result},
                               {a_, b_, c_, d_, e_, f_});
2218
    EXPECT_TRUE(test::all_close_f(rv, erv));
2219 2220
}

2221 2222 2223 2224
TEST(cpu_fusion, rnn_fprop_1_lstm_cell)
{
    auto src_layer = make_shared<op::Parameter>(element::f32, Shape{10, 100});
    auto src_iter = make_shared<op::Parameter>(element::f32, Shape{20, 100});
2225 2226
    auto weights_layer = make_shared<op::Parameter>(element::f32, Shape{100, 400});
    auto weights_iter = make_shared<op::Parameter>(element::f32, Shape{100, 400});
2227 2228 2229 2230 2231 2232 2233
    auto biases = make_shared<op::Parameter>(element::f32, Shape{400});
    const int number_of_timesteps = 1;
    const int number_of_gates_per_cell = 4;
    const int src_seq_length = 1;
    const int num_rnn_cell_states = 2;
    const int rnn_direction = 1;
    const int num_of_rnn_fused_layer = 1;
Pruthvi's avatar
Pruthvi committed
2234 2235 2236
    ngraph::runtime::cpu::rnn_utils::rnntype rnn_type =
        ngraph::runtime::cpu::rnn_utils::rnntype::vanilla_lstm;

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
    auto rnn_node = make_shared<op::Rnn>(src_layer,
                                         src_iter,
                                         weights_layer,
                                         weights_iter,
                                         biases,
                                         number_of_timesteps,
                                         number_of_gates_per_cell,
                                         src_seq_length,
                                         num_rnn_cell_states,
                                         rnn_direction,
Pruthvi's avatar
Pruthvi committed
2247 2248 2249
                                         num_of_rnn_fused_layer,
                                         rnn_type);

2250 2251 2252 2253 2254
    auto rnn_ht_output = make_shared<op::GetOutputElement>(rnn_node, 0);
    auto rnn_ct_output = make_shared<op::GetOutputElement>(rnn_node, 1);

    auto func = make_shared<Function>(
        NodeVector{rnn_ht_output, rnn_ct_output},
2255
        ParameterVector{src_layer, src_iter, weights_layer, weights_iter, biases});
2256 2257
    auto backend = runtime::Backend::create("CPU");

2258
    shared_ptr<runtime::Tensor> src_layer_t =
2259
        backend->create_tensor(element::f32, src_layer->get_shape());
2260
    shared_ptr<runtime::Tensor> src_iter_t =
2261
        backend->create_tensor(element::f32, src_iter->get_shape());
2262
    shared_ptr<runtime::Tensor> weights_layer_t =
2263
        backend->create_tensor(element::f32, weights_layer->get_shape());
2264
    shared_ptr<runtime::Tensor> weights_iter_t =
2265
        backend->create_tensor(element::f32, weights_iter->get_shape());
2266
    shared_ptr<runtime::Tensor> biases_t =
2267
        backend->create_tensor(element::f32, biases->get_shape());
2268
    shared_ptr<runtime::Tensor> result_ht = backend->create_tensor(element::f32, {10, 100});
2269
    shared_ptr<runtime::Tensor> result_ct = backend->create_tensor(element::f32, Shape{20, 100});
2270 2271 2272 2273 2274 2275 2276

    copy_data(src_layer_t, vector<float>(1000, 1));
    copy_data(src_iter_t, vector<float>(2000, 1));
    copy_data(weights_layer_t, vector<float>(400 * 100, 1));
    copy_data(weights_iter_t, vector<float>(400 * 100, 1));
    copy_data(biases_t, vector<float>(400, 1));

2277 2278
    auto handle = backend->compile(func);
    handle->call_with_validate(
2279 2280
        {result_ht, result_ct},
        {src_layer_t, src_iter_t, weights_layer_t, weights_iter_t, biases_t});
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
    vector<float> expected_ht(10 * 100, 0.964028f);
    vector<float> expected_ct;
    for (size_t i = 0; i < 20 * 100; i++)
    {
        if (i < 1000)
        {
            expected_ct.push_back(0.964028f);
        }
        else
        {
            expected_ct.push_back(2.0f);
        }
    }

    EXPECT_TRUE(test::all_close(expected_ht, read_vector<float>(result_ht)));
    EXPECT_TRUE(test::all_close(expected_ct, read_vector<float>(result_ct)));
}

2299 2300
#if 0

2301
TEST(cpu_fusion, compiled_kernel_fusion_multiple_groups_pruned)
2302
{
2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto b = make_shared<op::Parameter>(element::f32, shape);
        auto c = make_shared<op::Parameter>(element::f32, shape);
        auto add_ab = a + b;
        auto add_abs = std::make_shared<op::Abs>(add_ab);
        auto abs_neg = std::make_shared<op::Negative>(add_abs);
        auto sub_c_neg = c - abs_neg;

        auto d = make_shared<op::Parameter>(element::f32, shape);
        auto d_abs = std::make_shared<op::Abs>(d);
        auto add_d = d_abs + add_ab;
        auto neg_d = std::make_shared<op::Negative>(add_d);

        auto mul_cd = neg_d * sub_c_neg;
        auto f =
2320
            std::make_shared<Function>(ngraph::NodeVector{mul_cd}, ParameterVector{a, b, c, d});
2321 2322 2323 2324 2325

        return f;
    };

    pass::Manager pass_manager;
2326
    pass_manager.register_pass<runtime::cpu::pass::CPUCompiledKernelFusion>(3);
2327 2328 2329 2330 2331 2332
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;

2333 2334
    size_t ckn = count_ops_of_type<op::CompiledKernel>(cpu_f);
    ASSERT_GT(ckn, 0);
2335 2336

    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
2337
    {
2338 2339 2340
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
2341
    }
2342 2343 2344 2345 2346 2347 2348
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
2349

2350
TEST(cpu_fusion, compiled_kernel_fusion_bounded_relu)
2351
{
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto relu = make_shared<op::Relu>(a);
        auto upper_bound =
            op::Constant::create<float>(element::f32, shape, std::vector<float>{6.0f});
        auto minn = make_shared<op::Minimum>(relu, upper_bound);
        auto absn = make_shared<op::Abs>(minn);
        auto negn = std::make_shared<op::Negative>(absn);

2362
        auto f = std::make_shared<Function>(ngraph::NodeVector{negn}, ParameterVector{a});
2363

2364 2365
        return f;
    };
2366

2367
    pass::Manager pass_manager;
2368
    pass_manager.register_pass<pass::VisualizeTree>("before_relu_fusion.png");
2369
    pass_manager.register_pass<runtime::cpu::pass::CPUCompiledKernelFusion>(3);
2370
    pass_manager.register_pass<pass::VisualizeTree>("after_relu_fusion.png");
2371 2372 2373 2374 2375 2376
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;

2377 2378
    size_t ckn = count_ops_of_type<op::CompiledKernel>(cpu_f);
    ASSERT_GT(ckn, 0);
2379

2380
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
2381
    {
2382 2383 2384
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
2385
    }
2386 2387 2388
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
2389
    {
2390
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
2391
    }
2392 2393
}

