all_close_f.cpp 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
//*****************************************************************************
// Copyright 2017-2018 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

#include <bitset>
#include <cmath>
#include <limits>
#include <sstream>

#include "gtest/gtest.h"

#include "ngraph/ngraph.hpp"
#include "util/all_close_f.hpp"

using namespace std;
using namespace ngraph;

union FloatUnion {
    float f;
    uint32_t i;
};

string float_to_bits(float f)
{
    FloatUnion fu{f};
    stringstream ss;
    ss << bitset<32>(fu.i);
    return ss.str();
}

float bits_to_float(const string& s)
{
    if (s.size() != 32)
    {
        throw ngraph_error("Input length must be 32");
    }
    bitset<32> bs(s);
    FloatUnion fu;
    fu.i = static_cast<uint32_t>(bs.to_ulong());
    return fu.f;
}

// Test the exact bounds near +0.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
//                           Targeted bit
//                           |
//                           v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
//               =>|      8      |
//                           | 2 |<=
//
// [Upper bound]
//                           Add 1 at this bit
//                           |
//                           v
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// +                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
//                           Minus 1 at this bit
//                           |
//                           v
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// -                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Convert to 2's compliment
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Mask the sign bit
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_0)
{
    // 0.f, the ground-truth value
    float expected = bits_to_float("00000000000000000000000000000000");
    float computed;

    // ~3.67342E-40, the exact upper bound
    computed = bits_to_float("00000000000001000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // ~3.67343E-40, the next representable number bigger than upper bound
    computed = bits_to_float("00000000000001000000000000000001");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));

    // ~-3.67342E-40, the exact lower bound
    computed = bits_to_float("10000000000001000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // ~-3.67343E-40, the next representable number smaller than lower bound
    computed = bits_to_float("10000000000001000000000000000001");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}

// Test the exact bounds near -0.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
//                           Targeted bit
//                           |
//                           v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
//               =>|      8      |
//                           | 2 |<=
//
// [Upper bound]
//                           Minus 1 at this bit
//                           |
//                           v
// 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// -                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Convert to 2's compliment
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// Mask off sign bit
// 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
//                           Add 1 at this bit
//                           |
//                           v
// 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// +                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_n0)
{
    // 0.f, the ground-truth value
    float expected = bits_to_float("10000000000000000000000000000000");
    float computed;

    // ~3.67342E-40, the exact upper bound
    computed = bits_to_float("00000000000001000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // ~3.67343E-40, the next representable number bigger than upper bound
    computed = bits_to_float("00000000000001000000000000000001");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));

    // ~-3.67342E-40, the exact lower bound
    computed = bits_to_float("10000000000001000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // ~-3.67343E-40, the next representable number smaller than lower bound
    computed = bits_to_float("10000000000001000000000000000001");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}

// Test the exact bounds near 1.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
//                           Targeted bit
//                           |
//                           v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
//               =>|      8      |
//                           | 2 |<=
//
// [Upper bound]
//                           Add 1 at this bit to get upper bound
//                           |
//                           v
// 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// +                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
//                           Minus 1 at this bit to get lower bound
//                           |
//                           v
// 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// -                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_1)
{
    // 1.f, the ground-truth value
    float expected = bits_to_float("00111111100000000000000000000000");
    float computed;

    // 1.03125f, the exact upper bound
    computed = bits_to_float("00111111100001000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // 1.031250119f, the next representable number bigger than upper bound
    computed = bits_to_float("00111111100001000000000000000001");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));

    // 0.984375f, the exact lower bound
    computed = bits_to_float("00111111011111000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // 0.9843749404f, the next representable number smaller than lower bound
    computed = bits_to_float("00111111011110111111111111111111");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}

