backend_one_hot.in.cpp 8.94 KB
Newer Older
1
//*****************************************************************************
2
// Copyright 2017-2019 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//*****************************************************************************

#include <algorithm>
#include <cinttypes>
#include <cmath>
#include <cstdlib>
#include <random>
#include <string>

#include "gtest/gtest.h"
#include "ngraph/ngraph.hpp"
#include "util/all_close.hpp"
#include "util/all_close_f.hpp"
#include "util/ndarray.hpp"
#include "util/test_control.hpp"
#include "util/test_tools.hpp"

using namespace std;
using namespace ngraph;

static string s_manifest = "${MANIFEST}";

NGRAPH_TEST(${BACKEND_NAME}, one_hot_scalar_2_in_3)
{
    Shape shape_a{};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{3};
    auto r = make_shared<op::OneHot>(A, Shape{3}, 0);
43
    auto f = make_shared<Function>(r, ParameterVector{A});
44 45 46 47 48 49 50 51

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    copy_data(a, vector<int32_t>{2});
    auto result = backend->create_tensor(element::i32, shape_r);

52
    auto handle = backend->compile(f);
53
    handle->call_with_validate({result}, {a});
54 55 56 57 58 59 60 61 62
    EXPECT_EQ((vector<int32_t>{0, 0, 1}), read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, one_hot_scalar_1_in_3)
{
    Shape shape_a{};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{3};
    auto r = make_shared<op::OneHot>(A, Shape{3}, 0);
63
    auto f = make_shared<Function>(r, ParameterVector{A});
64 65 66 67 68 69 70 71

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    copy_data(a, vector<int32_t>{1});
    auto result = backend->create_tensor(element::i32, shape_r);

72
    auto handle = backend->compile(f);
73
    handle->call_with_validate({result}, {a});
74 75 76 77 78 79 80 81 82
    EXPECT_EQ((vector<int32_t>{0, 1, 0}), read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, one_hot_scalar_0_in_3)
{
    Shape shape_a{};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{3};
    auto r = make_shared<op::OneHot>(A, Shape{3}, 0);
83
    auto f = make_shared<Function>(r, ParameterVector{A});
84 85 86 87 88 89 90 91

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    copy_data(a, vector<int32_t>{0});
    auto result = backend->create_tensor(element::i32, shape_r);

92
    auto handle = backend->compile(f);
93
    handle->call_with_validate({result}, {a});
94 95 96 97 98 99 100 101 102
    EXPECT_EQ((vector<int32_t>{1, 0, 0}), read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, one_hot_scalar_oob_in_3)
{
    Shape shape_a{};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{3};
    auto r = make_shared<op::OneHot>(A, Shape{3}, 0);
103
    auto f = make_shared<Function>(r, ParameterVector{A});
104 105 106 107 108

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
109 110 111
    copy_data(a, vector<int32_t>{3});
    vector<int32_t> r_data(4);
    auto result = backend->create_tensor(element::i32, shape_r, r_data.data());
112

113 114 115
    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a});
    EXPECT_EQ(r_data[3], 0);
116 117 118 119 120 121 122 123
}

NGRAPH_TEST(${BACKEND_NAME}, one_hot_vector_0)
{
    Shape shape_a{8};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{3, 8};
    auto r = make_shared<op::OneHot>(A, Shape{3, 8}, 0);
124
    auto f = make_shared<Function>(r, ParameterVector{A});
125 126 127 128 129 130 131 132

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    copy_data(a, vector<int32_t>{2, 1, 0, 0, 2, 2, 1, 0});
    auto result = backend->create_tensor(element::i32, shape_r);

133
    auto handle = backend->compile(f);
134
    handle->call_with_validate({result}, {a});
135 136 137 138 139 140 141 142 143 144 145
    EXPECT_EQ(
        (vector<int32_t>{0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0}),
        read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, one_hot_vector_1)
{
    Shape shape_a{8};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{8, 3};
    auto r = make_shared<op::OneHot>(A, Shape{8, 3}, 1);
146
    auto f = make_shared<Function>(r, ParameterVector{A});
147 148 149 150 151 152 153 154

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    copy_data(a, vector<int32_t>{2, 1, 0, 0, 2, 2, 1, 0});
    auto result = backend->create_tensor(element::i32, shape_r);

155
    auto handle = backend->compile(f);
156
    handle->call_with_validate({result}, {a});
157 158 159 160 161 162 163 164 165 166 167
    EXPECT_EQ(
        (vector<int32_t>{0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0}),
        read_vector<int32_t>(result));
}