2394
TEST(cpu_fusion, compiled_kernel_fusion_multiple_groups)
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
{
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto b = make_shared<op::Parameter>(element::f32, shape);
        auto c = make_shared<op::Parameter>(element::f32, shape);
        auto add_ab = a + b;
        auto add_abs = std::make_shared<op::Abs>(add_ab);
        auto abs_neg = std::make_shared<op::Negative>(add_abs);
        auto sub_c_neg = c - abs_neg;

        auto d = make_shared<op::Parameter>(element::f32, shape);
        auto d_abs = std::make_shared<op::Abs>(d);
        auto add_d = d_abs + add_ab;
        auto neg_d = std::make_shared<op::Negative>(add_d);

        auto mul_cd = neg_d * sub_c_neg;
        auto f =
2413
            std::make_shared<Function>(ngraph::NodeVector{mul_cd}, ParameterVector{a, b, c, d});
2414 2415 2416 2417 2418

        return f;
    };

    pass::Manager pass_manager;
2419
    pass_manager.register_pass<runtime::cpu::pass::CPUCompiledKernelFusion>(2);
2420 2421 2422 2423 2424 2425
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;

2426 2427
    size_t ckn = count_ops_of_type<op::CompiledKernel>(cpu_f);
    ASSERT_GT(ckn, 0);
2428

2429
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
2430
    {
2431 2432 2433
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
2434
    }
2435 2436 2437
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
2438
    {
2439
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
2440 2441 2442
    }
}

2443
TEST(cpu_fusion, compiled_kernel_fusion_one_group)
2444
{
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
    auto make_function = []() -> std::shared_ptr<Function> {
        Shape shape{};
        auto a = make_shared<op::Parameter>(element::f32, shape);
        auto b = make_shared<op::Parameter>(element::f32, shape);
        auto c = make_shared<op::Parameter>(element::f32, shape);
        auto add_ab = a + b;
        auto add_abs = std::make_shared<op::Abs>(add_ab);
        auto abs_neg = std::make_shared<op::Negative>(add_abs);
        auto sub_c_neg = c - abs_neg;
        auto d = make_shared<op::Parameter>(element::f32, shape);
        auto add_d = sub_c_neg + d;
        auto abs_add_d = std::make_shared<op::Abs>(add_d);
        auto e = make_shared<op::Parameter>(element::f32, shape);
        auto add_e = e + abs_add_d;
        auto neg_e = std::make_shared<op::Negative>(add_e);

        auto f = std::make_shared<Function>(ngraph::NodeVector{neg_e},
2462
                                            ParameterVector{a, b, c, d, e});
2463 2464 2465 2466 2467

        return f;

    };

2468
    pass::Manager pass_manager;
2469
    pass_manager.register_pass<runtime::cpu::pass::CPUCompiledKernelFusion>(2);
2470 2471 2472 2473 2474
    auto cpu_f = make_function();
    auto int_f = make_function();
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(-100.0f, 100.0f);
    vector<vector<float>> args;
2475

2476 2477
    size_t ckn = count_ops_of_type<op::CompiledKernel>(cpu_f);
    ASSERT_GT(ckn, 0);
2478

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
    for (shared_ptr<op::Parameter> param : cpu_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
2491 2492
}

2493 2494
#endif

2495
void sigmoid_multiply_fusion_forward_compute(runtime::Backend* backend,
2496
                                             const ParameterVector& input_params,
2497 2498 2499 2500 2501 2502 2503
                                             const vector<vector<float>>& input_data,
                                             const vector<Shape>& input_shapes,
                                             const Shape& result_shape,
                                             shared_ptr<Node> input_0_node,
                                             shared_ptr<Node> input_1_node,
                                             const vector<float>& expected)
{
2504
    shared_ptr<runtime::Tensor> result_tensor = backend->create_tensor(element::f32, result_shape);
2505

2506
    vector<shared_ptr<runtime::Tensor>> input_tensors;
2507 2508 2509 2510 2511 2512 2513 2514
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto mul_node = input_0_node * input_1_node;
    auto func = make_shared<Function>(mul_node, input_params);
2515
    auto handle = backend->compile(func);
2516
    handle->call_with_validate({result_tensor}, input_tensors);
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
    EXPECT_TRUE(test::all_close(read_vector<float>(result_tensor), expected));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_forward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.3f, 3.5f, 4.7f};
    vector<float> const_data{1.2f};
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected{1.60833f, 3.78743f, 6.19173f, 8.54352f};
2537
        ParameterVector input_params{input_0_param, input_1_param, input_2_param};
2538 2539
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
2540
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_0_param);
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
2555
        ParameterVector input_params{input_0_param, input_1_param};
2556 2557
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2558
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected{0.87727f, 1.05696f, 1.14309f, 1.17842f};
2573
        ParameterVector input_params{input_0_param, input_1_param};
2574 2575
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2576
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.561837f, 0.800536f, 0.924652f, 0.973163f};
2591
        ParameterVector input_params{input_0_param, input_1_param};
2592 2593
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2594
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.60945f, 0.863266f, 0.950838f, 0.981851f};
2609
        ParameterVector input_params{input_0_param, input_1_param};
2610 2611
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2612
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected{0.585304f, 0.876182f, 0.965887f, 0.990322f};
2627
        ParameterVector input_params{input_0_param, input_1_param};
2628 2629
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2630
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected{0.634907f, 0.94484f, 0.993242f, 0.999164f};
2645
        ParameterVector input_params{input_0_param, input_1_param};
2646 2647
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2648
        sigmoid_multiply_fusion_forward_compute(backend.get(),
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
                                                input_params,
                                                input_data,
                                                input_shapes,
                                                data_shape,
                                                sigmoid_0,
                                                sigmoid_1,
                                                expected);
    }
}

2659
void sigmoid_multiply_fusion_backward_compute(runtime::Backend* backend,
2660
                                              const ParameterVector& input_params,
2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
                                              const vector<vector<float>>& input_data,
                                              const vector<Shape>& input_shapes,
                                              const vector<float> delta_data,
                                              const Shape& delta_shape,
                                              const Shape& d_input_0_shape,
                                              const Shape& d_input_1_shape,
                                              shared_ptr<Node> input_0_node,
                                              shared_ptr<Node> input_1_node,
                                              shared_ptr<Node> input_0_adjoint,
                                              shared_ptr<Node> input_1_adjoint,
                                              const vector<float>& expected_0,
                                              const vector<float>& expected_1)
{
2674
    vector<shared_ptr<runtime::Tensor>> input_tensors;
2675 2676 2677 2678 2679 2680 2681
    for (int i = 0; i < input_params.size(); ++i)
    {
        input_tensors.push_back(backend->create_tensor(element::f32, input_shapes[i]));
        copy_data(input_tensors[i], input_data[i]);
    }

    auto delta_param = make_shared<op::Parameter>(element::f32, delta_shape);
2682
    shared_ptr<runtime::Tensor> delta_tensor = backend->create_tensor(element::f32, delta_shape);
2683 2684
    copy_data(delta_tensor, delta_data);