// Test the exact bounds near -1.f
//
// With mantissa_bits = 8, tolerance_bits = 2
//
//                           Targeted bit
//                           |
//                           v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
//               =>|      8      |
//                           | 2 |<=
//
// [Upper bound]
//                           Minus 1 at this bit
//                           |
//                           v
// 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// -                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
//
// [Lower bound]
//                           Add 1 at this bit
//                           |
//                           v
// 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// +                         1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// ---------------------------------------------------------------
// 1 0 1 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TEST(all_close_f, mantissa_8_near_n1)
{
    // -1.f, the ground-truth value
    float expected = bits_to_float("10111111100000000000000000000000");
    float computed;

    // -0.984375f, the exact upper bound
    computed = bits_to_float("10111111011111000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // -0.984374940395355224609375f, the next representable number bigger than upper bound
    computed = bits_to_float("10111111011110111111111111111111");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));

    // -1.03125f, the exact lower bound
    computed = bits_to_float("10111111100001000000000000000000");
    EXPECT_TRUE(test::close_f(expected, computed, 8, 2));

    // -1.03125011920928955078125f, the next representable number smaller than lower bound
    computed = bits_to_float("10111111100001000000000000000001");
    EXPECT_FALSE(test::close_f(expected, computed, 8, 2));
}

// For intuitive understanding of tightness of bounds in decimal
// Test bounds near 0, 1, 10, 100, 1000 with mantissa_bits = 8, tolerance_bits = 2
//
//                           Targeted bit
//                           |
//                           v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
//               =>|      8      |
//                           | 2 |<=
TEST(all_close_f, mantissa_8_near_0_1_10_100_1000)
{
    float expected;
    float upper_bound;
    float bigger_than_upper_bound;
    float lower_bound;
    float smaller_than_lower_bound;

    // Bounds around 0: 0 +- 3.67e-40
    expected = 0.f;                          // 00000000000000000000000000000000
    upper_bound = 3.67342e-40f;              // 00000000000001000000000000000000, approximated
    bigger_than_upper_bound = 3.67343e-40f;  // 00000000000001000000000000000001, approximated
    lower_bound = -3.67342e-40f;             // 10000000000001000000000000000000, approximated
    smaller_than_lower_bound = 3.67343e-40f; // 10000000000001000000000000000001, approximated
    EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));

    // Bounds around 1: 1 +- 0.03
    expected = 1.f;                           // 00111111100000000000000000000000
    upper_bound = 1.03125f;                   // 00111111100001000000000000000000
    bigger_than_upper_bound = 1.031250119f;   // 00111111100001000000000000000001
    lower_bound = 0.984375f;                  // 00111111011111000000000000000000
    smaller_than_lower_bound = 0.9843749404f; // 00111111011110111111111111111111
    EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));

    // Bounds around 10: 10 +- 0.25
    expected = 10.f;                                    // 01000001001000000000000000000000
    upper_bound = 10.25f;                               // 01000001001001000000000000000000
    bigger_than_upper_bound = 10.25000095367431640625f; // 01000001001001000000000000000001
    lower_bound = 9.75f;                                // 01000001000111000000000000000000
    smaller_than_lower_bound = 9.74999904632568359375f; // 01000001000110111111111111111111
    EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));

    // Bounds around 100: 100 +- 2
    expected = 100.f;                                 // 01000010110010000000000000000000
    upper_bound = 102.f;                              // 01000010110011000000000000000000
    bigger_than_upper_bound = 102.00000762939453125f; // 01000010110011000000000000000001
    lower_bound = 98.0f;                              // 01000010110001000000000000000000
    smaller_than_lower_bound = 97.99999237060546875f; // 01000010110000111111111111111111
    EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));

    // Bounds around 1000: 1000 +- 16
    expected = 1000.f;                              // 01000100011110100000000000000000
    upper_bound = 1016.f;                           // 01000100011111100000000000000000
    bigger_than_upper_bound = 1016.00006103515625f; // 01000100011111100000000000000001
    lower_bound = 984.0f;                           // 01000100011101100000000000000000
    smaller_than_lower_bound = 983.99993896484375f; // 01000100011101011111111111111111
    EXPECT_TRUE(test::close_f(expected, upper_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 8, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 8, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 8, 2));
}