NGRAPH_TEST(${BACKEND_NAME}, one_hot_vector_1_barely_oob)
{
    Shape shape_a{8};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{8, 3};
    auto r = make_shared<op::OneHot>(A, Shape{8, 3}, 1);
168
    auto f = make_shared<Function>(r, ParameterVector{A});
169 170 171 172 173 174 175 176

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    copy_data(a, vector<int32_t>{2, 1, 0, 0, 3, 2, 1, 0});
    auto result = backend->create_tensor(element::i32, shape_r);

177 178 179
    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a});
    vector<int32_t> rv = read_vector<int32_t>(result);
180

181 182 183
    EXPECT_EQ(rv[0], 0);
    EXPECT_EQ(rv[1], 0);
    EXPECT_EQ(rv[2], 1);
184

185 186 187
    EXPECT_EQ(rv[3], 0);
    EXPECT_EQ(rv[4], 1);
    EXPECT_EQ(rv[5], 0);
188

189 190 191
    EXPECT_EQ(rv[6], 1);
    EXPECT_EQ(rv[7], 0);
    EXPECT_EQ(rv[8], 0);
192

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    EXPECT_EQ(rv[9], 1);
    EXPECT_EQ(rv[10], 0);
    EXPECT_EQ(rv[11], 0);

    // These are undefined since value is out of bounds
    // EXPECT_EQ(rv[12], 0);
    // EXPECT_EQ(rv[13], 0);
    // EXPECT_EQ(rv[14], 0);

    EXPECT_EQ(rv[15], 0);
    EXPECT_EQ(rv[16], 0);
    EXPECT_EQ(rv[17], 1);

    EXPECT_EQ(rv[18], 0);
    EXPECT_EQ(rv[19], 1);
    EXPECT_EQ(rv[20], 0);

    EXPECT_EQ(rv[21], 1);
    EXPECT_EQ(rv[22], 0);
    EXPECT_EQ(rv[23], 0);
213 214 215 216 217 218 219 220
}

NGRAPH_TEST(${BACKEND_NAME}, one_hot_matrix_0)
{
    Shape shape_a{3, 3};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{3, 3, 3};
    auto r = make_shared<op::OneHot>(A, Shape{3, 3, 3}, 0);
221
    auto f = make_shared<Function>(r, ParameterVector{A});
222 223 224 225 226 227 228 229 230 231 232

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    copy_data(a,
              vector<int32_t>{
                  0, 1, 1, 2, 1, 0, 0, 2, 1,
              });
    auto result = backend->create_tensor(element::i32, shape_r);

233
    auto handle = backend->compile(f);
234
    handle->call_with_validate({result}, {a});
235 236 237 238 239 240 241 242
    EXPECT_EQ((vector<int32_t>{1, 0, 0, 0, 0, 1, 1, 0, 0,

                               0, 1, 1, 0, 1, 0, 0, 0, 1,

                               0, 0, 0, 1, 0, 0, 0, 1, 0}),
              read_vector<int32_t>(result));
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
NGRAPH_TEST(${BACKEND_NAME}, one_hot_vector_many_categories)
{
    // Imagenet has roughly 20,000 categories
    uint32_t category_count = 20000;
    Shape shape_a{6};
    auto A = make_shared<op::Parameter>(element::i32, shape_a);
    Shape shape_r{6, category_count};
    auto r = make_shared<op::OneHot>(A, Shape{6, category_count}, 1);
    auto f = make_shared<Function>(r, ParameterVector{A});

    auto backend = runtime::Backend::create("${BACKEND_NAME}");

    // Create some tensors for input/output
    auto a = backend->create_tensor(element::i32, shape_a);
    vector<int32_t> input_data{0, 11, 101, 1001, 10001, static_cast<int32_t>(category_count - 1)};
    copy_data(a, input_data);
    auto result = backend->create_tensor(element::i32, shape_r);

    auto handle = backend->compile(f);
    handle->call_with_validate({result}, {a});
    vector<int32_t> data = read_vector<int32_t>(result);

    vector<int32_t> bit_positions;
    for (size_t i = 0; i < shape_size(shape_r); ++i)
    {
        if (data[i] == 1)
        {
            bit_positions.push_back(i % category_count);
        }
    }
    EXPECT_EQ(bit_positions, input_data);
}