2685
    ParameterVector back_params(input_params);
2686 2687 2688
    back_params.push_back(delta_param);
    input_tensors.push_back(delta_tensor);

2689
    shared_ptr<runtime::Tensor> d_input_0_tensor =
2690
        backend->create_tensor(element::f32, d_input_0_shape);
2691
    shared_ptr<runtime::Tensor> d_input_1_tensor =
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
        backend->create_tensor(element::f32, d_input_1_shape);

    using FunctionType = op::SigmoidMultiply::FunctionType;
    auto input_0_type = op::SigmoidMultiply::identify_node_type(input_0_node);
    auto input_1_type = op::SigmoidMultiply::identify_node_type(input_1_node);
    // for Identity functions, we use the node itself, otherwise use its input
    // where we will apply the function of input node
    auto input_0_alt =
        (input_0_type == FunctionType::Identity) ? input_0_node : input_0_node->get_argument(0);
    auto input_1_alt =
        (input_1_type == FunctionType::Identity) ? input_1_node : input_1_node->get_argument(0);
    auto sigmoid_mul =
        make_shared<op::SigmoidMultiply>(input_0_alt, input_1_alt, input_0_type, input_1_type);

    ngraph::autodiff::Adjoints adjoints(NodeVector{sigmoid_mul}, NodeVector{delta_param});
    auto d_input_0 = adjoints.backprop_node(input_0_adjoint);
    auto d_input_1 = adjoints.backprop_node(input_1_adjoint);
    auto df = make_shared<Function>(NodeVector{d_input_0, d_input_1}, back_params);
2710 2711
    auto handle = backend->compile(df);
    handle->call_with_validate({d_input_0_tensor, d_input_1_tensor}, input_tensors);
2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_0_tensor), expected_0));
    EXPECT_TRUE(test::all_close(read_vector<float>(d_input_1_tensor), expected_1));
}

TEST(cpu_fusion, sigmoid_multiply_fusion_backward)
{
    auto backend = runtime::Backend::create("CPU");

    Shape data_shape{1, 1, 2, 2};
    Shape const_shape{1};

    vector<float> input_0_data{1.f, 2.f, 3.f, 4.f};
    vector<float> input_1_data{1.2f, 2.2f, 3.2f, 4.2f};
    vector<float> const_data{1.2f};
    vector<float> delta_data(shape_size(data_shape), 20.0f);

    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_2_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Add>(input_1_param, input_2_param);
        vector<float> expected_0{8.65093f, 8.81946f, 5.60191f, 2.89668f};
        vector<float> expected_1{14.6212f, 17.6159f, 19.0515f, 19.6403f};
2736
        ParameterVector input_params{input_0_param, input_1_param, input_2_param};
2737 2738
        vector<vector<float>> input_data{input_0_data, input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape, data_shape};
2739
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        auto sigmoid_1 = make_shared<op::Tanh>(input_0_param);
        vector<float> expected_0{15.2319f, 19.2806f, 19.9011f, 19.9866f};
        vector<float> expected_1{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
2761
        ParameterVector input_params{input_0_param, input_1_param};
2762 2763
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2764
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 sigmoid_0,
                                                 input_0_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, const_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Broadcast>(input_1_param, data_shape, AxisSet{1, 2, 3});
        vector<float> expected_0{10.0794f, 1.69562f, 0.236785f, 0.0321828f};
        vector<float> expected_1{15.2319f, 19.2806f, 19.9011f, 19.9866f};
2786
        ParameterVector input_params{input_0_param, input_1_param};
2787 2788
        vector<vector<float>> input_data{input_0_data, const_data};
        vector<Shape> input_shapes{data_shape, const_shape};
2789
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 sigmoid_1,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{3.02202f, 1.89041f, 0.868146f, 0.348035f};
        vector<float> expected_1{2.60102f, 1.58192f, 0.716941f, 0.285879f};
2811
        ParameterVector input_params{input_0_param, input_1_param};
2812 2813
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2814
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Sigmoid>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{3.27813f, 2.04894f, 0.900536f, 0.353095f};
        vector<float> expected_1{4.45975f, 0.84425f, 0.126201f, 0.0176579f};
2836
        ParameterVector input_params{input_0_param, input_1_param};
2837 2838
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2839
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Sigmoid>(input_1_param);
        vector<float> expected_0{6.45521f, 1.27207f, 0.189593f, 0.0264228f};
        vector<float> expected_1{2.70967f, 1.7314f, 0.748913f, 0.29092f};
2861
        ParameterVector input_params{input_0_param, input_1_param};
2862 2863
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2864
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
    {
        auto input_0_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto input_1_param = make_shared<op::Parameter>(element::f32, data_shape);
        auto sigmoid_0 = make_shared<op::Tanh>(input_0_param);
        auto sigmoid_1 = make_shared<op::Tanh>(input_1_param);
        vector<float> expected_0{7.00227f, 1.37874f, 0.196666f, 0.026807f};
        vector<float> expected_1{4.64603f, 0.924027f, 0.131829f, 0.0179692f};
2886
        ParameterVector input_params{input_0_param, input_1_param};
2887 2888
        vector<vector<float>> input_data{input_0_data, input_1_data};
        vector<Shape> input_shapes{data_shape, data_shape};
2889
        sigmoid_multiply_fusion_backward_compute(backend.get(),
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
                                                 input_params,
                                                 input_data,
                                                 input_shapes,
                                                 delta_data,
                                                 data_shape,
                                                 data_shape,
                                                 data_shape,
                                                 sigmoid_0,
                                                 sigmoid_1,
                                                 input_0_param,
                                                 input_1_param,
                                                 expected_0,
                                                 expected_1);
    }
}
2905

2906
static void check_bounded_relu(Shape param_shape, float constant_val)
2907
{
2908 2909 2910 2911 2912 2913 2914 2915 2916
    auto make_function = [](Shape input_shape, float alpha_val) {
        auto relu_input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto relu = std::make_shared<op::Relu>(relu_input);
        auto alpha = op::Constant::create<float>(
            element::f32, input_shape, std::vector<float>(1.0f, alpha_val));
        auto min = std::make_shared<op::Minimum>(relu, alpha);
        auto f = make_shared<Function>(NodeVector{min}, ParameterVector{relu_input});
        return f;
    };
2917

2918 2919 2920
    auto cpu_f = make_function(param_shape, constant_val);
    auto int_f = make_function(param_shape, constant_val);
    test::Uniform<float> rng(-10.0f, 10.0f);
2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
2931 2932 2933

    EXPECT_EQ(1, count_ops_of_type<op::BoundedRelu>(cpu_f));
    EXPECT_TRUE(test::all_close(cpu_results.at(0), int_results.at(0), 1.0e-4f, 1.0e-4f));
2934
}
2935