// For intuitive understanding of tightness of bounds in decimal
// Test bounds near 0, 1, 10, 100, 1000 with mantissa_bits = 24, tolerance_bits = 2
//
//                                                           Targeted bit
//                                                           |
//                                                           v
// s e e e e e e e e m m m m m m m m m m m m m m m m m m m m m m m
//               =>|                     24                      |
//                                                           | 2 |<=
TEST(all_close_f, mantissa_24_near_0_1_10_100_1000)
{
    float expected;
    float upper_bound;
    float bigger_than_upper_bound;
    float lower_bound;
    float smaller_than_lower_bound;

    // Bounds around 0: 0 +- 5.6e-45
    expected = 0.f;
    upper_bound = bits_to_float("00000000000000000000000000000100");
    bigger_than_upper_bound = bits_to_float("00000000000000000000000000000101");
    lower_bound = bits_to_float("10000000000000000000000000000100");
    smaller_than_lower_bound = bits_to_float("10000000000000000000000000000101");
    EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));

    // Bounds around 1: 1 +- 4.77e-7
    expected = 1.f;
    upper_bound = bits_to_float("00111111100000000000000000000100");
    bigger_than_upper_bound = bits_to_float("00111111100000000000000000000101");
    lower_bound = bits_to_float("00111111011111111111111111111100");
    smaller_than_lower_bound = bits_to_float("00111111011111111111111111111011");
    EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));

    // Bounds around 10: 10 +- 3.81e-6
    expected = 10.f;
    upper_bound = bits_to_float("01000001001000000000000000000100");
    bigger_than_upper_bound = bits_to_float("01000001001000000000000000000101");
    lower_bound = bits_to_float("01000001000111111111111111111100");
    smaller_than_lower_bound = bits_to_float("01000001000111111111111111111011");
    EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));

    // Bounds around 100: 100 +- 3.05e-5
    expected = 100.f;
    upper_bound = bits_to_float("01000010110010000000000000000100");
    bigger_than_upper_bound = bits_to_float("01000010110010000000000000000101");
    lower_bound = bits_to_float("01000010110001111111111111111100");
    smaller_than_lower_bound = bits_to_float("01000010110001111111111111111011");
    EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));

    // Bounds around 1000: 1000 +- 2.44e-4
    expected = 1000.f;
    upper_bound = bits_to_float("01000100011110100000000000000100");
    bigger_than_upper_bound = bits_to_float("01000100011110100000000000000101");
    lower_bound = bits_to_float("01000100011110011111111111111100");
    smaller_than_lower_bound = bits_to_float("01000100011110011111111111111011");
    EXPECT_TRUE(test::close_f(expected, upper_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, bigger_than_upper_bound, 24, 2));
    EXPECT_TRUE(test::close_f(expected, lower_bound, 24, 2));
    EXPECT_FALSE(test::close_f(expected, smaller_than_lower_bound, 24, 2));
}

TEST(all_close_f, inf_nan)
{
    float zero = 0.f;
    float infinity = numeric_limits<float>::infinity();
    float neg_infinity = -numeric_limits<float>::infinity();
    float quiet_nan = numeric_limits<float>::quiet_NaN();
    float signaling_nan = numeric_limits<float>::signaling_NaN();

    EXPECT_FALSE(test::close_f(zero, infinity));
    EXPECT_FALSE(test::close_f(zero, neg_infinity));
    EXPECT_FALSE(test::close_f(zero, quiet_nan));
    EXPECT_FALSE(test::close_f(zero, signaling_nan));

    EXPECT_FALSE(test::close_f(infinity, infinity));
    EXPECT_FALSE(test::close_f(neg_infinity, neg_infinity));
    EXPECT_FALSE(test::close_f(quiet_nan, quiet_nan));
    EXPECT_FALSE(test::close_f(signaling_nan, signaling_nan));
}