2936
TEST(cpu_fusion, fuse_bounded_relu_inter_vs_cpu)
2937
{
2938 2939 2940 2941
    check_bounded_relu(Shape{4, 3, 2, 2}, 6.0f);
    check_bounded_relu(Shape{4, 3}, 4.0f);
    check_bounded_relu(Shape{4, 3, 2}, 2.0f);
}
2942

gaurides's avatar
gaurides committed
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015
TEST(cpu_fusion, fuse_dropout)
{
    auto make_function = [](Shape input_shape,
                            const uint32_t seed_val,
                            double one_minus_prob,
                            bool fuse,
                            bool use_seed) {
        auto input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto value = op::Constant::create(element::f32, input_shape, {one_minus_prob});
        auto const1 = op::Constant::create(input->get_element_type(), Shape{}, {1});

        auto gen_mask = std::make_shared<op::GenerateMask>(const1,
                                                           input->get_shape(),
                                                           input->get_element_type(),
                                                           seed_val,
                                                           one_minus_prob,
                                                           use_seed);

        auto mult = std::make_shared<op::Multiply>(gen_mask, input);

        auto goe = std::make_shared<op::GetOutputElement>(mult, 0);

        auto pdivide = fuse ? std::make_shared<op::Divide>(mult, value)
                            : std::make_shared<op::Divide>(goe, value);

        auto f = make_shared<Function>(NodeVector{pdivide, gen_mask}, ParameterVector{input});

        return f;

    };

    uint32_t seed = rand();
    auto fuse_func = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, true);
    auto fuse_func2 = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, true);
    auto nofuse_func = make_function(Shape{2, 2, 256, 256}, 1, 0.9, false, false);
    {
        pass::Manager pass_manager;
        pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
        pass_manager.run_passes(fuse_func);
        pass_manager.run_passes(nofuse_func);
        ASSERT_EQ(count_ops_of_type<op::Dropout>(fuse_func), 1);
        ASSERT_EQ(count_ops_of_type<op::GenerateMask>(fuse_func), 0);
        ASSERT_EQ(count_ops_of_type<op::Dropout>(nofuse_func), 0);
    }

    auto fuse_func3 = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, false);
    auto fuse_func4 = make_function(Shape{2, 2, 256, 256}, seed, 0.9, true, false);
    {
        test::Uniform<float> rng(1.0f, 100.0f);
        vector<vector<float>> args;
        for (shared_ptr<op::Parameter> param : fuse_func->get_parameters())
        {
            auto name = param->get_name();
            vector<float> tensor_val(shape_size(param->get_shape()));
            rng.initialize(tensor_val);
            args.push_back(tensor_val);
        }

        auto fuse_results = execute(fuse_func, args, "CPU");
        auto fuse_results2 = execute(fuse_func2, args, "CPU");
        EXPECT_TRUE(test::all_close(fuse_results.at(0), fuse_results2.at(0)));
        EXPECT_TRUE(test::all_close(fuse_results.at(1), fuse_results2.at(1)));

        auto fuse_results3 = execute(fuse_func3, args, "CPU");
        auto fuse_results4 = execute(fuse_func4, args, "CPU");
        EXPECT_FALSE(test::all_close(fuse_results3.at(0), fuse_results4.at(0)));
        EXPECT_FALSE(test::all_close(fuse_results3.at(1), fuse_results4.at(1)));

        // Note: Since the RNG used in Dropout kernel is different than RNG used in GenerateMask
        // kernel, we can't compare fuse_results and nofuse_results
    }
}

3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
TEST(cpu_fusion, fuse_leaky_relu)
{
    auto make_function = [](Shape input_shape, vector<float> alpha_val) {
        auto input = std::make_shared<op::Parameter>(element::f32, input_shape);
        auto alpha = op::Constant::create<float>(element::f32, input_shape, alpha_val);
        auto out =
            std::make_shared<op::Maximum>(input, std::make_shared<op::Multiply>(input, alpha));
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input});
        return f;
    };

    auto no_fuse1 = make_function(Shape{1, 2, 3}, std::vector<float>(6, -1.0f));
    auto no_fuse2 = make_function(Shape{1, 3}, std::vector<float>{1.4f, 1.2f, 1.4f});

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(no_fuse1);
    pass_manager.run_passes(no_fuse2);
3034 3035
    EXPECT_EQ(0, count_ops_of_type<op::CPULeakyRelu>(no_fuse1));
    EXPECT_EQ(0, count_ops_of_type<op::CPULeakyRelu>(no_fuse2));
3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046

    // non-mkldnn kernel
    auto cpu_f1 = make_function(Shape{1, 2, 3}, std::vector<float>(6, 0.1f));
    // mkldnn kernel
    auto cpu_f2 = make_function(Shape{2, 3}, std::vector<float>(6, 0.1f));

    vector<vector<float>> args;
    args.push_back(std::vector<float>{-1, -2, 0, 1, 2, 3});
    std::vector<float> expected_result{-0.1f, -0.2f, 0.0f, 1.0f, 2.0f, 3.0f};

    auto cpu1_results = execute(cpu_f1, args, "CPU");
3047
    EXPECT_EQ(1, count_ops_of_type<op::CPULeakyRelu>(cpu_f1));
3048 3049 3050
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), expected_result));

    auto cpu2_results = execute(cpu_f2, args, "CPU");
3051
    EXPECT_EQ(1, count_ops_of_type<op::CPULeakyRelu>(cpu_f2));
3052 3053 3054
    EXPECT_TRUE(test::all_close(cpu2_results.at(0), expected_result));
}

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
TEST(cpu_fusion, fuse_update_slice)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        auto slice = std::make_shared<op::Slice>(
            input, fuse ? lower_bounds : Shape{3, 0, 0}, fuse ? upper_bounds : Shape{4, 32, 16});
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 32, 16});
        auto add = std::make_shared<op::Add>(slice, update);
        auto out = std::make_shared<op::ReplaceSlice>(input, add, lower_bounds, upper_bounds);
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        return f;
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_inplace)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        auto abs = std::make_shared<op::Abs>(input);
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        auto slice = std::make_shared<op::Slice>(abs, lower_bounds, upper_bounds);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 32, 16});
        auto add = std::make_shared<op::Add>(slice, update);
        auto rs = std::make_shared<op::ReplaceSlice>(abs, add, lower_bounds, upper_bounds);
        auto out = std::make_shared<op::Abs>(rs);
        if (fuse)
        {
            return make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        }
        else
        {
            return make_shared<Function>(NodeVector{out, add}, ParameterVector{input, update});
        }
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_strided)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        Strides strides{1, 2, 2};
        auto slice = std::make_shared<op::Slice>(input,
                                                 fuse ? lower_bounds : Shape{3, 0, 0},
                                                 fuse ? upper_bounds : Shape{4, 32, 16},
                                                 strides);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 16, 8});
        auto add = std::make_shared<op::Add>(slice, update);
        auto out =
            std::make_shared<op::ReplaceSlice>(input, add, lower_bounds, upper_bounds, strides);
        auto f = make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        return f;
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

TEST(cpu_fusion, fuse_update_slice_strided_inplace)
{
    auto make_function = [](bool fuse = true) {
        auto input = std::make_shared<op::Parameter>(element::f32, Shape{4, 32, 16});
        auto abs = std::make_shared<op::Abs>(input);
        Shape lower_bounds{1, 0, 0};
        Shape upper_bounds{2, 32, 16};
        Strides strides{1, 4, 2};
        auto slice = std::make_shared<op::Slice>(abs, lower_bounds, upper_bounds, strides);
        auto update = std::make_shared<op::Parameter>(element::f32, Shape{1, 8, 8});
        auto add = std::make_shared<op::Add>(slice, update);
        auto rs = std::make_shared<op::ReplaceSlice>(abs, add, lower_bounds, upper_bounds, strides);
        auto out = std::make_shared<op::Abs>(rs);
        if (fuse)
        {
            return make_shared<Function>(NodeVector{out}, ParameterVector{input, update});
        }
        else
        {
            return make_shared<Function>(NodeVector{out, add}, ParameterVector{input, update});
        }
    };

    auto fuse = make_function(true);
    auto no_fuse = make_function(false);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(fuse);
    pass_manager.run_passes(no_fuse);
    EXPECT_EQ(1, count_ops_of_type<op::UpdateSlice>(fuse));
    EXPECT_EQ(0, count_ops_of_type<op::UpdateSlice>(no_fuse));

    auto int_f = make_function();
    auto cpu_f = make_function();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i)));
    }
}

3250 3251 3252 3253 3254 3255 3256 3257 3258
TEST(cpu_fusion, dot_batch_forward)
{
    const Shape shape_a{2, 3, 2};
    const Shape shape_b{2, 3};

    auto generate_func = [&shape_a, &shape_b]() -> shared_ptr<Function> {
        auto a = make_shared<op::Parameter>(element::f32, shape_a);
        auto b = make_shared<op::Parameter>(element::f32, shape_b);
        auto dot = make_shared<op::Dot>(a, b);
3259
        return make_shared<Function>(dot, ParameterVector{a, b});
3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
    };
    shared_ptr<Function> cpu_func = generate_func();
    shared_ptr<Function> int_func = generate_func();

    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
Pruthvi's avatar
Pruthvi committed
3280
static std::shared_ptr<Function>
3281
    create_rnn_input_linear_transformation_function(size_t num_timesteps, bool data_is_4d = false)
Pruthvi's avatar
Pruthvi committed
3282 3283 3284
{
    auto W = std::make_shared<op::Parameter>(element::f32, Shape{400, 50});
    auto bias = std::make_shared<op::Parameter>(element::f32, Shape{400});
3285
    ParameterVector params{W, bias};
Pruthvi's avatar
Pruthvi committed
3286
    auto create_graph = [&]() -> std::shared_ptr<Node> {
3287 3288 3289 3290

        auto data_param = (data_is_4d)
                              ? std::make_shared<op::Parameter>(element::f32, Shape{2, 5, 1, 50})
                              : std::make_shared<op::Parameter>(element::f32, Shape{10, 1, 50});
Pruthvi's avatar
Pruthvi committed
3291
        params.push_back(data_param);
3292
        auto reshape_axis_order = data_is_4d ? AxisVector{0, 1, 2, 3} : AxisVector{0, 1, 2};
Pruthvi's avatar
Pruthvi committed
3293
        auto data_param_reshape =
3294
            std::make_shared<op::Reshape>(data_param, reshape_axis_order, Shape{10, 50});
Pruthvi's avatar
Pruthvi committed
3295 3296 3297 3298
        auto W_reshape = std::make_shared<op::Reshape>(W, AxisVector{1, 0}, Shape{50, 400});
        auto dot = std::make_shared<op::Dot>(data_param_reshape, W_reshape);
        auto bias_broadcast = make_shared<op::Broadcast>(bias, dot->get_shape(), AxisSet{0});
        auto add_bias = std::make_shared<op::Add>(dot, bias_broadcast);
3299
        return move(add_bias);
Pruthvi's avatar
Pruthvi committed
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

    };

    NodeVector graph_nodes;
    for (size_t i = 0; i < num_timesteps; i++)
    {
        graph_nodes.push_back(create_graph());
    }
    auto concat = std::make_shared<op::Concat>(graph_nodes, 0);
    return make_shared<Function>(NodeVector{concat}, params);
}

TEST(cpu_fusion, fuse_rnn_input_across_time_steps)
{
    auto func = create_rnn_input_linear_transformation_function(10);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func);
    size_t ref_matmulbias_count = 1;
    auto matmulbias_count = count_ops_of_type<op::MatmulBias>(func);
    EXPECT_EQ(ref_matmulbias_count, matmulbias_count);
}

3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
TEST(cpu_fusion, fuse_rnn_input_across_time_steps_4d_data)
{
    auto func = create_rnn_input_linear_transformation_function(10, true);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    pass_manager.run_passes(func);
    size_t ref_matmulbias_count = 10; // no CPURnnMatFusion transformations
    auto matmulbias_count = count_ops_of_type<op::MatmulBias>(func);
    EXPECT_EQ(ref_matmulbias_count, matmulbias_count);
}

Pruthvi's avatar
Pruthvi committed
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
TEST(cpu_fusion, rnn_input_fusion_inter_vs_cpu)
{
    shared_ptr<Function> cpu_func = create_rnn_input_linear_transformation_function(10);
    shared_ptr<Function> int_func = create_rnn_input_linear_transformation_function(10);

    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
3357

3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382
TEST(cpu_quant_fusion, qconv_relu)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto conv = std::make_shared<op::QuantizedConvolution>(q_input,
                                                               q_weights,
                                                               Strides{1, 1},
                                                               Strides{1, 1},
                                                               CoordinateDiff{0, 0},
                                                               CoordinateDiff{0, 0},
                                                               Strides{1, 1},
3383 3384 3385 3386 3387 3388 3389
                                                               input_scale,
                                                               uint8_zero,
                                                               weights_scale,
                                                               int8_zero,
                                                               output_scale,
                                                               int8_zero,
                                                               element::i8,
3390 3391
                                                               AxisSet{},
                                                               AxisSet{},
3392
                                                               AxisSet{});
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
        auto dq = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto relu = std::make_shared<op::Relu>(dq);
        auto q = std::make_shared<op::Quantize>(
            relu, output_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_f =
            std::make_shared<op::Dequantize>(q, output_scale, uint8_zero, element::f32, AxisSet{});
        return make_shared<Function>(NodeVector{q_f}, ParameterVector{input, weights});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    // Expected output - [2, 2, ...]
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}
3422

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
TEST(cpu_quant_fusion, qconvb_relu)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias = std::make_shared<op::Quantize>(
            bias, input_scale * weights_scale, int32_zero, element::i32, AxisSet{}, round_mode);
        auto requant_scale = (input_scale * weights_scale) / output_scale;
        auto conv = std::make_shared<op::QuantizedConvolutionBias>(q_input,
                                                                   q_weights,
                                                                   bias,
                                                                   Strides{1, 1},
                                                                   Strides{1, 1},
                                                                   CoordinateDiff{0, 0},
                                                                   CoordinateDiff{0, 0},
                                                                   Strides{1, 1},
                                                                   requant_scale);
        auto dq = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto relu = std::make_shared<op::Relu>(dq);
        auto q = std::make_shared<op::Quantize>(
            relu, output_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_f =
            std::make_shared<op::Dequantize>(q, output_scale, uint8_zero, element::f32, AxisSet{});
        return make_shared<Function>(NodeVector{q_f}, ParameterVector{input, weights, bias});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
TEST(cpu_quant_fusion, qavg_pool)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 4, 4};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto dq = std::make_shared<op::Dequantize>(
            q_input, input_scale, uint8_zero, element::f32, AxisSet{});
        auto avg_pool = std::make_shared<op::AvgPool>(dq, Shape{2, 2});
        return make_shared<Function>(NodeVector{avg_pool}, ParameterVector{input});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(4.0f, 4.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

TEST(cpu_quant_fusion, qmax_pool)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 4, 4};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto dq = std::make_shared<op::Dequantize>(
            q_input, input_scale, uint8_zero, element::f32, AxisSet{});
        auto maxpool = std::make_shared<op::MaxPool>(dq, Shape{2, 2});
        return make_shared<Function>(NodeVector{maxpool}, ParameterVector{input});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(1.0f, 10.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

TEST(cpu_quant_fusion, qconcat)
{
    auto make_function = []() {
        auto get_input_slice = [](std::shared_ptr<op::Parameter>& input) {
            auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
            auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
            auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

            op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
            auto q_input = std::make_shared<op::Quantize>(
                input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
            auto dq = std::make_shared<op::Dequantize>(
                q_input, input_scale, uint8_zero, element::f32, AxisSet{});
            return dq;
        };

        NodeVector concat_inputs, concats;
        ParameterVector inputs;
        Shape shape_input{1, 2, 4, 4};
        inputs.push_back(std::make_shared<op::Parameter>(element::f32, shape_input));
        concat_inputs.push_back(get_input_slice(inputs.back()));
        // Concat2  -- Concat7
        for (size_t i = 0; i < 6; i++)
        {
            inputs.push_back(std::make_shared<op::Parameter>(element::f32, shape_input));
            concat_inputs.push_back(get_input_slice(inputs.back()));
            concats.push_back(std::make_shared<op::Concat>(concat_inputs, 0));
        }
        return make_shared<Function>(concats, inputs);
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    // Expect Concat2 -- Concat6 to be fused and not Concat7
    ASSERT_EQ(count_ops_of_type<op::QuantizedConcat>(cpu_f2), 5);
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
TEST(cpu_quant_fusion, dq_q)
{
    auto make_function = [](bool match_scales = true, bool match_et = true) {
        Shape shape_input{1, 2, 2};
        auto input = std::make_shared<op::Parameter>(element::i8, shape_input);
        auto dq_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto dq =
            std::make_shared<op::Dequantize>(input, dq_scale, int8_zero, element::f32, AxisSet{});
        float q_scalev = 2.0f;
        if (!match_scales)
        {
            q_scalev = 1.0f;
        }
        auto q_scale = op::Constant::create(element::f32, Shape{}, {q_scalev});
        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        if (match_et)
        {
            auto q = std::make_shared<op::Quantize>(
                dq, q_scale, int8_zero, element::i8, AxisSet{}, round_mode);
            return make_shared<Function>(NodeVector{q}, ParameterVector{input});
        }
        else
        {
            auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});
            auto q = std::make_shared<op::Quantize>(
                dq, q_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
            return make_shared<Function>(NodeVector{q}, ParameterVector{input});
        }
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    vector<vector<int8_t>> args;
    args.push_back({-1, 2, 3, 4});

    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));

    auto backend = runtime::Backend::create("CPU");
    auto fuse = make_function(true, true);
    auto no_fuse1 = make_function(false, true);
    auto no_fuse2 = make_function(true, false);
    backend->compile(fuse);
    backend->compile(no_fuse1);
    backend->compile(no_fuse2);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(fuse), 0);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(no_fuse1), 1);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(no_fuse2), 1);
}

TEST(cpu_quant_fusion, qconvbsa)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        Shape shape_summand{1, 1, 2, 2};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto summand = std::make_shared<op::Parameter>(element::f32, shape_summand);

        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto summand_scale = op::Constant::create(element::f32, Shape{}, {2.0f});

        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias = std::make_shared<op::Quantize>(
            bias, input_scale * weights_scale, int32_zero, element::i32, AxisSet{}, round_mode);
        auto q_summand = std::make_shared<op::Quantize>(
            summand, summand_scale, int8_zero, element::i8, AxisSet{}, round_mode);

        // Left Graph
        auto requant_scale = (input_scale * weights_scale) / output_scale;
        auto conv = std::make_shared<op::QuantizedConvolutionBias>(q_input,
                                                                   q_weights,
                                                                   bias,
                                                                   Strides{1, 1},
                                                                   Strides{1, 1},
                                                                   CoordinateDiff{0, 0},
                                                                   CoordinateDiff{0, 0},
                                                                   Strides{1, 1},
                                                                   requant_scale);
        auto dq_l = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto r_l = std::make_shared<op::Reshape>(dq_l, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_l = std::make_shared<op::Broadcast>(r_l, Shape{1, 1, 2, 2}, AxisSet{0});

        // Right Graph
        auto dq_r = std::make_shared<op::Dequantize>(
            q_summand, summand_scale, int8_zero, element::f32, AxisSet{});
        auto r_r = std::make_shared<op::Reshape>(dq_r, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_r = std::make_shared<op::Broadcast>(r_r, Shape{1, 1, 2, 2}, AxisSet{0});
        auto add = b_l + b_r;
        auto relu = std::make_shared<op::Relu>(add);
        return make_shared<Function>(NodeVector{relu},
                                     ParameterVector{input, weights, bias, summand});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(4.0f, 4.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    // Disable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    // Enable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}

TEST(cpu_quant_fusion, qconvba)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        Shape shape_summand{1, 1, 2, 2};
        auto input = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto summand = std::make_shared<op::Parameter>(element::f32, shape_summand);

        auto input_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto summand_scale = op::Constant::create(element::f32, Shape{}, {4.0f});

        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input = std::make_shared<op::Quantize>(
            input, input_scale, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights = std::make_shared<op::Quantize>(
            weights, weights_scale, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias = std::make_shared<op::Quantize>(
            bias, input_scale * weights_scale, int32_zero, element::i32, AxisSet{}, round_mode);
        auto q_summand = std::make_shared<op::Quantize>(
            summand, summand_scale, uint8_zero, element::u8, AxisSet{}, round_mode);

        // Left Graph
        auto requant_scale = (input_scale * weights_scale) / output_scale;
        auto conv = std::make_shared<op::QuantizedConvolutionBias>(q_input,
                                                                   q_weights,
                                                                   bias,
                                                                   Strides{1, 1},
                                                                   Strides{1, 1},
                                                                   CoordinateDiff{0, 0},
                                                                   CoordinateDiff{0, 0},
                                                                   Strides{1, 1},
                                                                   requant_scale);
        auto dq_l = std::make_shared<op::Dequantize>(
            conv, output_scale, int8_zero, element::f32, AxisSet{});
        auto r_l = std::make_shared<op::Reshape>(dq_l, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_l = std::make_shared<op::Broadcast>(r_l, Shape{1, 1, 2, 2}, AxisSet{0});

        // Right Graph
        auto dq_r = std::make_shared<op::Dequantize>(
            q_summand, summand_scale, uint8_zero, element::f32, AxisSet{});
        auto r_r = std::make_shared<op::Reshape>(dq_r, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_r = std::make_shared<op::Broadcast>(r_r, Shape{1, 1, 2, 2}, AxisSet{0});
        auto add = b_l + b_r;
        auto relu = std::make_shared<op::Relu>(add);
        return make_shared<Function>(NodeVector{relu},
                                     ParameterVector{input, weights, bias, summand});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    // Disable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    // Enable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));
}
Pruthvi's avatar
Pruthvi committed
3821

3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
TEST(cpu_quant_fusion, qconvba_q)
{
    auto make_function = []() {
        Shape shape_input{1, 2, 2, 2};
        Shape shape_weights{1, 2, 1, 1};
        Shape shape_summand{1, 1, 2, 2};
        auto input_l = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights_l = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias_l = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});
        auto input_r = std::make_shared<op::Parameter>(element::f32, shape_input);
        auto weights_r = std::make_shared<op::Parameter>(element::f32, shape_weights);
        auto bias_r = std::make_shared<op::Parameter>(element::f32, Shape{shape_weights[0]});

        auto input_scale_l = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto weights_scale_l = op::Constant::create(element::f32, Shape{}, {2.0f});
        auto output_scale_l = op::Constant::create(element::f32, Shape{}, {4.0f});
        auto input_scale_r = op::Constant::create(element::f32, Shape{}, {5.0f});
        auto weights_scale_r = op::Constant::create(element::f32, Shape{}, {5.0f});
        auto output_scale_r = op::Constant::create(element::f32, Shape{}, {20.0f});

        auto int8_zero = op::Constant::create(element::i8, Shape{}, {0});
        auto int32_zero = op::Constant::create(element::i32, Shape{}, {0});
        auto uint8_zero = op::Constant::create(element::u8, Shape{}, {0});

        op::Quantize::RoundMode round_mode = op::Quantize::RoundMode::ROUND_NEAREST_TOWARD_EVEN;
        auto q_input_l = std::make_shared<op::Quantize>(
            input_l, input_scale_l, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights_l = std::make_shared<op::Quantize>(
            weights_l, weights_scale_l, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias_l = std::make_shared<op::Quantize>(bias_l,
                                                       input_scale_l * weights_scale_l,
                                                       int32_zero,
                                                       element::i32,
                                                       AxisSet{},
                                                       round_mode);
        auto q_input_r = std::make_shared<op::Quantize>(
            input_r, input_scale_r, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto q_weights_r = std::make_shared<op::Quantize>(
            weights_r, weights_scale_r, int8_zero, element::i8, AxisSet{}, round_mode);
        auto q_bias_r = std::make_shared<op::Quantize>(bias_r,
                                                       input_scale_r * weights_scale_r,
                                                       int32_zero,
                                                       element::i32,
                                                       AxisSet{},
                                                       round_mode);

        // Left Graph
        auto requant_scale_l = (input_scale_l * weights_scale_l) / output_scale_l;
        auto conv_l = std::make_shared<op::QuantizedConvolutionBias>(q_input_l,
                                                                     q_weights_l,
                                                                     q_bias_l,
                                                                     Strides{1, 1},
                                                                     Strides{1, 1},
                                                                     CoordinateDiff{0, 0},
                                                                     CoordinateDiff{0, 0},
                                                                     Strides{1, 1},
                                                                     requant_scale_l);
        auto dq_l = std::make_shared<op::Dequantize>(
            conv_l, output_scale_l, int8_zero, element::f32, AxisSet{});
        auto r_l = std::make_shared<op::Reshape>(dq_l, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_l = std::make_shared<op::Broadcast>(r_l, Shape{1, 1, 2, 2}, AxisSet{0});

        // Right Graph
        auto requant_scale_r = (input_scale_r * weights_scale_r) / output_scale_r;
        auto conv_r = std::make_shared<op::QuantizedConvolutionBias>(q_input_r,
                                                                     q_weights_r,
                                                                     q_bias_r,
                                                                     Strides{1, 1},
                                                                     Strides{1, 1},
                                                                     CoordinateDiff{0, 0},
                                                                     CoordinateDiff{0, 0},
                                                                     Strides{1, 1},
                                                                     requant_scale_r);
        auto dq_r = std::make_shared<op::Dequantize>(
            conv_r, output_scale_r, int8_zero, element::f32, AxisSet{});
        auto r_r = std::make_shared<op::Reshape>(dq_r, AxisVector{0, 1, 2, 3}, Shape{1, 2, 2});
        auto b_r = std::make_shared<op::Broadcast>(r_r, Shape{1, 1, 2, 2}, AxisSet{0});
        auto add = b_l + b_r;
        auto relu = std::make_shared<op::Relu>(add);
        auto q = std::make_shared<op::Quantize>(
            relu, output_scale_r, uint8_zero, element::u8, AxisSet{}, round_mode);
        auto dq = std::make_shared<op::Dequantize>(
            q, output_scale_r, uint8_zero, element::f32, AxisSet{});
        return make_shared<Function>(
            NodeVector{dq},
            ParameterVector{input_l, weights_l, bias_l, input_r, weights_r, bias_r});
    };

    auto cpu_f1 = make_function();
    auto cpu_f2 = make_function();

    test::Uniform<float> rng(2.0f, 2.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_f1->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    // Disable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:0", 1);
    auto cpu1_results = execute(cpu_f1, args, "CPU");
    // Enable CPUQuantFusion
    set_environment("NGRAPH_PASS_ENABLES", "CPUQuantFusion:1", 1);
    auto cpu2_results = execute(cpu_f2, args, "CPU");
    EXPECT_TRUE(test::all_close(cpu1_results.at(0), cpu2_results.at(0)));

    auto backend = runtime::Backend::create("CPU");
    auto fuse = make_function();
    backend->compile(fuse);
    ASSERT_EQ(count_ops_of_type<op::Quantize>(fuse), 6);
}

3936
#ifndef NGRAPH_JSON_DISABLE
3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
// Tests that rely on deserializing json files
TEST(cpu_fusion, fuse_conv_bias)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
    pass_manager.register_pass<ngraph::runtime::cpu::pass::CPUFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "conv_bias.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t cb = count_ops_of_type<op::ConvolutionBias>(func);
    ASSERT_GT(cb, 0);
}

TEST(cpu_fusion, gemm_mlp)
{
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/mnist_mlp_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass::Manager pass_manager;
3959
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969
    pass_manager.run_passes(func);
    auto mmbs = count_ops_of_type<op::MatmulBias>(func);
    ASSERT_EQ(mmbs, 3);
}

TEST(cpu_fusion, fuse_fprop_bn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_before_fusion.png");
    pass_manager.register_pass<ngraph::pass::ReshapeElimination>();
3970
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
    pass_manager.register_pass<pass::VisualizeTree>("bn_fprop_after_fusion.png");
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/bn_fprop_b2c3h2w2.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchNormTraining>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, sigmoid_multiply_fusion)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<pass::CoreFusion>();
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/3_lstm_cell_forward.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::SigmoidMultiply>(func);
    ASSERT_EQ(ccg, 18);
}

TEST(cpu_fusion, fuse_batch_mat_mul_transpose)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/batch_dot_3.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t ccg = count_ops_of_type<op::BatchMatMulTranspose>(func);
    ASSERT_EQ(ccg, 1);
}

TEST(cpu_fusion, fuse_batch_mat_mul_transpose_forward)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();

    const std::string file_name("mxnet/batch_dot_3.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    pass_manager.run_passes(cpu_f);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < int_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, fuse_batch_dot_backward)
{
    const std::string file_name("mxnet/batch_dot_3.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);

    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    pass_manager.run_passes(cpu_f);

    auto int_df = autodiff::backprop_function(int_f);
    auto cpu_df = autodiff::backprop_function(cpu_f);

    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : cpu_df->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_df, args, "INTERPRETER");
    auto cpu_results = execute(cpu_df, args, "CPU");

    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, fuse_rnn_across_layer_2layer_3timestep)
{
    const std::string file_name("mxnet/2layer_3timestep_ic100oc100.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");

    EXPECT_EQ(1, count_ops_of_type<op::Rnn>(cpu_f));
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

Pruthvi's avatar
Pruthvi committed
4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
TEST(cpu_fusion, fuse_bi_directional_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    pass_manager.register_pass<ngraph::pass::AlgebraicSimplification>();
    pass_manager.register_pass<runtime::cpu::pass::MultiLayerRNNFusion>();
    pass_manager.register_pass<runtime::cpu::pass::BiDirectionalRnn>();
    const string json_path = file_util::path_join(SERIALIZED_ZOO, "mxnet/lstm_bi_directional.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    // Bidirectional graph pass will folds the reverse seq
    auto rev_seq_ops = get_ops_of_type<op::Reverse>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rev_seq_ops.size(), 0);
    // fuse two bi-directional rnn layers in to one MKLDNN Op
    EXPECT_EQ(rnn_ops.size(), 1);
}

TEST(cpu_fusion, bi_rnn_interpreter_vs_cpu)
{
    const std::string file_name("mxnet/lstm_bi_directional.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(0.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < int_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
4131 4132 4133 4134 4135

TEST(cpu_fusion, rnn_fusion_from_json_model)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPURnnMatFusion>();
4136
    pass_manager.register_pass<runtime::cpu::pass::CPUFusion>(pass::FusionType::REGULAR_FUSIONS);
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/rnn-10-step-fusion-test.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    const size_t NUM_STEPS = 10;
    auto mmb_predicate = [=](std::shared_ptr<Node> node) {
        auto users = node->get_users();
        return (users.size() == NUM_STEPS) &&
               std::all_of(begin(users), end(users), [](std::shared_ptr<Node> n) {
                   return std::dynamic_pointer_cast<op::Slice>(n) != nullptr;
               });
    };

    auto mmbs = get_ops_of_type<op::MatmulBias>(func);
    ASSERT_TRUE(std::any_of(begin(mmbs), end(mmbs), mmb_predicate));
}

TEST(cpu_fusion, fuse_lstm_cells)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    auto lstm_ops = get_ops_of_type<op::Lstm>(func);
    EXPECT_EQ(lstm_ops.size(), 6);
}

TEST(cpu_fusion, fuse_2_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/2rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

TEST(cpu_fusion, fuse_1_layer_rnn)
{
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::LSTMFusion>();
    pass_manager.register_pass<runtime::cpu::pass::RNNFusion>();
    const string json_path =
        file_util::path_join(SERIALIZED_ZOO, "mxnet/1rnn_layer_3lstm_cell.json");
    const string json_string = file_util::read_file_to_string(json_path);
    stringstream ss(json_string);
    shared_ptr<Function> func = ngraph::deserialize(ss);
    pass_manager.run_passes(func);
    size_t count = count_ops_of_type<op::Rnn>(func);
    auto rnn_ops = get_ops_of_type<op::Rnn>(func);
    EXPECT_EQ(rnn_ops.size(), 1);
    EXPECT_EQ(rnn_ops.size(), count);
    for (auto& node : rnn_ops)
    {
        EXPECT_EQ(node->get_num_timesteps(), node->get_src_sequence_length());
        EXPECT_EQ(node->get_num_cell_states(), node->get_argument(1)->get_arguments().size());
    }
}

TEST(cpu_fusion, rnn_fusion_1lstm_cell)
{
    const std::string file_name("mxnet/1_lstm_cell_forward.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, rnn_fusion_1rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/1rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, rnn_fusion_2rnn_layer_3lstm_cell)
{
    const std::string file_name("mxnet/2rnn_layer_3lstm_cell.json");
    auto cpu_f = make_function_from_file(file_name);
    auto int_f = make_function_from_file(file_name);
    test::Uniform<float> rng(-1.0f, 1.0f);
    vector<vector<float>> args;

    for (shared_ptr<op::Parameter> param : int_f->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }
    auto int_results = execute(int_f, args, "INTERPRETER");
    auto cpu_results = execute(cpu_f, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}

TEST(cpu_fusion, validate_fuse_gru_inputs)
{
    const std::string file_name("mxnet/gru_debug.json");
    auto cpu_func = make_function_from_file(file_name);
    auto int_func = make_function_from_file(file_name);

    test::Uniform<float> rng(-10.0f, 10.0f);
    vector<vector<float>> args;
    for (shared_ptr<op::Parameter> param : int_func->get_parameters())
    {
        vector<float> tensor_val(shape_size(param->get_shape()));
        rng.initialize(tensor_val);
        args.push_back(tensor_val);
    }

    auto int_results = execute(int_func, args, "INTERPRETER");
    auto cpu_results = execute(cpu_func, args, "CPU");
    for (size_t i = 0; i < cpu_results.size(); i++)
    {
        EXPECT_TRUE(test::all_close(cpu_results.at(i), int_results.at(i), 1.0e-4f, 1.0e-4f));
    }
}
4301

4302
#if defined(AUTODIFF_BACKEND_CPU) && !defined(NGRAPH_JSON_DISABLE)
4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324
NGRAPH_TEST(cpu_fusion, backwards_batchmatmultranspose_tensor2_tensor2)
{
    auto backend = runtime::Backend::create("CPU");

    const std::string file_name("mxnet/batch_dot_3.json");
    auto f = make_function_from_file(file_name);

    test::Uniform<float> rng(-1.0f, 1.0f);
    std::vector<std::shared_ptr<ngraph::runtime::Tensor>> args;
    for (shared_ptr<op::Parameter> param : f->get_parameters())
    {
        args.push_back(rng.initialize(backend->create_tensor<float>(param->get_shape())));
    }

    auto g = make_function_from_file(file_name);
    pass::Manager pass_manager;
    pass_manager.register_pass<runtime::cpu::pass::CPUBatchFusion>();
    pass_manager.run_passes(g);
    EXPECT_TRUE(autodiff_numeric_compare<float>(backend.get(), f, g, args, .01f, .01f));
}
#endif

4325
#endif